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Lecture 7 — Extrinsic Curvature
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The Unit Normal Vector of a Surface

e The unit normal vector of a surface. Is this geometric?

— Normal line is geometric. Normal direction may not be.
— Non-orientable surfaces.

e Unit normal vector of a parametrized surface and a graph:
E1 X E2

If T,5 = span{Ei, E then N .= ———
p> = spanify, B2} 16 < B

e Unit normal vector of level set S := F~1(v) at regular value v.
Let ¢ be a curve C S with ¢(0) = p and ¢(0) = X € T,S.
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Surface Area

e Area of infinitesimal coordinate rectangle.
— Let ¢ : U{ — R3 be a parametrization of S.
— Let £ := D¢, - [0,...,1,...,0]7 span Ty(,)S.
— Area of rectangle £y A B, is || Ey x E|| = |det(Do, Dg,)|*/2.

e The Riemann sum that yields a surface integral.

Let f : S — R be an integrable function.

= /fdArea =1im Y f($(u;)) \/det(D$ ), Doy,
S i
e where the Riemannian area form is:

dArea(u) := y/det(Do Do) du* du?

e Independence of parametrization.



The Gauss Map

Let S be an orientable surface with unit normal vector N, at p € S.
e The Gauss map of S is the mapping n: S — S? given by
n(p) == Np

We view N, as a vector in R3 of length one = a point in S°.

The Gauss map of a differentiable surface is itself differentiable.

Its differential is Dn, : T,S — T, S?.

Since T,S and Tn(p)82 are parallel planes (they're both
perpendicular to N,), we can re-define Dn,, : T,5 — T,S.



The Second Fundamental Form

Defn: The second fundamental form of S at p is the bilinear form

A, T,Sx T,S 5 R
Ap(V, W) := —(Dny(V), W)

It measures the projection onto W of the rate of change of N, in
the V-direction at every point p € S.

Proposition: A, is self-adjoint.

Proof: Work with the components [A];; := <22{’ %>. The
key is the symmetry of mixed partial derivatives!




Extrinsic Curvature

e Let ¢ be a curve in S with ¢(0) = p.

o Let EC(O) be the geodesic curvature vector of ¢ at zero. Then

(ke(0), Np) = Ap(€(0), ¢(0))
e Note: depends only on the geometry of S at p.

e Let V vary over all unit vectors in T,S. Then Ay(V, V) takes
on a minimum value kp,;, and a maximum value kp,ax.

— Eigenvalues of A, — the principal curvatures of S at p.
— Corresponding eigenvectors are the principal directions of S at p.

— Note that the principal directions are orthogonal.
e Mean curvature H := Kmin + kmax (= Tr(Ap) w.r.t. ONB).

e Gauss curvature K 1= Kmin - kmax (= det(Ap) w.r.t. ONB).



Local Shape of a Surface
Example: Second fundamental form of a graph. What can we see?

e FElliptic, hyperbolic, parabolic, planar or umbilic points.

e Local characterization of the surface S at p depending on type.

— Proof based on Taylor series expansion.



Interpretation of the Mean Curvature

The mean curvature is the gradient of the area functional.

e |.e. area decreases fastest in the Hn direction.

The calculation:
e Let ¢ : U/ — R3 parametrize S and let f : 1/ — R be a function.

o Let ¢-(u) := ¢(u) + ef(u)N, parametrize a deformation of S.
Now let g.(u) := [D¢:]) [D¢:], and g := go. Then

Serea(o. Q)| = 52 [ Vaealna]

:/Tr(g_ldé’r6 )_o)mdu

de

= Z/L{H(u)f(u)\/det(g(u)) du



Interpretation of the Gauss Curvature

Two results. Let n be the Gauss map.

e Proposition: K(p) > 0 iff n locally preserves orientation; and
K(p) < 0 iff n locally reverses orientation.

e Proposition: Let p € S be such that K(p) #0 and let e >0
be such that K does not change sign in B-(p). Then we have

- Area(n(B:(p)))
e—0 Area(B:(p))

K(p) =



