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Outline

From last lecture:

• The second fundamental form as extrinsic curvature.

Moving forward:

• The induced metric of a surface.

• Geodesics and length-minimizing curves.

Next time:

• The connection between the induced metric and geodesics.



Local Shape of a Surface

Example: Let S be the graph of a function f : R2 → R. Without
loss of generality, we can assume f vanishes to first order at (0, 0).

Then: The second fundamental form at (0, 0) is
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And we can characterize the origin via the eigenvalues of A(0,0) as

- Elliptic — both > 0 or both < 0

- Hyperbolic — one of each sign

- Parabolic — one is zero,

- Planar — both are zero

- Umbilic — both are equal



Interpretation of the Mean Curvature

The mean curvature is the gradient of surface area.

• I.e. the area of the surface decreases fastest when it is
deformed in the H~n direction.

To see this:

• Let φ : U → R3 parametrize S and let f : U → R be a function.
Then φε := φ+ ε f · N parametrizes a deformation of S .

• Finally, let gε(u) := [Dφε]
>
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The Induced Metric

Observation: Let φ : U → R3 parametrize a surface S . The object

g := [Dφu]>Dφu for u ∈ U

has appeared quite often. What is the interpretation of g?

Definition: The object g is the induced metric of S .

• Let Ei := ∂φ
∂ui

be the tangent vectors of S at φ(u).

• Then the components are gij = E>i Ej = 〈Ei ,Ej〉.

• Therefore the induced metric of a surface is the restriction of
the Euclidean inner product to Tφ(u)S , pulled back to U via φ.

• A parametrization gives you a representation of the intrinsic
metric in the parameter plane as a matrix (actually a (2,0)-tensor).



Covariance

A scalar quantity defined on a surface S is “geometric” if its value
computed w.r.t. any parametrization is always the same.

A different property holds for vector or tensor quantities:

• The components of a “geometric” vector quantity computed
w.r.t. two different parametrizations can be different.

• This is because the basis used to represent the quantity
changes as well, and this must be taken into account.

• So we have transformation formulas for passing from one set
of components to the other.

• This is called covariance.



Covariance of the Metric Tensor

Let φ : U → R3 and ψ : V → R3 both parametrize S with
φ(u) = ψ(v) = p ∈ S . We get:

• ei := [0 . . . 1 . . . 0]> are the standard basis vectors in U .

• fi := [0 . . . 1 . . . 0]> are the standard basis vectors in V.

• Ei := ∂φ
∂ui

= Dφu · ei and Fi := ∂ψ
∂v i = Dψv · fi are bases for TpS .

Then:
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The Geodesic Equation

Question: What is the shortest path between p, q in a surface S?

Fact: We can find an equation satisfied by the shortest path.

• Let γ : I → S be the shortest path and γε a variation with
variation vector field V that is tangent to S . Then
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• From homework, we know that this implies

0 = 〈~kγ ,V 〉 ∀ variations ⇔ ~kγ ⊥ S

Definition: Any curve satisfying this equation is called a geodesic.



The Geodesic Exponential Map

We’ll see that the geodesic equation is a second-order ODE for γ.
Thus there exists a unique local solution for every choice of

p := γ(0) ∈ S and X := γ̇(0) ∈ TpS

Definition: The assignment of (p,X ) to a solution at distance one
is called the geodesic exponential map and is denoted

expp : Bε(0) ⊆ TpM → M

expp(X ) :=

[ one unit of arc-length
along the geodesic γ with
γ(0) = p and γ̇(0) = X

]

Note: The geodesic itself is given by γ(t) = expp(tX ).



Geodesics Locally Minimize Length

Two preliminary results...

Proposition: It is easy to see that [D expp]0 = id . Hence expp is a
diffeomorphism near the origin in TpM.

Proposition: (“Gauss lemma”) Let v ,w ∈ Tv (TpS). Then〈
[D expp]v (v), [D expp]v (w)

〉
= 〈v ,w〉

An important consequence...

Theorem: Geodesics locally minimize length: if γ is a sufficiently
short geodesic and c is a curve with the same endpoints as γ, then

Length(γ) ≤ Length(c)

with equality if and only if γ = c.



Hopf-Rinow Theorem

Some facts about geodesics:

• Length-minimizing curves are geodesics.

• Short geodesics are length-minimizing.

• There exist long geodesics that are not length-minimizing.

Next: We turn S into a metric space with distance function

d(p, q) := inf
γ from p to q

Length(γ)

Then d is continuous and satisfies the triangle inequality.

Hopf-Rinow Theorem: If exp is globally defined then any two
points p, q can be connected by a geodesic with length d(p, q).


