
CS 468 (Spring 2013) — Discrete Differential Geometry

Lectures 5: Surface Geometry

Level sets.

• Let F : R3 → R be a function and let c ∈ R be a number. The level set of F with value c is
the set of points

F−1(c) := {p ∈ R3 : F (p) = c}

• So to find a level set, you must solve the equation F (p) = c for p = (x, y, z).

• Note: if there are no solutions, then F−1(c) = ∅ (the empty set).

Level sets as surfaces.

• The big question: what is the geometric nature of a level set?

• Our intuition says the a level set is a surface because a level set consists of the solution of
“one scalar equation in three unknowns.”

• The reasoning is: by solving the equations you should be able to express one of the unknowns
as a function of the other two. In other words, you can write z = g(x, y) for some function g,
and F (x, y, g(x, y)) = c. Now the solution set looks like

{(x, y, g(x, y)) : x, y2 ∈ U ⊆ R2}

In other words, the solution set is a graph, which is a surface as we saw in class.

Exceptions.

• There are exceptions to the nice intuitive picture described above.

• For example, consider the function F (x, y, z) := x2 + y2 + z2. The level set of c > 0 is a
sphere of radius

√
c — which is a surface. The level set of c < 0 is the empty set. The level

set of c = 0 consists of the point (0, 0, 0) only. In other words, F−1(0) = {(0, 0, 0)}. This is
not a surface.

• There are other examples where F−1(c) is not a surface. For instance, the level set of zero of
the function F (x, y, z) = x2 + y2 is the z-axis, which is a line and not a surface. (Other level
sets with c > 0 are cylinders and with c < 0 are the empty set.)

• Even weirder things can happen. For instance, the level set of zero of the function F (x, y, z) :=
xy is the union of the (y, z)-plane and the (x, z)-plane which is not a surface in the neigh-
bourhood of the z-axis. (Draw this object!)

• Much, much weirder things can happen.

Regular values.

• We would like to characterize when a level set is a surface. We will need the concept of a
regular value.

• Let F : R3 → R be a differentiable function. A number c ∈ R is a regular value for F if the
derivative matrix of F (which is a 1× 3 matrix in this case) does not vanish anywhere on the
level set F−1(c).

• I.e. c is a regular value for F if DFp = (∂F (p)
∂x , ∂F (p)

∂y , ∂F (p)
∂z ) 6= (0, 0, 0) for all p ∈ F−1(0).



The inverse image of a regular value is a surface.

• Suppose c is a regular value for F and let p ∈ F−1(c).

• Without loss of generality, we can assume that ∂F (p)
∂z 6= 0.

• We now invoke the Implicit Function Theorem.

• Write F : R2×R→ R. Now the matrix D2Fp appearing in this theorem is simply the number
∂F (p)
∂z . So the invertibility of D2Fp is equivalent to ∂F (p)

∂z 6= 0.

• The Implicit Function Theorem now gives us a local solution z = g(x, y) where g : U → R is
a smooth function defined in a neighbourhood of p.

• Now F−1(0) near p can be parametrized with the help of g. That is, we can write F−1(0)
near p as {(x, y, g(x, y)) : (x, y) ∈ U}.

• In other words, F−1(0) near p is the graph of g. This is a regular surface!

A nice formula.

• We can relate the derivatives of g to the derivatives of F using the chain rule.

• We have F (x, y, g(x, y)) = c so for instance

0 =
∂F (x, y, g(x, y))

∂x

=
∂F

∂x
(x, y, g(x, y)) +

∂F

∂z
(x, y, g(x, y)) · ∂g

∂x

• By isolating ∂g
∂x we obtain the formula

∂g

∂x
= −

∂F
∂x (x, y, g(x, y))
∂F
∂z (x, y, g(x, y))

which is a sensible mathematical expression so long as ∂F
∂z 6= 0 which is certainly true suffi-

ciently close to p.

• A similar formula holds for ∂g
∂y .


