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1 Representing a Surface

A surface can be represented as a graph, inverse of a level set function as well as parametric
map from an open set U ⊆ R2 to an open set in R3. At the same time it is important to
note that not every surface can be represented as a single graph. The parametric mapping
for a given surface need not be unique as well. Here we comment on defining a surface in
terms of a parametric mapping, and we connect with graphs and level set functions.

1.1 Definition of Surface

A subset S ⊂ R3 is a regular surface if, for each p ∈ S there exists a neighborhood V in R3

and a map X : U→ V ∩ S ∈ R3 such that ,

X(u, v) = (x(u, v), y(u, v), z(u, v)) (1)

We have assumed the parametrization X to be regular so it satisfies following conditions:

(i) X has continuous partial derivatives in U of all orders.

(ii) X is homeomorphism. (X is smooth , one to one and X−1 is smooth as well.)

(iii) For each r ∈ U, the differential dXr : R2 → R3 is injective.

The mapping X is referred to as the parametrization or a system of (local) coordinates in ( a
neighbodhoord of ) p. The neighborhood V ∩S of p ∈ S is called a coordinate neighborhood.
In contrast to the treatment to the curves, we have defined a surface as a subset S of R3,
and not as a map. This is achieved by covering S with the traces of parametrization which
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satisfy above described conditions. The requirement of the conditions (i) and (ii) are simply
understood as we would like to do some differential geometry on S as well as prevent the
surface from self intersections. We will comment on the requirement of the condition (iii) as
it will guarantee the existence of a tangent plane at all points on the surface. By requiring
dXr : R2 → R3 to be injective we actually require the columns of the matrix of the linear
map dXr to have linearly independent columns. One simple way to check if this condition
is satisfied or not is to see det(dXT

r dXr) 6= 0.

1.2 Examples

Graphs : Consider f : R2 → R and a surface S, such that.

S = {(x, y, f(x, y)) : (x, y) ∈ U ⊆ R2}. (2)

Here if f has smooth partial derivatives of all orders and is well defined over U , S satisfies
the conditions required for it to be a regular surface. Simple check for the condition (iii) is
that the two columns of dXr are[

1 0 ∂f
∂x

]T
,
[

0 1 ∂f
∂y

]T
(3)

They are linearly independent for any smooth function f so we have a regular surface S.
Unit Sphere : S2 = {(x, y, z) ∈ R3;x2 + y2 + z2 = 1}. We first verify that the map
X1 : U ⊂ R2 → R3 is given by

X1(x, y) = (x, y,
√

1− (x2 + y2), (x, y) ∈ U (4)

Where U = {(x, y) ∈ R2;x2 + y2 < 1} is a parametrization of S2. Observe that X1(U) is
the open part of S2 above the xy plane. Since x2 + y2 < 1 , the function +

√
1− (x2 + y2)

has continuous partial derivatives of all orders in U . Hence X1 satisfies the condition (i).
Condition (iii) can be easily verified by taking partial derivatives of X1 with respect to x
and y, as they will be linearly independent (same argument as the one made for the graphs).
To check the condition (ii), we observe that X1 is one to one and that X−11 is the restriction
of the continuous projection π(x, y, z) = (x, y) to the set X1(U). Hence X−11 is continuous
in X1(U). Similarly we can define X2(x, y) = (x, y,−

√
1− (x2 + y2), (x, y) ∈ U . We can

easily check that X1(U) ∪X2(U) covers S2 minus the equator. Then, using the xz and zy
planes, we can define the parametrizations,

X3(x, z) = (x,
√

1− (x2 + z2), z)

X4(x, z) = (x,−
√

1− (x2 + z2), z)

X5(y, z) = (
√

1− (y2 + z2), y, z)

X6(y, z) = (−
√

1− (y2 + z2), y, z)

(5)

Together all these 6 parametric cover S2 completely.
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Unit Sphere, Polar coordinates:
Let V = {(θ, φ); 0 < θ < π, 0 < φ < 2π} and X(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ). Clearly,
X(V ) ⊂ S2. Note that this map doesn’t include the poles. If we include the poles the
mapping X doesn’t satisfy the condition (iii) at all points, to be precise at the poles. As far
as the poles are not included the mapping X is a parametrization of S2.
Note: No completely closed surface can be represented by a single regular parametric map.

Regular Value or Implicit representation: Next, suppose that S is given to us in terms
of the zero level of a function f(x, y, z). For S = f−1(0) to be a regular surface, f has to
satisfies following conditions:

(i) f : U ⊂ R3 → R is a smooth function.

(ii) fx, fy and fz do not vanish simultaneously at any point in the inverse image f−1(0) =
{(x, y, z) ∈ U : f(x, y, z) = 0}.

Here fx, fy and fz are partial derivatives with respect to x, y and z.

The ellipsoid : Is x2

a2
+ y2

b2
+ z2

c2
= 1 a regular surface? Let’s take a function f : U ⊂ R3 → R

such that,

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1 (6)

It is a smooth functions. The partial derivatives fx = 2x/a2, fy = 2y/a2 and fz = 2z/a2

vanish simultaneously only at (0, 0, 0).

f−1(0) = {(x, y, z) ∈ R3 : f(x, y, z) = 0} (7)

It is clear that (0, 0, 0) /∈ f−1(0). So there doesn’t exist a single point in f−1(0) such that
fx, fy and fz vanish simultaneously. So f−1(0) is a regular surface and 0 is referred to as a
regular value of f .

2 The Tangent Plane

Before we get to define the tangent plane for a given regular surface S with a parametrization
X : U ⊆ R2 → V ∩ S ⊂ R3, let’s define a couple of concepts required.

• Curves on a surface: Let’s say we are given a parametrization of a regular curve γ such
that,

γ : (−ε, ε)→ X(U) ⊂ S, γ(t) ∈ S,∀t ∈ (−ε, ε) (8)

Based on the property of the regular curve and the regular surface we can define
γ0 = X−1 ◦ γ : (−ε, ε)→ U and it is easy to γ(t) = X(γ0(t)) ∈ S ,∀t ∈ (−ε, ε).

3 of 4



Hardik Kabaria
CS 468

Surface theory II
4/15/13

• Tangent vectors to a surface: Similarly let’s say we are given a tangent vector w at
X(q), that is , let w = γ′(0). γ is defined as above. We know that γ0 is differentiable,
hence we have dXq(γ

′
0(0)) = w. Note that dXq is a linear map at point q ∈ S

Now we are ready to define the tangent plane at a point q on the surface S with the help of
a parametric map X.
Let X : U ⊆ R2 → V ∩ S ⊂ R3 be a parametrization of a subset of a regular surface S. Let
q ∈ S such that, q = X(u) for some u ∈ U .
The tangent plane TqS is defined as an Image(dXq) ⊆ TX(u)R3. Although we have defined
the tangent plane based on the parametric map, it is important to note that the tangent plane
doesn’t depend upon the parametric map. At the same time the choice of parametrization
X can be used to determine the basis {∂X

∂u
(q), ∂X

∂v
(q)} of the tangent plane. Where X(u, v) =

q ∈ S.
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