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Conformal Maps

Idea: Shapes are rarely isometric. Is there a weaker condition that
is more common?

Conformal Maps

[Gu 2008]

• Let S1,S2 be surfaces with
metrics g1, g2.

• A conformal map preserves
angles but can change
lengths.

• I.e. φ : S1 → S2 is conformal
if ∃ function u : S1 → R s.t.

g2(Dφp(X ),Dφp(Y )) =

e2u(p)g1(X ,Y )

for all X ,Y ∈ TpS1



Isothermal Coordinates

Fact: Conformality is very flexible.

Theorem: Let S be a surface. For every p ∈ S there exists an
isothermal parametrization for a neighbourhood of p.

• This means that there exists U ⊆ R2 and V ⊆ S containing p,
a map φ : U → V and a function u : U → R so that

g := [Dφx ]>Dφx =

(
e2u(x) 0

0 e2u(x)

)
∀ x ∈ U

• This is proved by solving a fully determined PDE.

Corollary: Every surface is locally conformally planar.

Corollary: Any pair of surfaces is locally conformally equivalent.



A Connection to Complex Analysis

The existence of isothermal parameters can be re-phrased in the
language of complex analysis.

• Replace R2 with C.

• Now every p ∈ S has a neighbourhood that is holomorphic to a
neighboorhood of C.

• The fact that the metric is isothermal is key — multiplication
by
√
−1 in C is equivalent to rotation by π/2 in S .

• S becomes a complex manifold.

Fact: The connection to complex analysis is very deep!



The Uniformization Theorem

What happens globally?

Uniformization Theorem:

Let S be a 2D compact abstract surface with metric g . Then S
possesses a metric ḡ conformal to g with constant Gauss curvature
+1,−1 or 0.

Furthermore, S is conformal to a model space which is (the quotient

by a finite group of self-conformal maps of) one of the following:

• The sphere with its standard metric if S has genus zero.

• The plane with its standard metric if S has genus one.

• The unit disk with the Poincaré metric if S has genus > 1.



The Gauss-Bonnet Formula

Useful formula: The Gauss curvature transforms as follows under a
conformal map:

g2 = e2ug1 =⇒ K2 = e2u
(
−∆1u + K1

)
Consequence: The Gauss-Bonnet formula implies that the sign of
the uniformized curvature depends on topology.

const.× Area(S) =

ˆ
S
K2 dA2

=

ˆ
S
e2u
(
−∆1u + K1

)
× e−2u dA1

=

ˆ
S
K1 dA1

= 2πχ(S)



Genus-One Surfaces

If S has genus zero then it is conformal to the sphere.

Key fact: The map φ : S → S2 is not unique.

• S2 is conformal to C ∪ {∞} by stereographic projection.

• The set M of conformal self-maps of C ∪ {∞} is the set of all
Möbius transformations of the complex plane.

• Thus any two conformal maps φ1, φ2 : S → S2 satisfy

σ ◦ φ1 ◦ φ−1
2 ◦ σ

−1 = m ∈M

Another Key Fact: Conformal maps to the sphere minimize the
Dirichlet energy ED(φ) :=

´
S ‖Dφ‖

2
F dA.

• Thus we can find φ by flowing down the energy gradient.

• Must impose a condition to ensure convergence to a unique
solution — e.g.

´
S φ = 0.



Higher-Genus Surfaces

For genus > 0 surfaces, there is more than one possible candidate for
the “target surface in the Uniformization Theorem and its metric”.︸ ︷︷ ︸

The conformal structure of S

Def: The set TS of conformal structure of S is called the
Teichmüller space of S and is an abstract manifold of dimension

dim(TS) =

{
2 genus = 1

6g − 6 genus = g > 1

A parametrization of TS is provided by holomorphic differentials:

• These are related to harmonic one-forms on S .

• The natural coordinates of TS are the values of the line
integrals of these differentials around homology generators of S .


