CS 468 (SPRING 2013) — DISCRETE DIFFERENTIAL GEOMETRY

Lecture 7: The Second Fundamental Form

The unit normal vector of a surface.

e The normal vector of a surface. Is this geometric?
e The normal line is geometric but the normal direction may not be. Non-orientable surfaces.

e Normal vector of a parametrized surface, graph and level set.

Surface Area.

e Setting up the Riemann sum that yields the surface area of a surface.
e Area of infinitesimal coordinate rectangle and the Riemannian area form.

e Independence of parametrization of the area integral.

The Gauss map.

e Let S be an orientable surface with unit normal vector field n, at each p € S. The Gauss
map of S is the mapping N : S — S? given by N(p) := ny. Here we view the unit normal
vector at a given p € S as a vector in R? of length one and thus a point in S.

e The Gauss map of a differentiable surface is itself differentiable. Thus we can study its
differential DN), : T,,S — TnpSz.

— We can define the differential rigorously as follows. Let V), be a tangent vector to S at

p generated by a curve c¢: (—¢g,¢) — S. In other words, ¢(0) = p and % =0 = Vp- Then

DN, (V,) == %Np(c(t))}tzo. This is well-defined because we can show that the choice of
curve doesn’t matter.

— Note that because N(p) € S? for each p it really is the case that DN,(V) is tangent to
S? for any vector V € T,S.

— Prove this by differentiating || N(c(t))||? = 1 where c: [~1,1] — S is a curve in S.

e Some examples. Gauss map of parametrized surface, level set and graph.

Definition of the second fundamental form.
e Since T),S and T, n(p)82 are parallel planes (they’re both perpendicular to n,), we can consider
the differential of the Gauss map as a map DN, : T),S — T,,S.

e Proposition: viewed in this way, DN, is self-adjoint with respect to the Euclidean metric of
R3 restricted to T},S.

e Definition: the second fundamental form at p € S is the bilinear form A, : T,S x T,S — R
defined by A,(V,W) := —(DN,(V), W) for any V,W € T,S.

o A,(V,W) measure the projection onto W of the rate of change of N, in the V-direction.

e Example calculations.



The second fundamental form as extrinsic curvature.

e Let c¢:[—1,1] — S be a curve in S with ¢(0) = p. Then the geodesic curvature vector of ¢ at
zero is related to the second fundamental form at p as follows: (k.(0),n,) = A,(¢(0),¢(0)).
Note this is independent of ¢ or ¢(t), é(t) for ¢t # 0.

e Let V vary over all unit vectors in 7},S. Then A,(V, V') takes on a minimum value £, and
a maximum value Kk.q.. These are the principal curvatures of S at p and are eigenvalues of
Ap. The corresponding eigenvectors Vi, and Ve, are the principal directions of A,. Note
that Vinin and Vi, are orthogonal.

e Mean curvature and Gauss curvature.

e Example calculations.

Local “shape” of a surface.

e Definitions of elliptic, hyperbolic, parabolic, planar or umbilic points.
e Examples of each type.

e Local characterization of the surface S at p depending its type. Proof based on Taylor series
expansion in the “right” coordinate system: a neighbourhood of p is the graph of a function
over Tp,S.

Interpretation of the Gauss curvature in terms of the Gauss map.
e Lemma: K(p) > 0iff Gauss map locally preserves orientation; K (p) < 0 iff Gauss map locally
reverses orientation.

e Proposition: Let p € S be such that K(p) # 0 and let € > 0 be such that K does not change
sign in B:(p). Then if N denotes the Gauss map, we have

. Area(N(B:(p)))
K(p)_il_% Area(B:(p))

Interpretation of the mean curvature as first variation of area.

e Another interpretation for the second fundamental form — at least of its trace, the mean
curvature.

e The calculation.



