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Lecture 19: Conformal Geometry

Conformal maps

In previous lectures we have explored the concept of isometries and we have seen that isometries
are rare. However, there is a weaker condition: conformality. Whereas isometries preserve both
lengths and angles, conformal maps preserve only angles.

Formally, let S1, S2 be surfaces with metrics g1, g2. A map φ : S1 → S2 is conformal if for all
X,Y ∈ TpS1 ∃ function u : S1 → R s.t.:

g2(Dφp(X), Dφp(Y )) = e2u(p)g1(X,Y ) (1)

Conformality is very flexible, in fact, all surfaces are locally conformal to the euclidean metric.
This is stated in the following theorem:

Theorem: Let S be a surface. For every p ∈ S there exists an isothermal parametrization for
a neighbourhood of p. This parametrization satisfies the following: there exists U ⊆ R2 and V ⊆ S
containing p, a map φ : U → V and a function u : U → R so that

g := [Dφx]>Dφx =

(
e2u(x) 0

0 e2u(x)

)
∀x ∈ U

An important family of conformal maps comes from complex analysis. Swap R2 by C, so now
we have that for p ∈ S the neighbourhood of p is holomorphic to a neighboorhood of C.

The Uniformization theorem

The isothermal parametrization discussed in the previous section is local, however, one can ask
what happens globally. This question leads to a very strong global statement:

Theorem: Let S be a 2D compact abstract surface with metric g. Then S possesses a metric
ḡ conformal to g with constant Gauss curvature +1,−1 or 0. Furthermore, S is conformal to a
model space which is (the quotient by a finite group of self-conformal maps of) one of the following:

• The sphere with its standard metric if S has genus zero.

• The plane with its standard metric if S has genus one.

• The unit disk with the Poincaré metric if S has genus > 1.

A useful consequence of the uniformization theorem comes from the application of the Gauss-
Bonnet formula. Under a conformal paramatrization, the Gaussian curvature transforms according
to:

g2 = e2ug1 =⇒ K2 = e2u
(
−∆1u+K1

)



which, using the Gauss-Bonet formula leads to:

const .× Area(S) =

ˆ
S
K2 dA2 = 2πχ(S)

that is, the sign of the uniformized curvature depends on topology.

For surfaces of genus zero, for example, we can find a parametrization conformal to the sphere.
One key fact of such map is that it minimizes the Dirichlet energy ED(φ) :=

´
S ‖Dφ‖

2
F dA.

For higher genus surfaces, however, there are more than one candidate for the conformal struc-
ture of S. We define the set TS of conformal structures of S, called the Teichmüller space of S,
whichis an abstract manifold of dimension

dim(TS) =

{
2 genus = 1

6g − 6 genus = g > 1

A parametrization of TS is provided by holomorphic differentials:

• These are related to harmonic one-forms on S.

• The natural coordinates of TS are the values of the line integrals of these differentials around
homology generators of S.

Möbius transformations

These are conformal maps M : C ∪ {∞} of especial interest, they are maps of the complex plane
to itself given by:

f(z) =
a z + b

c z + d

They can also be seen as conformal maps of the sphere S2 to the complex plane under stereo-
graphic projection, i.e., a Möbius transformation can be obtained by projecting the complex plane
to the sphere, rotating and moving the sphere, and then projecting back to the complex plane.

Examples of conformal methods

Motivation

Application of conformal methods are numerous, among them, relevant examples are texture map-
ping, morphing and finding correspondences between two surfaces. To being able to create such
maps requires especial considerations when we deal with discretized geometries such as those rep-
resented via triangular meshes. In the following sections we present some relevant examples.

Example 1: Conformal flattening by curvature prescription and metric scaling

A common procedure to find conformal parametrizations of triangular meshes is to cut the mesh
and map each patch to a disk, however the main disadvantage of such approach is that it introduces
discontinuities along the cuts and edges on either side of the cuts are scaled by different amounts.
This is illustrated in figure 1.



Figure 1: Edge discontinuities common in mapping algorithms that cut the mesh first and then
recompute the metric.

The example discussed here introduces a different approach to avoid those singularities [1]. The
method is based on redistributing the secrete Gaussian curvature such that only a few vertices,
termed cone singularities, concentrate all of the curvature and the rest have zero curvature. The
cuts to the mesh are performed after the new metric is computed, therefore guaranteeing that edges
on both sides of the cut are stretched by the same amount when mapped to the plane.

In addition to exploring the contributions of this manuscript, this brief overview of the paper
allows for the review of basic discrete differential geometry tools and concepts.

Background

A triangular mesh M is given by a set of vertices V , edges E and faces F . The mesh is said
to be embedded if there is an assignment from every vertex to a point in the physical space
XM := {xv ∈ R3|v ∈ V }.

The discrete metric associated with this mesh is obtained by assigning a positive number to
each edge on the mesh: LM := {lij ∈ R+|(i, j) ∈ E}. The natural metric is the one in which the
number assigned to each edge is its euclidean length.

The angles induced by a given metric at each vertex and for a given face are the result of
applying the law of cosines to the edges’ metric: ALM := {αfv = arccos(l2vu + l2vw − l2uw)/(2luvluw}.

The discrete gaussian curvature induced by a given metric at a vertex is KLM := {kv =

2π −
∑
αfv |v ∈ V }.

Conformal map via curvature prescription

The goal is to find a conformal map that redistributes the Gaussian curvature to the singular ver-
tices. Given the Gaussian curvature of a mesh, a target Gaussian curvature vector is called feasible
as long as it satisfies the Gauss-Bonnet formula. Then, the problem is to find the new metric that
induces the target Gaussian curvature and is conformal to the natural metric of the mesh.

From the continuous setting, under a conformal map, the Gaussian curvature changes according
to:



∇2φ = Korig − e2φKnew

In the discrete setting, however, the scaling factor disappears, and for each vertex we have the
equation:

∇2φv ≈ knew
v − korig

v

Where now the Laplacian can be replaced with the cotangent weights which is equivalent to
the finite element approximation of the continuous Laplacian leading to the linear system:

∇2φ = Knew −Korig

The metric corresponding to such conformal map is a scaling of the natural metric of the original
mesh. The scaling factors come from integration of the discrete map φ over the edge:

sij =
eφj − e

φ
i

φj − φi
(i, j) ∈ E

Algorithm

First, a way to find a feasible Gaussian curvature vector is needed. The input is the original
curvature vector and a set of singular vertices that will absorb all the curvature. We can think of
the path going from the original vector of curvatures to the target vector as a Markov process. If
a vertex is non-singular then it redistributes all of its curvature among its neighbors. If a vertex
is singular, then it absorbs all the curvature from its neighbors. The closed form solution of the
problem leads to:

Knew = Korig +GKorig

where each column of G is obtained solving a Laplacian system

LGi = δi

Finally, the algorithm is:

1. Initialize the set of cone singularities

2. Find the target curvatures

3. Compute the conformal map φ

4. Calculate the distortion max(φ)−min(φ)

5. It the distortion is greater than a user specified tolerance add max(φ) and min(φ) to the set
of singularities and go back to 2.

Figure 2 illustrates the result of applying this algorithm.

Example 2: Conformal equivalence of triangle meshes

This manuscript follows a very similar path to the one discussed in Example 1, namely, the goal is
to find a conformal parametrization such that the new parametrization has prescribed curvatures
[3]. As in the previous example, the goal is to redistribute the Gaussian curvature so that it
concentrates in some cone singularities and is zero everywhere else.



Figure 2: Results of the algorithm described in Example 1



Conformal equivalence

The concepts used here are the same as those employed in the previous section, namely, the notions
of triangular mesh, discrete metric, defect angles and discrete Gaussian curvature. With those
concepts at hand, the definition we seek comes from the question: What is conformal equivalence
in the discrete setting? In the continuous case, two metrics are conformally equivalent if ḡ = e2ug.
For triangular meshes, two discrete metrics L and L̄ are conformally equivalent if for some ui
associated with vertex vi ∈ V the two metrics are related by:

l̄ij = e(ui+uj)/2lij |(i, j) ∈ E

This notion of discrete conformal equivalence can be regarded from the perspective of conserved
quantities. We define the edge cross length ratio as:

ζij := lim/lmj · ljklki
For an edge (i, j) and faces fink, fjim ∈ F . Then, we have the proposition: Two meshes are

conformally equivalent if and only if the length cross ratios are preserved.

Algorithm

The input is a mesh and a vector of target curvatures compatible with the Gauss-Bonnet formula
just as in Example 1. The goal is to determine the corresponding conformal map based on the
equivalence definitions provided in the previous section. The solution of such problem is that of
solving the following convex minimization problem:

E(u) =
∑
fijk

(f(λ̄ij , λ̄jk, λ̄ki)−
pi

2
(ui + uj + uk)) +

1

2

∑
vi

(π − knew
i )ui

whit:

f(λ̄ij , λ̄jk, λ̄ki) =
1

2

(
¯alpha

ijk
i λ̄jk + ¯alpha

ijk
j λ̄ki + ¯alpha

ijk
k λ̄ij

)
+JI( ¯alpha

ijk
i )+JI( ¯alpha

ijk
j )+JI( ¯alpha

ijk
k )

where λij = 2loglij , ¯alpha
ijk
i is the angle at vertex i for face ijk and JI(x) = −

´ x
0 log |2 sin t|dt.

Figure 3 shows illustrative results from the application of this algorithm.

Example 3: Möbius voting for surface correspondence

Using the idea of mapping surfaces to the complex plane such that the resulting map is holomorphic
opens the possibility of exploring the two flattened surfaces to search for correspondences [2]. The
advantage of working in the complex plane is that we can find maps from the complex plane into
itself via Möbius transformations which have closed form solution.

Figure 4 illustrates the problem to be solved, namely, given two surfaces, first map them con-
formally to the complex plane via Φ1 and Φ2, then relate the two complex planes using Möbius
transformations.



Figure 3: Results of the algorithm described in Example 2

Figure 4: Schematic of the problem of finding correspondence points between surfaces



Figure 5: Mid-edge mesh

Figure 6: Example of the mid-edge uniformization

Mid-edge uniformization

There are several ways to achieve conformal maps. Examples 1 and 2 explore two novel techniques.
The approach followed in this paper takes advantage of the mid-edge mesh shown in Figure 5.
Black vertices are those from the original mesh, red vertices are the mid edges, and purple faces
are the faces of the mid-edge mesh. Then, the goal is to find discrete conjugate harmonic functions
u(·) and u ∗ (·) to define the mapping Φ(vi) = u(vi) + iu ∗ (vi). The discrete harmonic function can
be obtained from: ∑

j∈N
(ui − uj)(cotαij + cotβij) = 0 ∀vi ∈ V

where N is the one-ring of vi and the angles αij and βij are the angles supporting the edge
(i, j) ∈ E. Figure 6 illustrates such mapping. In principle, the map is not unique, but different
maps are related by a single Möbius transformation. In the figure 6 , a) and b) are two different
maps and c) is a transformation of b). Note the similarity between a) and c).



Figure 7: Results of the algorithm described in Example 3

Möbius voting algorithm

1. Select a subset of the vertices for each surface. These vertices are the ones for which we will
test correspondence.

2. Perform Mid-edge uniformization to both surfaces

3. Select randomly three points from every subset and perform the corresponding Möbius trans-
formation to map both complex parametrizations to a common canonical domain.

4. Evaluate the correspondence and fill in a fuzzy correspondence matrix.

5. Go to 3

The advantage of this algorithm is that the hard step is the uniformization, but that is only
done once for each surface. The iterations involve only Möbius transformations which are
relatively simple. Figure 7 shows two examples.
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[3] Boris Springborn, Peter Schröder, and Ulrich Pinkall. Conformal equivalence of triangle
meshes. In ACM Transactions on Graphics (TOG), volume 27, page 77. ACM, 2008.


