
CS 468 (Spring 2013) — Discrete Differential Geometry

Lecture 7 Supplement

1. The Second Fundamental Form and the Shape Operator

We defined the differential of the Gauss map of a surface S at p ∈ S as the linear mapping Dnp :
TpS → TpS. Another name for this is the shape operator (actually, −Dnp is the shape operator).
Associated to the shape operator is the self-adjoint quadratic form Ap(V,W ) := −〈Dnp(V ),W 〉
called the second fundamental form. A possible point of confusion from lecture today concerns the
principal curvatures and directions — what matrix are they the eigenvalues and eigenvectors of?

Here is an explanation. Let M : R2 → R2 be a linear transformation with associated quadratic
form Q(V,W ) := 〈M(V ),W 〉. Let’s assume that M is symmetric and so Q is self-adjoint. Define

kmin := min
‖V ‖=1

Q(V, V ) and kmax := max
‖V ‖=1

Q(V, V ) .

Then both kmin and kmax are eigenvalues of M . Let Vmin and Vmax be the associated eigenvectors.
Then Vmin ⊥ Vmax and can be chosen of unit length. This holds true even when kmin = kmax ; now
the eigenvalues are degenerate and any orthonormal vectors will do! Next, it is the case that

Tr(M) = kmin + kmax and det(M) = kmin · kmax .

To actually compute these quantities, we need to choose a basis. Note that the matrix entries
of M with respect to a basis E1, E2 are defined as the coefficients in the expansion M(Ei) :=∑

j MijEj . Therefore the matrix entries satisfy Mij = 〈M(Ei), Ej〉 = Q(Ei, Ej) = Qij if and only
if the basis is orthonormal. In this case

kmin + kmax = Q11 + Q22 and kmin · kmax = Q11Q22 −Q2
12 .

Otherwise, let g =
(
‖E1‖2 〈E1,E2〉
〈E1,E2〉 ‖E2‖2

)
and then one can show that

kmin + kmax =
∑
ij

[g−1]ijQij and kmin · kmax =
Q11Q22 −Q2

12

det(g)
.

2. Local “Shape” of a Surface

A nicer picture. The picture I drew on the board for explaining the relation between the second
fundamental form Ap of a surface S at p and the geodesic curvature of curves on S passing through
p wasn’t very good. Here is a better picture.

I’m drawing S together with a vector X ∈ TpS
and a curve passing through p in direction X.
I’ve obtained c by intersecting S with the plane
passing through p spanned by X and the normal
vector Np. I’ve also drawn a circle in this plane
that makes second order contact with the curve c
at p. This circle has radius equal to one over the
geodesic curvature kc(0); and by our formula, we
also know that kc(0) = Ap(X,X).



Classification of surface points by their curvature. From your homework assignment, we
know that every surface is locally the graph of a function over its tangent plane. So without loss
of generality, we can analyze the second fundamental form in the following setting. Let S :=
{(x, y, f(x, y)) : (x, y) ∈ R2} where f : R2 → R is a smooth function with f(0, 0) = 0 and
∂f(0,0)

∂x = ∂f(0,0)
∂y = 0. You also know from your homework assignment that the tangent vectors

there are E1 = (1, 0, 0)> and E2 = (0, 1, 0)> while the second fundamental form of S there is

[A0]ij = −∂2f(0, 0)

∂xi∂xj

Moreover, we know from Taylor’s theorem that

f(x, y) =
1

2
(x, y)D2f(0, 0)(x, y)> +O(‖(x, y)‖3) = −1

2
A0

(
(x, y)>, (x, y)>

)
+O(‖(x, y)‖3) .

Hence if A0 is non-zero as a quadratic form, then A0 characterizes the local shape of S near the
origin. That is, we can classify the origin as one of several different types:

• The origin is an elliptic point if either kmin > 0 and kmax > 0, or kmin < 0 and kmax < 0.

• It is a hyperbolic point if kmin < 0 and kmax > 0

• It is a parabolic point if one of kmin = 0 or kmax = 0.

• It is a planar point if kmin = kmax = 0.

• It is an umbilic point if kmin = kmax . The key feature here is that the principal directions are
not uniquely defined.

We can see examples of each kind of point by choosing different functions f : R2 → R. For
instance, we can get examples of the first three kinds (and the last kind) by choosing f(x, y) =
kminx

2+kmaxy
2 which is either a paraboloid (up or down) or a hyperboloid or a degenerate quadratic

form depending on the signs of the principal curvatures and whether one of them is zero or not.
We get an example of the fourth kind by choosing f(x, y) = ax+ by — in other words S is a plane.

3. Interpretations of the Mean and Gauss Curvatures

We’ll need this material for Wednesday’s lecture. The results will be stated here — and we’ll discuss
the proof of these results briefly next Monday.

Mean curvature as first variation of area. Let S be an orientable surface and consider a
deformation of S constructed in the following way. Choose a function f : S → R and a small
number ε > 0 and displace each p ∈ S by an amount εf(p) in the normal direction at p. In other
words pdisplaced := p + εf(p)Np. The new surface is Sε := {pdisplaced : p ∈ S}.

Now as S deforms into Sε, its surface area changes. We will see that

d

dε
Area(Sε)

∣∣∣∣
ε=0

= −
ˆ
S
f(p)H(p)dArea(p) .

In other words, the first order change in the area is given by integration against the mean curvature.
This also means that if f(p) = H(p) then the surface area decreases the fastest. In other words, we
can interpret the mean curvature as the gradient of the surface area functional.

Gauss curvature in terms of the Gauss map. This time we keep the surface S fixed and
consider small balls about a point p ∈ S. where K(p) 6= 0. Let ε > 0 be such that K does not
change sign in Bε(p). Then if n denotes the Gauss map, we will show that

K(p) = lim
ε→0

Area
(
n(Bε(p))

)
Area(Bε(p))


