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Lecture 7 — Extrinsic Curvature



Outline

• Normal vectors.

• Surface integrals and surface area.

• The Gauss map.

• The second fundamental form.

• Interpretation — extrinsic curvature.



The Unit Normal Vector of a Surface

• The unit normal vector of a surface. Is this geometric?

→ Normal line is geometric. Normal direction may not be.
→ Non-orientable surfaces.

• Unit normal vector of a parametrized surface and a graph:

If TpS = span{E1,E2} then N :=
E1 × E2

‖E1 × E2‖

• Unit normal vector of level set S := F−1(v) at regular value v .
Let c be a curve ⊆ S with c(0) = p and ċ(0) = X ∈ TpS .

⇒ v = F (c(t)) ∀ t

⇒ 0 =
d

dt
F (c(t))

∣∣∣
t=0

= 〈[DFp]>,X 〉

⇒ N :=
[DFp]>

‖DFp‖
⊥ TpS



Surface Area

• Area of infinitesimal coordinate rectangle.

→ Let φ : U → R3 be a parametrization of S .

→ Let Ei := Dφu · [0, . . . , 1, . . . , 0]> span Tφ(u)S .

→ Area of rectangle E1 ∧ E2 is ‖E1 × E2‖ = |det(Dφ>u Dφu)|1/2.

• The Riemann sum that yields a surface integral.

Let f : S → R be an integrable function.

⇒
ˆ
S
f dArea := lim

∑
i

f (φ(ui ))
√
det(Dφ>uiDφui )

• where the Riemannian area form is:

dArea(u) :=
√

det(Dφ>u Dφu) du1 du2

• Independence of parametrization.



The Gauss Map

Let S be an orientable surface with unit normal vector Np at p ∈ S .

• The Gauss map of S is the mapping n : S → S2 given by

n(p) := Np

• We view Np as a vector in R3 of length one ⇒ a point in S2.

• The Gauss map of a differentiable surface is itself differentiable.

• Its differential is Dnp : TpS → TNpS2.

• Since TpS and Tn(p)S2 are parallel planes (they’re both
perpendicular to Np), we can re-define Dnp : TpS → TpS .



The Second Fundamental Form

Defn: The second fundamental form of S at p is the bilinear form

Ap : TpS × TpS → R
Ap(V ,W ) := −〈Dnp(V ),W 〉

It measures the projection onto W of the rate of change of Np in
the V -direction at every point p ∈ S .

Proposition: Ap is self-adjoint.

Proof: Work with the components [Ap]ij :=
〈
∂N
∂ui
, ∂φ
∂uj

〉
. The

key is the symmetry of mixed partial derivatives!



Extrinsic Curvature

• Let c be a curve in S with c(0) = p.

• Let ~kc(0) be the geodesic curvature vector of c at zero. Then

〈~kc(0),Np〉 = Ap(ċ(0), ċ(0))

• Note: depends only on the geometry of S at p.

• Let V vary over all unit vectors in TpS . Then Ap(V ,V ) takes
on a minimum value kmin and a maximum value kmax .

→ Eigenvalues of Ap — the principal curvatures of S at p.

→ Corresponding eigenvectors are the principal directions of S at p.

→ Note that the principal directions are orthogonal.

• Mean curvature H := kmin + kmax (= Tr(Ap) w.r.t. ONB).

• Gauss curvature K := kmin · kmax (= det(Ap) w.r.t. ONB).



Local Shape of a Surface

Example: Second fundamental form of a graph. What can we see?

• Elliptic, hyperbolic, parabolic, planar or umbilic points.

• Local characterization of the surface S at p depending on type.

→ Proof based on Taylor series expansion.



Interpretation of the Mean Curvature

The mean curvature is the gradient of the area functional.

• I.e. area decreases fastest in the H~n direction.

The calculation:

• Let φ : U → R3 parametrize S and let f : U → R be a function.

• Let φε(u) := φ(u) + εf (u)Nu parametrize a deformation of S .

Now let gε(u) := [Dφε]
>
u [Dφε]u and g := g0. Then

d

dε
Area(φε(U))

∣∣∣
ε=0

=
d

dε

ˆ
U

√
det(gε(u))du

∣∣∣
ε=0

=

ˆ
U
Tr
(
g−1

dgε(u)

dε

∣∣∣
ε=0

)√
det(g(u)) du

= −2

ˆ
U
H(u)f (u)

√
det(g(u)) du



Interpretation of the Gauss Curvature

Two results. Let n be the Gauss map.

• Proposition: K (p) > 0 iff n locally preserves orientation; and
K (p) < 0 iff n locally reverses orientation.

• Proposition: Let p ∈ S be such that K (p) 6= 0 and let ε > 0
be such that K does not change sign in Bε(p). Then we have

K (p) = lim
ε→0

Area
(
n(Bε(p))

)
Area(Bε(p))


