CS 468 (SPRING 2013) — DISCRETE DIFFERENTIAL GEOMETRY

Lectures 4 and 5: Surfaces

Reminder: the differential of a function.

The tangent space of R™ at p, denoted T,R". Tangent vectors of curves.

The differential of f : R™ — R™ at p is the matrix D f, € R™*" with components ngi-.

J

Interpretation as a linear mapping D f;, : T)R™ — T}, R™. Image of curves and their tangent

vectors. Let ¢ : I — R"™ be a curve with ¢(0) = p and ¢(0) = X,,. Then

d ofi  dci(t)
%f(c(t))‘t:(): ( i o) L:O,...>:Dfp-Xp

The rank of D f,. Injectivity and surjectivity.

Qualitative picture of a map of locally constant rank. Let f : R" — R™.

— If Df), is injective for all p € 2 C R" then we must have n < m and we can “modify” f
as follows: there exist smooth bijections with smooth inverses (a.k.a. diffeomorphisms)
¢ :R" - R™ and ¢ : R™ — R™ (actually defined on suitable open sets of Q and f(2))

so that the map f:=1 o fo ¢! has the form

flat,. . 2™ = (24, ...,2",0,...,0)

for all z := (z!,...,2") in the domain of ¢.

— If Df, is surjective for all p € @ C R" then we must have n > m and a similar

modification of f has the form

f(xl,...,azm,xm+1,...,x") = (z},...,2™)
for all x := (z!,.. .,2") in the domain of ¢. Note that f can be many-to-one since, for
instance, we have f~1(0) = {(0,...,0,z™" ... 2") : 2* € R for each i}.

— If Df, is bijective for all p € €2 C R" then we must have n = m and a similar modification

of f has the form }
flxt,. . 2™ = (2., 2"

for all z := (x',...,2") in the domain of ¢. Note that f and thus f are locally bijective.

— If Df, has rank k for all p € @ C R" then we must have k& < min(n,m) and a similar

modification of f has the form
flat,. . 2™ = (h,...,2%0,...,0)

for all 2 := (z!,...,2") in the domain of ¢.

Proofs are based on the inverse and implicit function theorems.

InvFT. If f : R" — R" is smooth with D f, bijective, then f is invertible on a neighbourhood
of p. Note that Df, is bijective at p if and only if det(Df,) # 0. This is an open condition

so we actually obtain a stronger result than above.

ImpFT. If F: R*¥ x R* — R" is smooth with D1 F, 4 bijective and F(p,q) = 0, then the
equation F'(x,y) = 0 can be solved for points (z,y) near (p,q) in the following sense. There
exists a function g : R¥ — R™ defined in a neighbourhood of ¢ giving us y = g(x) for which
q = g(p) and also F'(x, g(x)) = 0. Note that we can compute Dg, in terms of D1 F{, 4,)) and

DyF(y g(xy)- Example: F(z,y,2) = 2% +y* + 2% — L.



Three kinds of surfaces.

e Common representations of surfaces in R3.
e Graphs of functions f : R? — R. Examples: planes, upper hemisphere.

e Level sets of functions F' : R? — R. Examples: the whole sphere. Conic sections. Graphs as
the zero level set of F(z,y,2) := z — f(x,y). Writing a level set as a graph — when this is
possible, and the relation to ImpFT.

e Parametric surfaces o : U — R3 where U C R? is an open domain in the plane and o (u!, u?) :=

(ol (ul,u?), 0?(ut, u?), 03 (ut, u?)). Examples: sphere, torus. Graphs as parametrized surfaces

(z,y) — (z,y, f(z,y)). Relation with level sets: F(o(u)) = const for all u € U.

e Suppose you come across a surface in R3, what representation do you choose to describe it
mathematically? Each representation has its limitations.

— Not every surface is a graph.

— How do you find a level set function? Or if you know the level set function, how do
you solve it? You have to solve equations! E.g. if F(x,y,z) = 0 you need to extract
z = g(z,y) with the property that F(z,y,g(x,y)) = 0.

— In general only part of a surface can be nicely parametrized. Non-uniqueness.

The definition of a surface.
e We would like a definition of a surface that as independent of representation as possible. The
method of choice is: local parametrizations.

e A a set of points S C R? is a reqular surface if for each p € S there exists an open neigh-
bourhood V' C R?® containing p, an open neighbourhood U C R? and a parametrization
o:U — VNS such that:

1. 0 = (0%, 0%, 03) is differentiable (i.e. each o : U — R is a smooth function).

2. o is invertible (as a map from the parameter domain onto its image) with continuous
inverse. ILe. there is a function o=! : VNS — U such that ¢ o 07! = idyng and
o' No = idy; and also o~ ! is the restriction to V N S of a continuous function on an
open neighbourhood W C R? containing V' NS onto U.

3. For every q € U, the differential Do, is injective.
e Proof that the sphere is a regular surface by writing it as the union of six graphs over the
coordinate planes. What happens at the edges of the coordinate charts?

e Another example where the coordinates are differentiable at ¢ but Do, is non-injective: the
sphere in polar coordinates.

e Example: graphs are regular surfaces.

e Example: inverse images of a regular values are regular surfaces, again is based on the ImpFT.

— Here we have F(p) = 0 and DF), # 0 meaning 34 so that 85—2@ # 0.

— W.lo.g. i = n so we get from the ImpFT the local solution " = g(z!,...,2"71,) so
that F(z!,..., 2" 1 g(z',... 2" 1)) =0.
— Now F~1(0) near p projects down onto an open set U in the (x!,... 2" !)-plane and

is equal to the graph {(z!,... 2" 1 g(z!,..., 2" 1)) : (z},..., 2" 1) € U}. Thus it’s a
surface!



Geometry versus topology.

e Explain this dichotomy.

e FEuler characteristic.

The tangent space of a surface.

e Curves in a surface. The coordinate curves. Tangent vectors to a surface.

o Let 0: U CR? = VNS CR3 be a parametrization of a subset of a surface S and let p € S
such that p = o(u) for some v € U. The tangent plane 7,5 defined as Image(Do,,) C TG(U)R3.

e The previous definition depends on the parametrization 0. What if we change parametriza-
tions? Do we get the same tangent space? Yes we do! Do change-of-parameters calculation.

e This is an example of a general principle of differential geometry: to define a geometric concept
such as the tangent plane rigorously, we can use a parametrization; but then we must show
independence of the particular parametrization chosen.

e Basis for the tangent space. This is NOT a geometric concept.

e Tangent space of a graph and of a level set.



