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Lecture 2 Notes: Differential geometry of curves

1. Curves

Curves are a good starting point to study surfaces as they are a little more simple (1-dimensional).

(a) Definition

A parametrized differentiable curve in Rn is a differentiable map γ : I → Rn where I = (a, b)
is an open interval in R. I can be a closed interval which gives a curve with boundary points.

Such a map has component functions γ(t) := (γ1(t), . . . , γn(t)). Each γi : I → R is a differen-
tiable function. The domain I is the space where the parameter t lives. The image of γ is the set
of points {γ(t) : t ∈ I} ⊆ Rn. It is a geometric thing called the trace of the curve. We interpret
γ(t) as the location of a particle in space at the instant of time t; and we interpret the trace of
the curve as the path traced out by the particle as t varies in I.

The γ function is a mathematical way of accessing the geometry of the curve, but there is more
than one access to this curve. Intuitively, one could walk at different speeds on the same trace
which would lead to different parameterizations of the curve.

(b) Velocity and acceleration

Let’s first define the terms. The instantaneous velocity of the particle at time t is the vector
γ̇(t) = (γ̇1(t), . . . , γ̇n(t)). The instantaneous acceleration of the particle at time t is the vector
γ̈(t) = (γ̈1(t), . . . , γ̈n(t)).

Let’s now look at some special curves. First, there are constant velocity curves which are
straight lines. Indeed, we can write γ̇(t) = (c1, c2, c3) which implies:



γ(t) =

c1

c2

c3

 t+

d1

d2

d3


We recognize the parameterization of a line. Second, there are constant speed curves, where
the acceleration is normal to the velocity. Constant speed is a weaker condition than constant
velocity. It means that:

‖γ̇(t)‖ = (γ̇1(t)2 + γ̇2(t)2 + γ̇3(t)2)1/2 = C

γ̇1(t)2 + γ̇2(t)2 + γ̇3(t)2 = C2

Let’s differentiate both sides:

2γ̇1(t)γ̈1(t) + 2γ̇2(t)γ̈2(t) + 2γ̇3(t)γ̈3(t) = 0

2 <

γ̇1(t)
γ̇2(t)
γ̇3(t)

 ,

γ̈1(t)
γ̈2(t)
γ̈3(t)

 >= 0

2 < γ̇(t), γ̈(t) >= 0

which means that the velocity and acceleration vectors are orthogonal.

(c) Examples

• Lines in space: γ(t) = x0 + tv is the line passing through x0 in direction v.

• Circle in R2: γ(t) = (cos(t), sin(t)).

• Helix in R3: γ(t) = (cos(t), sin(t), t)

• The parameterized map can still be differentiable but the trace may not be smooth. For
example: γ̇(t) = (t3, t2) has a cusp. It can also be the other way around: imagine a circle
where one jams on the accelerator.



Figure 1: Helix image borrowed from http://en.wikipedia.org/wiki/Helix

(d) Change of parameter

A reparametrization is a bijective map φ : J → I that gives a new curve γ̃ : J → Rn defined by
γ̃(s) = γ(φ(s)). The formula t = φ(s) is a change of parameter. A smooth mapping φ between
intervals is a bijection if and only if φ′ never vanishes. The trace remains unchanged but it has
an effect on the velocity and the acceleration:

dγ̃(s)

ds
=
dγ(φ(s))

ds
=
dγ

dt
◦ φ(s)

dφ(s)

ds
Note length changes

d2γ̃(s)
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=

d

ds
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+
dγ
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2. Arc length parameterization

(a) Arc length

How could we calculate the length of a curve? By means of line segments, we could calculate a
discrete approximation of the length of a differentiable curve. As the length of the line segments
→ 0, the limit yields the arc length integral.

Let’s derive this integral: let γ : [a, b]→ R3 be a smooth curve and partition I = [t0, t1]∪ · · · ∪
[tn−1, tn] with t0 = a and tn = b. Suppose γ(t) = (x(t), y(t), z(t)). Now compute:

length(γ([a, b])) ≈
n∑
i=1

‖γ(ti)− γ(ti−1)‖

=
n∑
i=1

(
(x(ti)− x(ti−1))2 + (y(ti)− y(ti−1))2 + (z(ti)− z(ti−1))2

)1/2
=

n∑
i=1

(
(ẋ(t∗i )∆ti)

2 + (ẏ(t∗i )∆ti)
2 + (ż(t∗i )∆ti)

2
)1/2 Mean value theorem; t∗i ∈ [ti−1, ti]

and ∆i := |ti − ti−1|



=
n∑
i=1

(
(ẋ(t∗i ))

2 + (ẏ(t∗i ))
2 + (ż(t∗i ))

2
)1/2

∆ti

n→∞−−−→
ˆ b

a

(
(ẋ(t))2 + (ẏ(t)))2 + (ż(t))2

)1/2
dt

=

ˆ b

a
‖γ̇(t)‖dt

But there is more we need to prove. Indeed, the length is a geometric quantity and should not
depend on the parameterization, which is just a tool to manipulate the geometry of the curve.
However, in the way we computed the arc length, it did depend on the parameterization. Let’s
now show that we would get the same result regardless of the parameterization we choose: let
φ : [a, b]→ [a, b] be a diffeomorophism with φ(a) = a and φ(b) = b. Let γ̃(s) := γ(φ(s)). Then

length(γ̃([a, b])) =

ˆ b

a

∥∥∥dγ ◦ φ(s)

ds

∥∥∥ds
=

ˆ b

a
|φ′(s)|

∥∥∥dγ
dt
◦ φ(s)

∥∥∥ds Let t = φ(s) so dt = φ′(s)ds and thus
ds = (φ′(s))−1dt = (φ′ ◦ φ−1(t))−1dt

=

ˆ b

a
|φ′ ◦ φ−1(t)|

∥∥∥dγ(t)

dt

∥∥∥ dt

|φ′ ◦ φ−1(t)|

=

ˆ b

a

∥∥∥dγ(t)

dt

∥∥∥dt
= length(γ([a, b]))

Now suppose we have a parameterization of γ such that ‖γ̇(t)‖ = 1. Then we have:

length(γ([0, T ])) =

ˆ T

0
‖γ(t)‖dt

=

ˆ T

0
dt

= T

This parameterization is called the arc-length parameterization of the curve. It can be proven
that it always exists.The arc-length parametrization is very useful theoretically (as we’ll see) but
difficult to work with in practice because the arc-length can be hard to compute (i.e. finding the
function `) and it’s inverse can then be very hard to find (i.e. inverting to find `−1).

Let’s look at an example: we have s =
√

2et for the logarithmic spiral so t = log(s/
√

2). Hence
the re-parametrized version of the logarithmic spiral is:

γ̃(s) =
s√
2

(
cos(log(s/

√
2)), sin(log(s/

√
2))
)
.



(b) Curvature

The geodesic curvature vector can be defined in an arbitrary parametrization as the normal
component of the acceleration vector, normalized by the squared length of the tangent vector:

~kγ :=
1

‖γ̇‖2

(
γ̈ − 〈γ̈, γ̇〉

‖γ̇‖2
γ̇

)
=

1

‖γ̇‖

[
d

dt

(
γ̇

‖γ̇‖

)]⊥
Rate of change of the unit tangent
vector perpendicular to the curve

The curvature (scalar) is then defined as kγ := ‖~kγ‖.

In the arc length parametrization we have ~kγ = ‖γ̈‖ since the acceleration vector is orthogonal
to the curve.

3. Frenet frame

(a) Definition

Let γ :→ R3 be a curve, without loss of generality parametrized by arc-length. We will now find
a canonical framing of γ, namely a choice of “moving axes” (three linearly independent vectors
attached to each point γ(s)) that is best adapted to its geometry.

Let T (s) := γ̇(s). Then ‖T (s)‖ = 1 for all s since γ is parametrized by arc-length. This is our
first vector.

A point of non-zero curvature allows us to define a distinguished normal vector. Recall that
we have 0 = d

ds‖γ̇(s)‖2 = 2〈T (s), Ṫ (s)〉 = 2〈T (s),~kγ(s)〉. Thus the curvature vector is normal to
γ. Since it’s not equal to zero, we can divide by its magnitude and obtain a unit normal vector
field N(s) := Ṫ (s)/‖Ṫ (s)‖ along γ. This is our second vector in the moving axis. We also define
the osculating plane at γ(s) to the plane spanned by T (s) and N(s).

We now define the binormal vector, the third vector in our moving axes, to be B(s) := T (s)×
N(s). This is also a unit vector and is orthogonal to both T (s) and N(s).

The Frenet frame for γ is the set of moving axes {T (s), N(s), B(s)} and is defined at each point
γ(s) where kγ(s) 6= 0.

(b) Frenet formulas

The Frenet formulas explain the variation in the Frenet frame along γ. That is, we have

Ṫ (s) = kγ(s)N(s)

Ṅ(s) = 〈Ṅ(s), T (s)〉T (s) + 〈Ṅ(s), N(s)〉N(s) + 〈Ṅ(s), B(s)〉B(s)

= −kγ(s)T (s) + 〈Ṅ(s), B(s)〉B(s)



Figure 2: Frenet frame illustration borrowed from
http://www.sciencedirect.com/science/article/pii/S1053811908011981

= −kγ(s)T (s)− τγ(s)B(s)

Ḃ(s) = 〈Ḃ(s), T (s)〉T (s) + 〈Ḃ(s), N(s)〉N(s) + 〈Ḃ(s), B(s)〉B(s)

= −〈B(s), Ṫ (s)〉T (s) + 〈Ḃ(s), N(s)〉N(s)

= −kγ(s)〈B(s), N(s)〉T (s)− 〈N(s), Ḃ(s)〉B(s)

= τγ(s)B(s)

Note that here we have introduced the torsion τγ(s) := −〈Ṅ(s), B(s)〉.

(c) Local and global theorems

The local theorem says the following:

Let γ : (−ε, ε) → R3 be a curve with non-zero curvature. Let k := kγ(0) and τ = τγ(0) and
k′ = k̇γ(0). Then

γ(s) ≈ γ(0) + sγ̇(0) +
s2

2
γ̈(0) +

s3

6

...
γ (0)

=

(
s− k2s3

6

)
T (0) +

(
s2k

2
+
s3k′

6

)
N(0)− kτs3

6
B(0)

Thus locally, k and k′ determine the amount of turning in the {T (0), N(0)}-plane, while τ and k
determine the amount of lifting out of the {T (0), N(0)}-plane in the B(0)-direction.

Now the global theorem, also called the Fundamental Theorem of Curves says:

“Given differentiable functions k : I → R with k > 0, and τ :→ R, there exists a regular
curve γ : I → R3 such that s is the arc-length, k(s) is the geodesic curvature, and τ(s) is the
torsion. Any other curve satisfying the same conditions differs from γ by a rigid motion.”


