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DIFFERENTIAL GEOMETRY
FOR COMPUTER SCIENCE

Lecture 2 — Curves



Definition of a curve

e A parametrized differentiable curve is a differentiable map
v : 1 — R" where | = (a, b) is an interval in R.

e The parameter domain /.
e The image or trace of ~.

e The component functions of ~.



Velocity and Acceleration
e Instantaneous velocity.
e Instantaneous acceleration.
e Constant speed curves and constant velocity curves.

e Singular points.



Examples

e Lines in space.
Circle in R2.
Helix in R3.

Self-intersection — embedded vs. immersed curves.

Curve with a kink, curve with a cusp — smooth but singular,
and non-smooth parametrizations thereof.



Change of parameter

e Definition of reparametrization.
e The trace remains unchanged.

e Effect on velocity and acceleration.



Arc-length

e Arc-length is the limit of a sequence of discrete approximations.

o Derivation: let v : [a, b] — R3 be a smooth curve and partition
| = [to, t1] U+ U[th—1, tn] with to = a and t, = b. Now

length(~([a, b])) Z [v(ti) = v(ti-1)ll
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Parameter independence of arc-length
e Let ¢ : [a,b] — [a, b] be a diffeomorophism with ¢(a) = a and
¢(b) = b. Let 4(s) := v(¢(s)). Then

length(3([a, b])) = ‘”"7
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Example calculations
e Mostly no closed form for arc-lengths.
e First example: logarithmic spiral v(t) = (e’ cos(t), e’ sin(t)).
e Second example: v(t) such that ||¥|| = const.

e Parametrization by arc-length.



Arc-length re-parametrization

e We can re-parametrize any curve so that it is parametrized by
arc-length. (Useful theoretically but hard to put into practice.)

e Let v:/ — R be a smooth curve and define the function
¢: 1 — [0, length(~(1))]
t
(e = [ I3elex

o Invertibility of £ when ~ is non-singular.

e Define a new parameter s that satisfies s = ¢(t). Define the
re-parametrized version of v, namely ¥(s) = y(£=1(s)).

e This re-parametrized version is parametrized by arc-length.

e Example: the logarithmic spiral.



Curvature

e Definition of the geodesic curvature vector in an arbitrary
parametrization — the normal component of the acceleration
vector, normalized by the squared length of the tangent vector.

P
< e
e Definition of the geodesic curvature k¢ := ||kc|.

e In the arc-length parametrization we have k. = [¢]*.

e Examples.



The Frenet frame

e Let v:— R3 be a curve, w.l.o.g parametrized by arc-length.

e We will find a choice of "moving axes best adapted to the
geometry of ~.

o Let T(s) :=4(s).

* A point of non-zero curvature allows us to define a
distinguished normal vector N(s) := T(s)/| T (s)].

e The osculating plane at ~y(s) is spanned by T(s), N(s).
e The binormal vector is B(s) := T(s) x N(s).

e The Frenet frame for v is { T(s), N(s), B(s)} and is defined at
each point y(s) where ky(s) # 0.



The Frenet formulas

e The Frenet formulas explain the variation in the Frenet frame
along .

T(s) = ky(s)N(s)
N(s) = (N(s), T(s)) T(s) + (N(s), N(s))N(s) + (N(s), B(s)) B(s)
= —ky(s) \

— 7,()B(s)

o Here we have introduced the torsion 7.(s) := —(N(s), B(s)).



A local theorem
e Locally, k and k determine the amount of turning in the
osculating plane.

e And 7 and k determine the amount of lifting out of the
osculating plane into its normal direction.



A global theorem

e The Fundamental Theorem of Curves.

Suppose we are give differentiable functions k : | — R with
k>0, and 7 :— R.

Then there exists a regular curve v : I — R3 such that s is
the arc-length, k(s) is the geodesic curvature, and 7(s) is
the torsion.

Any other curve satisfying the same conditions differs from
~ by a rigid motion.




