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Conformal Maps

Idea: Shapes are rarely isometric. Is there a weaker condition that
is more common?

e Let 51,5, be surfaces with

Conformal Maps
metrics g1, .

e A conformal map preserves
angles but can change
lengths.

l e le ¢:5 — S, is conformal
if 3 function v: S; — R s.t.

82(D¢p(X), Dép(Y)) =
ezu(p)gl(X, Y)

forall X, Y € Tp5;

[Gu 2008]



Isothermal Coordinates
Fact: Conformality is very flexible.

Theorem: Let S be a surface. For every p € S there exists an
isothermal parametrization for a neighbourhood of p.

e This means that there exists i/ C R? and V C S containing p,
amap ¢ :U — V and a function v : U — R so that

2u(x) 0
g = [D¢x] Doy = <e 0 e2”(X)> Vxel

e This is proved by solving a fully determined PDE.

Corollary: Every surface is locally conformally planar.

Corollary: Any pair of surfaces is locally conformally equivalent.



A Connection to Complex Analysis

The existence of isothermal parameters can be re-phrased in the
language of complex analysis.

e Replace R? with C.

e Now every p € S has a neighbourhood that is holomorphic to a
neighboorhood of C.

e The fact that the metric is isothermal is key — multiplication
by v/—1 in C is equivalent to rotation by 7/2 in S.

e S becomes a complex manifold.

Fact: The connection to complex analysis is very deep!



The Uniformization Theorem

What happens globally?

Uniformization Theorem:

Let S be a 2D compact abstract surface with metric g. Then S
possesses a metric g conformal to g with constant Gauss curvature
+1,—1 or Q.

Furthermore, S is conformal to a model space which is (the quotient
by a finite group of self-conformal maps of) one of the following:

e The sphere with its standard metric if S has genus zero.

e The plane with its standard metric if S has genus one.

e The unit disk with the Poincaré metric if S has genus > 1.




The Gauss-Bonnet Formula

Useful formula: The Gauss curvature transforms as follows under a
conformal map:

=g = K =e"(—Aw+Ki)

Consequence: The Gauss-Bonnet formula implies that the sign of
the uniformized curvature depends on topology.

const. x Area(S) = / K> dAz
S

:/e2”(—A1u+K1) x e 2" dAy
S

= / Ky dA;
S

= 2mx($)



Genus-One Surfaces

If S has genus zero then it is conformal to the sphere.

Key fact: The map ¢ : S — S? is not unique.
e S? is conformal to C U {oo} by stereographic projection.

e The set M of conformal self-maps of C U {oo} is the set of all
Mobius transformations of the complex plane.

e Thus any two conformal maps ¢y, ¢» : S — S? satisfy

coprop,tooct=me M

Another Key Fact: Conformal maps to the sphere minimize the
Dirichlet energy Ep(¢) := [5||Do||3 dA.
e Thus we can find ¢ by flowing down the energy gradient.

e Must impose a condition to ensure convergence to a unique
solution — e.g. [¢ ¢ =0.



Higher-Genus Surfaces

For genus > 0 surfaces, there is more than one possible candidate for
the “target surface in the Uniformization Theorem and its metric”.

The conformal structure of S

Def: The set Ts of conformal structure of S is called the
Teichmiiller space of S and is an abstract manifold of dimension

2 genus =1

dim(Ts) =
6g — 6 genus =g >1

A parametrization of 7Ts is provided by holomorphic differentials:
e These are related to harmonic one-forms on S.

e The natural coordinates of 75 are the values of the line
integrals of these differentials around homology generators of S.



