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DIFFERENTIAL GEOMETRY
FOR COMPUTER SCIENCE

Lecture 9 — Intrinsic Geometry



Outline

From last lecture:

e The second fundamental form as extrinsic curvature.

Moving forward:

e The induced metric of a surface.

e Geodesics and length-minimizing curves.

Next time:

e The connection between the induced metric and geodesics.



Local Shape of a Surface

Example: Let S be the graph of a function f : R> — R. Without
loss of generality, we can assume f vanishes to first order at (0, 0).

Then: The second fundamental form at (0, 0) is
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And we can characterize the origin via the eigenvalues of A(g ) as

- Elliptic — both > 0 or both < 0
- Hyperbolic — one of each sign
- Parabolic — one is zero,
- Planar — both are zero
- Umbilic — both are equal




Interpretation of the Mean Curvature

The mean curvature is the gradient of surface area.

e |.e. the area of the surface decreases fastest when it is
deformed in the H# direction.

To see this:

o Let ¢ : U — R3 parametrize S and let f : I/ — R be a function.
Then ¢, := ¢ + e f - N parametrizes a deformation of S.

e Finally, let g.(u) := [D¢.], [D¢:], and g := go. Now:
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The Induced Metric

Observation: Let ¢ : U/ — R3 parametrize a surface S. The object
= [Dp,|"Dp,  foruecl

has appeared quite often. What is the interpretation of g?

Definition: The object g is the induced metric of S.

o Let £ := a¢ be the tangent vectors of S at ¢(u).
e Then the components are g; = E;' E; = (E;, E}).

e Therefore the induced metric of a surface is the restriction of
the Euclidean inner product to Ty,)S, pulled back to U via ¢.

e A parametrization gives you a representation of the intrinsic
metric in the parameter plane as a matrix (actually a (2,0)-tensor).



Covariance

A scalar quantity defined on a surface S is “geometric” if its value
computed w.r.t. any parametrization is always the same.

A different property holds for vector or tensor quantities:

e The components of a “geometric” vector quantity computed
w.r.t. two different parametrizations can be different.

e This is because the basis used to represent the quantity
changes as well, and this must be taken into account.

¢ So we have transformation formulas for passing from one set
of components to the other.

e This is called covariance.



Covariance of the Metric Tensor

Let ¢ : U — R3 and ¢ : V — R3 both parametrize S with
o(u) =¢(v) =p e S. We get:

=[0...1...0]" are the standard basis vectors in U/.
e fi:=[0...1...0]" are the standard basis vectors in V.

o E = gf: = D¢, -ej and F; := gﬁ = D, - f; are bases for T,S.
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The Geodesic Equation

Question: What is the shortest path between p, g in a surface S7

Fact: We can find an equation satisfied by the shortest path.

e Let v: 1 — S be the shortest path and ~. a variation with
variation vector field V that is tangent to S. Then
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e From homework, we know that this implies

d
0 = —Length(e) V variations

de

e=0

—

= </_<'7, V) Vvariations <  k, LS

Definition: Any curve satisfying this equation is called a geodesic.



The Geodesic Exponential Map

We'll see that the geodesic equation is a second-order ODE for ~.
Thus there exists a unique local solution for every choice of

p:=7(0)eS and X:=4(0)e T,S

Definition: The assignment of (p, X) to a solution at distance one
is called the geodesic exponential map and is denoted

exp, : B:(0) € T,M — M
one unit of arc-length

epr(X) := | along the geodesic v with
7(0) = p and #(0) = X

Note: The geodesic itself is given by (t) = exp,(tX).



Geodesics Locally Minimize Length

Two preliminary results...

Proposition: It is easy to see that [Dexp,]o = id. Hence exp, is a
diffeomorphism near the origin in T,M.

Proposition: (“Gauss lemma”) Let v,w € T,(T,S). Then

<[D expp]v(v), [D expp]v(w)> = (v, w)

An important consequence...

Theorem: Geodesics locally minimize length: if « is a sufficiently
short geodesic and c is a curve with the same endpoints as -y, then

Length(7y) < Length(c)

with equality if and only if v = c.



Hopf-Rinow Theorem

Some facts about geodesics:

e Length-minimizing curves are geodesics.
e Short geodesics are length-minimizing.

e There exist long geodesics that are not length-minimizing.

Next: We turn S into a metric space with distance function

d(p,q) = inf Length(y)
~ from p to q

Then d is continuous and satisfies the triangle inequality.

Hopf-Rinow Theorem: If exp is globally defined then any two
points p, g can be connected by a geodesic with length d(p, q).



