
CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 7: The Second Fundamental Form

The unit normal vector of a surface.

• The normal vector of a surface. Is this geometric?

• The normal line is geometric but the normal direction may not be. Non-orientable surfaces.

• Normal vector of a parametrized surface, graph and level set.

Surface Area.

• Setting up the Riemann sum that yields the surface area of a surface.

• Area of infinitesimal coordinate rectangle and the Riemannian area form.

• Independence of parametrization of the area integral.

The Gauss map.

• Let S be an orientable surface with unit normal vector field np at each p ∈ S. The Gauss
map of S is the mapping N : S → S2 given by N(p) := np. Here we view the unit normal
vector at a given p ∈ S as a vector in R3 of length one and thus a point in S2.
• The Gauss map of a differentiable surface is itself differentiable. Thus we can study its

differential DNp : TpS → TnpS2.

– We can define the differential rigorously as follows. Let Vp be a tangent vector to S at
p generated by a curve c : (−ε, ε)→ S. In other words, c(0) = p and dc

dt

∣∣
t=0

= Vp. Then

DNp(Vp) := d
dtNp(c(t))

∣∣
t=0

. This is well-defined because we can show that the choice of
curve doesn’t matter.

– Note that because N(p) ∈ S2 for each p it really is the case that DNp(V ) is tangent to
S2 for any vector V ∈ TpS.

– Prove this by differentiating ‖N(c(t))‖2 = 1 where c : [−1, 1]→ S is a curve in S.

• Some examples. Gauss map of parametrized surface, level set and graph.

Definition of the second fundamental form.

• Since TpS and Tn(p)S2 are parallel planes (they’re both perpendicular to np), we can consider
the differential of the Gauss map as a map DNp : TpS → TpS.

• Proposition: viewed in this way, DNp is self-adjoint with respect to the Euclidean metric of
R3 restricted to TpS.

• Definition: the second fundamental form at p ∈ S is the bilinear form Ap : TpS × TpS → R
defined by Ap(V,W ) := −〈DNp(V ),W 〉 for any V,W ∈ TpS.

• Ap(V,W ) measure the projection onto W of the rate of change of Np in the V -direction.

• Example calculations.



The second fundamental form as extrinsic curvature.

• Let c : [−1, 1]→ S be a curve in S with c(0) = p. Then the geodesic curvature vector of c at
zero is related to the second fundamental form at p as follows: 〈~kc(0), np〉 = Ap(ċ(0), ċ(0)).
Note this is independent of c̈ or c(t), ċ(t) for t 6= 0.

• Let V vary over all unit vectors in TpS. Then Ap(V, V ) takes on a minimum value kmin and
a maximum value kmax . These are the principal curvatures of S at p and are eigenvalues of
Ap. The corresponding eigenvectors Vmin and Vmax are the principal directions of Ap. Note
that Vmin and Vmax are orthogonal.

• Mean curvature and Gauss curvature.

• Example calculations.

Local “shape” of a surface.

• Definitions of elliptic, hyperbolic, parabolic, planar or umbilic points.

• Examples of each type.

• Local characterization of the surface S at p depending its type. Proof based on Taylor series
expansion in the “right” coordinate system: a neighbourhood of p is the graph of a function
over TpS.

Interpretation of the Gauss curvature in terms of the Gauss map.

• Lemma: K(p) > 0 iff Gauss map locally preserves orientation; K(p) < 0 iff Gauss map locally
reverses orientation.

• Proposition: Let p ∈ S be such that K(p) 6= 0 and let ε > 0 be such that K does not change
sign in Bε(p). Then if N denotes the Gauss map, we have

K(p) = lim
ε→0

Area
(
N(Bε(p))

)
Area(Bε(p))

Interpretation of the mean curvature as first variation of area.

• Another interpretation for the second fundamental form — at least of its trace, the mean
curvature.

• The calculation.


