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CS 468 (SPRING 2013) — DISCRETE DIFFERENTIAL GEOMETRY

Lecture 7 Student Notes: The Second Fundamental Form
Lecturer: Adrian Butscher; Scribe: Soohark Chung

The unit normal vector of a surface.
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Figure 1: Normal vector of level set.

The normal line is a geometric feature. The normal direction is not (think of a non-orientable
surfaces such as a mobius strip). If possible, you want to pick normal directions that are
consistent globally. For example, for a manifold, you can pick normal directions pointing out.

Locally, you can find a normal direction using tangent vectors (though you can’t extend this
globally).

Normal vector of a parametrized surface:
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This is just the cross product of two tangent vectors normalized by it’s length. Because you
take the cross product of two vectors, it is orthogonal to the tangent plane. You can see that
your choice of tangent vectors and their order determines the direction of the normal vector.
Normal vector of a level set: : N
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This is because the gradient at any point is perpendicular to the level set. This makes sense
intuitively if you remember that the gradient is the ”direction of the greatest increase” and
that the value of the level set function stays constant along the surface. Of course, you also
have to normalize it to be unit length.

Surface Area.

We want to be able to take the integral of the surface. One approach to the problem may
be to inegrate a parametrized surface in the parameter domain. This unfortunately doesn’t



work, and is dependent on the parametrization. (A square in the parameter domain won’t
necessarily be a square on the surface and squares of the same area in the parameter domain
won’t necessarily have the same area on the surface.)

e The correct solution is to use a Riemann sum that yields the surface area of a surface.

e Rieman sum that yields surface integral:
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This is because the are of a rectangle is Ey A Fy is ||E; x Fs|| = |det(D¢, Dby, )|'/2. You are
taking the sum of infinitesimally small rectangles in coordinate space.

dArea(u) := \/det(D¢] Dy,) du' du?

This is invariant of parametrization of the area integral. (We can prove this using the fact
that changing variables in a integral results in a determinant.)

e Riemannian area form:

3 The Gauss map.

Figure 2: Map the normal vector onto a unit sphere.

e The Gauss map is the representation of each normal vector on a surface as a point on a unit
sphere.

e Let S be an orientable surface with unit normal vector field n, at each p € S. The Gauss
map of S is the mapping N : S — S? given by N(p) := n,. Here we view the unit normal
vector at a given p € S as a vector in R3 of length one and thus a point in S2.

e The Gauss map of a differentiable surface is itself differentiable. Thus we can study its
differential DN, : T,,S — TnpS2.

One should note that one needs to construct the normals in a consistent fashion for it to
be differentiable (remember the normal line is a geometric feature, but the normal direction
isn’t). Also, since the surface must be differentiable, it doesn’t apply to non-orientable surfaces
like mobius strips.

e We can re-define Dn), : T),S — T},S This is only legal because the normal vectors are the same
in both representations and therefore the tangent planes are parallel.



4 Definition of the second fundamental form.
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Figure 3: v, w are tangent vectors.

e Definition: the second fundamental form at p € S is the bilinear form A, : 1,8 x T,S — R
defined by A,(V,W) := —(DN,(V), W) for any V,W € T,S.

e A,(V,W) measure the projection onto W of the rate of change of N, in the V-direction. By
convention, there’s a negative sign in the equation. (You'll see why in the next section.)

e A, is self-adjoint, meaning swapping its inputs does not change the output.

e Proof that A, is self-adjoint:
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e Note that changing the order of the tangent vectors doesn’t matter, but that flipping the
orientation of one of the vectors will change the sign.

e Note that if V,W are orthogonal A,(V, W) will be zero unless the surface has a "twist” at
that point (meaning it locally looks like a saddle). See the next section for what happens
when V,W are parallel.

5 The second fundamental form as extrinsic curvature.

o Let ¢: [-1,1] — S be a curve in S with ¢(0) = p. Then the geodesic curvature vector of
¢ at zero, k.(0), is related to the second fundamental form at p as follows: (k.(0),n,) =
Ap(é(0),¢(0)). Note this is independent of ¢ or ¢(t), é(t) for t # 0.

e Proof:

{kc(0), Np) = (€(0), Np)
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Figure 4: Locally fit a circle with the same curvature to the surface.
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You can visualize this as fitting a circle with the same k. to a point on the surface.

Let V vary over all unit vectors in 7),S (the tangent vector space). Then A,(V,V) takes on
a minimum value k,,;, and a maximum value k... These are the principal curvatures of S
at p and are eigenvalues of A,. The higher the curvature, the smaller the radius of the circle
that matches the surface. Therefore, a curvature of 0, indicates that the surface is flat in that
direction.

The corresponding eigenvectors Vi, and Vi, are the principal directions of A,. It’s worth
noting that (much like the normal direction) the principal direction of the surface at a point
is ambiguous. If possible, you want to choose directions that are consistent throughout the
surface. Doing so will give you the benefit of being able to tell which direction the surface
is curved by the sign of the principle curvatures. Additionally, note that Vi, and V.. are
always orthogonal since they are eigenvectors. This means that N, Vi, and Vie, are all
orthogonal and can form a Darboux frame.

There are several conventional ways of combining the principle curvatures.

- Mean curvature: H := kyin + kmas (= Tr(A4,) w.r.t. ONB). By convention, you don’t
divide by 2 even though it’s called the "mean” curvature

- Gauss curvature: K := kyp - koo (= det(Ap) wr.t. ONB).

Mean curvature and Gauss curvature are just two methods of combining the principle curva-
tures. They have different characteristics. For example, if k,,;, is very small, then the Gauss
curvature will be very small, but the mean curvature may not be depending on Vj,q,. (This
may not be entirely correct, but intuitively I like to think of the Gauss curvature as sort of
like locally fitting a sphere to the surface and the mean curvature as fitting two orthogonal
cylinders.)
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