
Computing Curvature
CS468 Lecture 8 Notes

Scribe: Andy Nguyen

April 24, 2013

1 Motivation
In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical
properties. But aside from theoretical elegance, what’s so great about curvature? Well, remember from the plane
curve setting that the curvature function uniquely defines a curve parameterized by arc length up to a rigid motion.
A similar result holds for surfaces, though the proof is beyond the scope of this course: If you know the curvature
in every direction at every point on the surface, then you’ve encoded all of the geometry of the surface. Recall that
the curvature of a surface at a point can be fully encoded in two scalars (maximum and minimum curvature) and two
directions (principal curvature directions); this means that this small list of values encodes all the geometry in a format
that is meaningful to manipulate directly.

One application is using curvature as a descriptor: Recall that we derived two scalars from the maximum and
minimum curvature, namely Gaussian curvature (the product) and mean curvature (the arithmetic mean). Both of
these have intuitive interpretations: Gaussian curvature is positive when the surface is parabolic (convex/concave), and
negative when it is hyperbolic (saddle-shaped); while mean curvature describes the extent to which a surface bends.
Another application is using curvature as an alternate representation of a surface in which to perform operations
such as smoothing before converting back into Euclidean space (though be warned, this back-conversion is highly
non-trivial) [9]. Alternatively, we can perform smoothing directly on the surface by minimizing curvature subject to
keeping the surface “close" to the original, since curvature is a measure of the deviation of the surface from “flatness",
which is the extreme of smoothness [10].

While these applications thus far have focused on the curvature values, we can also find applications for the
curvature directions. For one, these principal curvature directions can be used to trace out principal curves, which tend
to follow primary geometric curvatures; as a result, we can use these principle curves to create highlights in stylized
renderings [2]. For another, since we know that the principle curvature directions are orthogonal and lie in the tangent
plane, we can use these directions as a grid of sorts on a surface, which we can use to guide remeshing, a particularly
nasty problem because it involves both combinatorial changes (changing the mesh structure) and continuous changes
(changing the vertex locations) [1].

2 First Attempt
Now that we’ve convinced ourselves that we can do a lot of things with curvature, how do we go about computing it
on a discrete mesh? Let’s start with the seminal paper on the topic [8].

Let’s define the Taubin matrix M as a function of position on a surface S as follows:

M =
1

2π

∫
π

−π

κθ Tθ T T
θ dθ

where

κθ = κ1 cos2
θ +κ2 sin2

θ

1

Tθ = T1 cosθ +T2 sinθ

Note that Tθ T T
θ

is an outer product, giving us a matrix as output. This matrix is useful because we can recover
the principal curvature directions as eigenvectors and the principal curvature values from the eigenvalues. First we
observe that Tθ is always in the tangent space, so the normal vector N must be an eigenvector with eigenvalue 0. We
can therefore factorize M in terms of the tangent space, as follows:

M = T T
12

(
m11 m12
m21 m22

)
T12

where T12 = [T1,T2]. Now let’s solve for the m’s above. We know that m12 = m21 by symmetry. We first solve for
this value:

m12 = T T
1 MT2

=
κ1

2π

∫
π

−π

cos3(θ)sin(θ)dθ +
κ2

2π

∫
π

−π

cos(θ)sin3(θ)dθ

= 0

since both integrands are odd functions. This means our matrix of m’s is diagonal, so the two remaining eigenvec-
tors are T1 and T2. We can now solve for their corresponding eigenvalues by finding m11 and m22:

m11 = T T
1 MT1

=
κ1

2π

∫
π

−π

cos4(θ)dθ +
κ2

2π

∫
π

−π

cos2(θ)sin2(θ)dθ

=
3
8

κ1 +
1
8

κ2

m22 = T T
2 MT2

=
κ1

2π

∫
π

−π

cos2(θ)sin2(θ)dθ +
κ2

2π

∫
π

−π

sin4(θ)dθ

=
1
8

κ1 +
3
8

κ2

We can approximate the Taubin matrix for a vertex vi on a mesh by replacing the integral with a weighted sum
over the neighbors of vi:

M̃vi = ∑
v j vi

wi jκi jTi jT T
i j

Here, we choose the weight of an edge to be proportional to the sum of the areas of the two incident triangles, and
we use a divided difference approximation for the curvature along the edge (namely, we divide the difference between
the vertex normals by the edge length).

What’s wrong with this approach? It turns out that this formulation is really vulnerable to local noise (Figure 1).
Remember that curvature is a second derivative of sorts, which means that it amplifies noise. We might be tempted
to try smoothing the mesh before doing this computation, but unfortunately, as we mentioned earlier, smoothing is
frequently reliant on computing curvature (for example, mean curvature flow), which results in a chicken-and-egg
problem.

This problem in general has fueled a lot of research, often tailored to specific applications. This research basically
takes the form of a lot of math to derive some formula from which we can extract curvature, all of which actually serves
to justify a discrete computation that turns out to work well in practice, at least for the application that motivated the
paper.

2

Figure 1: Taubin’s approximation is noisy on noisy meshes.

3 Divided Difference Approach
So how can we find an estimate of curvature that’s more robust against noise? Well, we can observe that if derivatives
amplify noise, then integrating should mitigate it. In other words, every time we introduce an averaging step to our
computation, we reduce the effect of noise on our final answer. This is the approach taken in [7], which we’ll look at
now.

We can write the Second Fundamental Form in matrix form by choosing any two orthogonal vectors ~u and~v and
then doing the following:

II =
(

Dun Dvn
)

=

(
∂n
∂u ·~u

∂n
∂v ·~u

∂n
∂u ·~v

∂n
∂v ·~v

)
From this formulation, we can recover the directional derivative of the normal in any direction s= c1~u+c2~v simply

using matrix multiplication:

II
(

c1
c2

)
= Dsn

Figure 2: Setup for computing the Second Fundamental Form on a triangle.

Now let’s consider a single triangle as in Figure 2, and imagine what the Second Fundamental Form should be for
this triangle. We know what the right hand side is for each of the edges of the triangle, so for each edge we can write
an equation that our Second Fundamental Form matrix must satisfy:

3

II
(

e0 ·u
e0 · v

)
=

(
(n2−n1) ·u
(n2−n1) · v

)
II
(

e1 ·u
e1 · v

)
=

(
(n0−n2) ·u
(n0−n2) · v

)
II
(

e2 ·u
e2 · v

)
=

(
(n1−n0) ·u
(n1−n0) · v

)

But notice that we have 6 equations with only 4 unknowns, so we’re overconstrained. This is a good thing, because
it means we can use least squares when solving for this matrix, which means we’re performing some averaging at this
step, which should make our answer a bit more robust. Now that we’ve computed something for each triangle, we
can find a Second Fundamental Form matrix for each vertex by taking a Voronoi-weighted average of these matrices
(realigned to each other by rotating the tangent plane about the cross product of the normals). From there we can
compute our curvature values and directions directly.

Notice that we now have two averaging steps: the least-squares solve for each triangle, and the weighted average
around each vertex. These averaging steps combined give us a much more robust computation of curvature than
Taubin’s approximation. Naturally, there’s a cost for this robustness: All of these averaging steps give no guarantees
whatsoever that the numbers we get out will have any of the theoretical properties of curvature. However, this isn’t a
problem if we just want something that “looks like" curvature and is resistant to noise, such as in graphics applications.

4 Conserved Quantity Approach
Sometimes, we know some theoretical property of curvature that we want to hold exactly for our application, and
general robustness is less important than the preservation of this property. If this is the case, then we can create our
own definition of discrete curvature, choosing it in such a way that we can show the property will hold exactly. This is
the strategy employed in [6], which defines a discrete version of Gaussian curvature that preserves the Gauss-Bonnet
Theorem, and a discrete version of mean curvature that matches the gradient of the area functional of the mesh.

The Gauss-Bonnet Theorem, which we present here without proof, states that for any two-dimensional manifold
M, ∫

M
KdA+

∫
∂M

kgds = 2πχ(M)

In other words, if we integrate the Gaussian curvature over the surface and add it to the geodesic curvature of the
boundary of the surface, we get 2π times the Euler characteristic of the surface. This is an interesting observation
because it connects local values to the global topology of the surface.

Now let’s apply this theorem to a Voronoi cell of a single vertex on a mesh (Figure 3). We can write the following:∫
V

KdA = 2π−∑
j

ε j

The last term is the geodesic curvature of the boundary of the cell. This is such a clean expression because when
we cross over an edge while following this boundary, our change in motion is in the normal direction, so it doesn’t
contribute to the geodesic curvature. That means all of the geodesic curvatures comes from the bends in the interiors
of triangles, which is easy to compute (as we learned in Lecture 3) because the triangles are flat. As a result, the
geodesic curvature is just the sum of the turning angles of the cell. Even better, for Voronoi cells, we can show (and in
fact, we’ll have to as a homework problem) that instead of summing the turning angles, we can just sum the interior
angles of the triangles around the vertex: ∫

V
KdA = 2π−∑

j
θ j

4

Figure 3: Applying the Gauss-Bonnet Theorem to a Voronoi cell.

Now, we’re going to define discrete Gaussian curvature as the quantity that satisfies this equation, namely, that the
discrete Gaussian curvature integrated over the Voronoi cell of the vertex is given by the equation above. Then, in
order to obtain an estimate of the Gaussian curvature at the vertex itself, we simply divide by the area of the Voronoi
cell.

Let’s verify that using this definition, we can derive a discrete version of the Gauss-Bonnet Theorem for triangle
meshes. We have

∫
M

KdA = ∑
i

∫
Vi

KdA

= ∑
i

(
2π−∑

j
θi j

)
= 2πV −∑

i j
θi j

= 2πV −πF

= π(2V −F)

= 2πχ

The last step comes from the fact that all faces in our mesh are triangles, so 2E = 3F . Plugging this into the formula
for the Euler characteristic χ = V −E +F , we have χ = V − 1

2 F . So this gives us a formula for computing a value
on a mesh that behaves like Gaussian curvature on a smooth surface in the sense that it satisfies the Gauss-Bonnet
Theorem.

Now, let’s move on to mean curvature, since we need two curvature measurements in order to characterize a
surface. In a previous homework assignment, we saw that the curvature vector of a curve points in the direction
that moving the point would decrease the length of the curve the fastest. In other words, the curvature vector points
opposite the gradient of the area functional of the curve. It turns out (refer to Adrian’s Lecture 7 Supplement for
details) that mean curvature behaves similarly for a surface. So again, let’s define discrete mean curvature to be tied
to the gradient of the area functional of a mesh, where we’ve fixed the topology of the mesh and are only allowed
to change the locations of the vertices. First, we need to find the gradient of the area functional of the mesh. To do
this, we look at one triangle at a time, and look at the gradient of the area as we vary a single vertex ~p of the triangle.
We choose a convenient basis for our computation, namely, one basis vector ~e parallel to the edge opposite ~p, one
basis vector ~e⊥ in the same plane as the triangle but perpendicular to ~e and pointing towards ~p, and one basis vector
~n =~e× ~e⊥. Using this basis, we can write a formula for the gradient of the triangle as follows (Figure 4):

~p = pn~n+ pe~e+ p⊥ ~e⊥

5

Figure 4: Setup for deriving the area gradient.

A =
1
2

b
√

p2
n + p2

⊥

∂A
∂ pe

= 0

∂A
∂ pn

=
bpn

2
√

p2
n + p2

⊥

= 0

∂A
∂ p⊥

=
bp⊥

2
√

p2
n + p2

⊥

=
bp⊥

2
√

p2
⊥

=
b
2

where the last two lines follow from the fact that pn = 0 by our choice of basis. Therefore we have

∇~pA =
1
2

b~e⊥

Figure 5: Setup for deriving the cotan formulation of the area gradient.

So the gradient points entirely in the direction of the basis vector ~e⊥. Now let’s rewrite this entirely in terms of
the vertices of the triangle (Figure 5). We project point ~p onto the base of the triangle to obtain a point ~p0 which is a
convex combination of~q and~r. If we define~h = ~p−~p0 and write vecp0 = t~r+(1− t)~q, then we can observe

||~h||= `1 tanα = `2 tanβ

Plugging this in, we can solve for t:

6

t =
`1

`1 + `2

=
`1

`1 + `1
tanα

tanβ

=
tanβ

tanα + tanβ

Plugging this back into our expression for ~p0, we get

~p0 =
1

tanα + tanβ
(~r tanβ +~q tanα)

and so we have

~h =
1

tanα + tanβ
((tanα + tanβ)~p−~r tanβ −~q tanα)

=
1

tanα + tanβ
((~p−~r) tanβ +(~p−~q) tanα)

Furthermore, we observe from our triangle that

`1 + `2

||~h||
=

`1 +
tanα

tanβ
`1

`1 tanα
=

tanα + tanβ

tanα tanβ

Now let’s put all of this back into our expression for the gradient of the area.

∇~pA =
1
2

b~e⊥

=
1
2
(`1 + `2)

~h

||~h||

=
1
2
((~p−~r)cotα +(~p−~q)cotβ)

This shows that we can write the gradient of the area of the triangle in terms of its vertices and the cotangents of
its interior angles. This is a useful fact that’s going to come up over and over again. Finally, we sum over the triangles
around a vertex to get the gradient of the area functional of the mesh:

∇~pA =
1
2 ∑

j
(cotα j + cotβ j)(~p− ~q j)

Note that as we refine the mesh and the vertices get closer and closer to each other, this quantity vanishes, so just
like with our discrete Gaussian curvature definition, we’re going to define the discrete mean curvature integrated over
the Voronoi cell of the vertex to be this quantity:∫

V
H~ndA =

1
2 ∑

j
(cotα j + cotβ j)(~p− ~q j)

Just like with Gaussian curvature, to obtain our estimate of mean curvature at vertex p we’ll need to divide by the
area of the Voronoi cell.

7

5 Choosing an Approach
As mentioned earlier, there are a LOT of different papers (e.g. [4] [3] [5]) describing all kinds of approaches to
computing curvature, including ones that don’t fall into the two categories presented here. Each one is optimized for a
specific application, but potentially useful in other applications as well. The question, then, is which one to choose for
your application. It turns out that for many applications, it doesn’t matter; if your input meshes are well-behaved and
your application can tolerate some inaccuracy, then you can pick an approach more or less at random and it should
work. If it then turns out that that particular approach doesn’t work for your application, you can figure out what the
failure cases are, and then pick a different approach that claims to address those failure cases; there are so many papers
out there that a paper that matches your failure case is virtually guaranteed to exist. If you can’t put a finger on what
your failure cases are, then just try another approach at random; the odds are in your favor. Even better, most of these
methods are easy to implement, so playing this search game is pretty inexpensive. As an added benefit, you’ll build
up your own collection of curvature implementations, so the next time you need curvature for something, you can just
try out your suite so far to see if something fits out of the box.

References
[1] ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B., AND DESBRUN, M. Anisotropic polygonal

remeshing. In ACM SIGGRAPH 2003 Papers (New York, NY, USA, 2003), SIGGRAPH ’03, ACM, pp. 485–493.

[2] DECARLO, D., AND RUSINKIEWICZ, S. Highlight lines for conveying shape. In Proceedings of the 5th inter-
national symposium on Non-photorealistic animation and rendering (New York, NY, USA, 2007), NPAR ’07,
ACM, pp. 63–70.

[3] GRINSPUN, E., GINGOLD, Y., REISMAN, J., AND ZORIN, D. Computing discrete shape operators on general
meshes, 2006.

[4] JIAO, X., AND ZHA, H. Consistent computation of first- and second-order differential quantities for surface
meshes. In Proceedings of the 2008 ACM symposium on Solid and physical modeling (New York, NY, USA,
2008), SPM ’08, ACM, pp. 159–170.

[5] KALOGERAKIS, E., SIMARI, P., NOWROUZEZAHRAI, D., AND SINGH, K. Robust statistical estimation of
curvature on discretized surfaces. In Proceedings of the fifth Eurographics symposium on Geometry processing
(Aire-la-Ville, Switzerland, Switzerland, 2007), SGP ’07, Eurographics Association, pp. 13–22.

[6] MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. H. Discrete Differential-Geometry Operators
for Triangulated 2-Manifolds. In Visualization and Mathematics III (2002), H. C. Hege and K. Polthier, Eds.,
Mathematics and Visualization, Springer, pp. 113–134.

[7] RUSINKIEWICZ, S. Estimating curvatures and their derivatives on triangle meshes. In Proceedings of the 3D
Data Processing, Visualization, and Transmission, 2nd International Symposium (Washington, DC, USA, 2004),
3DPVT ’04, IEEE Computer Society, pp. 486–493.

[8] TAUBIN, G. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings
of the Fifth International Conference on Computer Vision (Washington, DC, USA, 1995), ICCV ’95, IEEE
Computer Society, pp. 902–.

[9] WANG, Y., LIU, B., AND TONG, Y. Linear surface reconstruction from discrete fundamental forms on triangle
meshes. Comp. Graph. Forum 31, 8 (Dec. 2012), 2277–2287.

[10] ZHAO, H., AND XU, G. Triangular surface mesh fairing via gaussian curvature flow. J. Comput. Appl. Math.
195, 1 (Oct. 2006), 300–311.

8

