Non-Invasive Interactive Visualization of Dynamic
Architectural Environments

Christopher Niederauer*
University of California, Santa Barbara

Abstract

We present a system for interactively producing exploded views of
3D architectural environments such as multi-story buildings. These
exploded views allow viewers to simultaneously see the internal
and external structures of such environments. To create an exploded
view we analyze the geometry of the environment to locate individ-
ual stories. We then use clipping planes and multipass rendering to
separately render each story of the environment in exploded form.
Our system operates at the graphics driver level and therefore can be
applied to existing OpenGL applications, such as first-person multi-
player video games, without modification. The resulting visualiza-
tion allows users to understand the global structure of architectural
environments and to observe the actions of dynamic characters and
objects interacting within such environments.

Keywords: Visualization, Exploded View, Architecture

1 Introduction

Recent advances in consumer graphics technology now permit the
interactive exploration of extremely complex 3D environments. Ar-
chitects routinely build detailed 3D CAD models of buildings to vi-
sualize both their internal spaces and external structures. The trend
towards greater complexity is even more evident in the video game
industry, which has been creating increasingly compelling three-
dimensional worlds for the past few years. These environments are
vast and tend to be densely occluded.

However, most 3D model viewing applications lack the abil-
ity to simultaneously display the interior spaces and the external
structure of the environment. Two common interfaces for interac-
tively viewing such environments are “ArcBall” interfaces [Shoe-
make 1992] that allow rotation, scaling, and zooming of the envi-
ronment, and walkthrough interfaces [Teller 1992] that allow the
viewer to move through the rooms inside the environment. ArcBall
interfaces are useful for understanding the environment’s external
structure, while walkthrough interfaces are useful for understanding
its interior spaces. However, neither of these interfaces allow view-
ers to understand the environment as a whole, because the walls
and floors hide most of the structure. In dynamic 3D environments,
such as multiplayer games like Quake I11 [1d Software c. 2002], the
occlusions make it impossible to see all the action at once.

*ccn@ccentech.com
Tmhouston@graphics.stanford.edu
*maneesh@graphics.stanford.edu
Shumper@cs.virginia.edu

Mike Houston®
Stanford University

Greg Humphreys®
University of Virginia

Maneesh Agrawala*
Microsoft Research

(a) ArcBall (b) Walkthrough

(c) Exploded view

Figure 1: Visualizations of architectural environments. (a) An ArcBall in-
terface exposes exterior structure. (b) A walkthrough [Id Software c. 2002]
reveals the interior structure of a single room. (c) A hand-designed exploded
view [Holmes 1993] sections the building into individual floors, or stories,
and allows viewers to simultaneously see its interior and exterior structure.
Our visualization system provides automated support for generating such
exploded views of an architectural environment.

Acrchitects and technical illustrators often use techniques such as
cutaways, transparency, and exploded views to reduce or eliminate
occlusion and expose the overall structure of architectural environ-
ments. As shown in figure 1(c), a common approach is to first sec-
tion the building into stories just below the ceilings, and then sepa-
rate the stories from one another to form an exploded view. These
views expose both the structure of the internal spaces within each
story and the vertical spatial relationships between adjacent stories.
But producing such an exploded view from a 3D model of an archi-
tectural environment currently requires a designer to annotate the
location of each story and a viewing application that can generate
the appropriate exploded view from the annotated model.

In this paper we present an interactive system that provides au-
tomated support for generating exploded views of any architectural
environment. Moreover, our system requires very little semantic
understanding of the environment. We assume the environment
is “architectural,” and search for geometric primitives representing
ceilings. Once we have found the ceilings, we section the envi-
ronment into stories and render each story separately in exploded
form. Our system provides interactive control over the viewpoint

Geometric
Analy5|s Up Vector NumSplits
l Player Height
- Find :
Original Downward| radle Mapping Find Split List of Split
Application —>= . Heightto ——= . — .
Facing Heights Heights
OpenGL Polygons Surface Area
Rendering _ ~ Separation
VIEWLPOW Distance
Set Viewpoint
NumSplits G Clip Planes & |\ .
| 8 6/ Translation @
0 c O c
- »n o7 ~ o
Original Multiple g & © Q& Multipass
Application > w D> _ o O >
OpenGL Playback =3 PR Composite
& T~ 3 E/
ES /2 3
z N Set Viewpoint | 3 =
Clip Planes & /
(a) System block diagram Translation (b) Exploded view visualization

Figure 2: Overview of our visualization system. (a) The system is divided into two stages; geometric analysis and rendering. Geometric analysis occurs once
and determines where to section the architectural environment into stories. Rendering occurs every frame and produces an interactive exploded view. Each box
represents a computational operation and arrows represent data. The data shown in italics, (Up Vector, Player Height, NumSplits, Viewpoint and Separation
Distance) are supplied by the user. All other data are supplied by the original OpenGL application or computed by our system. (b) An exploded view of the

demo2 environment from Quake 111 generated non-invasively by our system.

and the separation distance between the stories in the environment.
We have found that this type of viewer makes it easy to understand
both the structure of the environment and the relationship between
dynamic objects and characters in the space. To make our tech-
nique widely applicable, we have implemented it non-invasively us-
ing Chromium [Humphreys et al. 2002] to intercept and manipulate
sequences of OpenGL commands made by the underlying applica-
tion. Therefore our system can be applied to existing applications,
such as Quake I11, without modification or even recompilation.

2 Related Work

Acrchitects and technical illustrators invariably include sketches, di-
agrams, and schematic drawings of 3D objects or environments to
explain their parts, spaces, and structures. Exploded views are es-
pecially effective for conveying structure, and are commonly used
in illustrations of mechanical assemblies [Karns and Traister 1995;
Giesecke et al. 1949; Thomas 1978]. In computer graphics and vi-
sualization, several groups have developed techniques for generat-
ing exploded views of such objects [Kroll et al. 1989; Mohammad
and Kroll 1993; Rist et al. 1994; Driskill 1996; Raab and Riiger
1996]. These systems typically require extensive knowledge about
the part/sub-part decomposition of the model.

Designers such as Biesty [1996] and Tufte [1997] commonly use
exploded views to reveal the structure of multi-story buildings, Yet,
most of the computer graphics research on visualizing architectural
environments has focused on building interactive walkthroughs of
extremely large models containing millions of primitives [Teller
1992; Baxter et al. 2002]. These systems allow viewers to expe-
rience the environment at a human scale from a first-person per-
spective. Such systems exploit the occlusion characteristics of such
environments to cull geometry that won’t be visible from a given
viewpoint. In contrast, the goal of our work is to provide a third-
person perspective visualization that shows as much of the interior

and exterior structure of the environment as possible.

Recently, Mohr and Gleicher [2001; 2002] introduced the
idea of using non-invasive techniques for manipulating existing
graphics applications. Our system builds on this idea. We use
Chromium [Humphreys et al. 2002] to intercept commands made
by any OpenGL application. Through Chromium’s Stream Pro-
cessing Units (SPUs), we can modify, delete, replace, or augment
any of the graphics API calls made by an application while it is
running. Chromium’s SPUs can easily be adapted to affect seman-
tic transformations on streams of graphics commands; Humphreys
et al. implement a hidden-line drawing SPU that can easily be ap-
plied to any OpenGL application. Because our application requires
state tracking, command packing/unpacking, and OpenGL stream
analysis, Chromium is a natural choice to support the algorithms
we describe in this paper.

3 Generating Architectural Exploded Views

Our visualization system generates exploded views of an architec-
tural environment using the two stage approach shown in figure 2.
The system processes an OpenGL stream from any application® in
two stages. The first stage, geometric analysis, determines where
to split the architectural model into stories by analyzing the stream
of polygons issued by the original application. The analysis is per-
formed once whenever a new architectural model is loaded into the
original application.

The second stage, rendering, draws the exploded view by mod-
ifying the OpenGL graphics stream of the original application.
Based on the geometric analysis, the renderer inserts clipping
planes between each story and performs multipass rendering, one
pass per story, to produce the exploded view. The renderer also re-

1\We assume the original application is using OpenGL to render an ar-
chitectural environment.

1st Split

2nd Split ;
1500 P 3rd Split

1000
4th Split

5th Split

500
6th Split

Total Surface Area of
Downward Facing Polygons

o ¥ W T ©® 0 YW N o ¥ © 90 YW o - a4 oo 0o ¥ 9O YW N o o ¥ 0 YW N oo T 90 YW N - 0o 0o v o N

N © © « -« N ¥ K N KN © 0 ® 9 © = & o I 9 b o 0 Q0 «— ¥ uw © W ~ -« <« ¥ « ¥ 9

rrrrr - - - 8 0 AN N O O o o F T FF T DO O © © N KNNDNMN®©®® oo o0 o
Height

Figure 3: This plot graphically depicts the table mapping heights to surface area of downward facing polygons for the Soda Hall application. The corresponding
exploded view is shown in figure 4. The orange bars show where our system chose to split the building. Note that the surface area corresponding to the 6th
split is smaller than the surface areas for heights 114, 274, 434, 594 and 754. For this environment we set Player Height to 100. Since all those heights are

within Player Height of a previously chosen split they are not chosen as the 6th split height.

places the viewpoint (i.e. the projection and modelview matrices)
specified by the original application with a new viewpoint which
may be interactively specified by a viewer using our system. The
rendering stage modifies every frame of the original application on
the fly. We describe both of these stages in detail.

3.1 Geometric Analysis to Locate Stories

The most natural segmentation of an architectural model is into
floors, or stories. A story is usually defined by a floor, a ceiling, and
all geometry in-between. For our visualization, however, we do not
include the ceiling in each story because it occludes the very struc-
ture we are trying to reveal. Therefore, the best place to split the
model is immediately below each ceiling. The goal of the geomet-
ric analysis stage is to determine the polygons of the environment
that represent ceilings. The rendering stage will insert a clipping
plane into the environment just below each discovered ceiling to
separate the environment into individual stories.

To find the ceiling polygons, we require the user to specify a vec-
tor defining the up direction for the environment. Ceiling polygons
will be oriented so that their normals point in the opposite direc-
tion of this vector. As the original application submits geometry to
OpenGL for rendering, we use Chromium to intercept the vertices
(v1, V2, v3,...) of each polygon. Assuming polygons are specified
using consistent counterclockwise ordering, we compute the poly-
gon normal as the cross product (v —v1) x (V3 — V). Most appli-
cations are careful about their geometry’s winding order because of
OpenGL backface culling semantics.

While this approach finds all downward facing polygons, not all
such polygons represent ceilings. Downward facing polygons may
appear in other parts of the environment, such as portions of char-
acters or objects, or smaller architectural elements such as window
sills, ledges, and ornamental decoration. To find the polygons most
likely to represent ceilings, we compute the height of each down-
ward facing polygon as the dot product of v; and the up vector. We
then build a table mapping each potential ceiling height to the total
surface area of all downward facing polygons at that height. A plot
of this table for the Soda Hall model is shown in figure 3.

The viewer interactively specifies NumSplits — the number of sto-
ries the environment should be split into. Starting with an unsplit
environment the viewer presses a key to increase or decrease Num-
Splits. Initially, we find the NumSplits largest surfaces areas in the
height to surface area table and consider splitting the environment
at each of the corresponding heights. However, environments often
contain large ceiling areas that are slightly offset from one another.
Splitting the model at each of these offset heights would generate
extremely short stories that are not part of the desired segmenta-
tion. To counteract this effect, we apply an additional heuristic

which maintains a minimum distance between neighboring splitting
planes. In general, this distance should be set to the height of a typi-
cal character as measured with respect to the environment, since no
story can be smaller than this minimum height. We allow the user
to adjust this minimum height as necessary for a particular model.
In practice we have found that finding the right minimum height
parameter is extremely easy. For multiplayer games the minimum
height is specified as the average height of the player geometry and
therefore we call this variable the Player Height.

3.2 Rendering the Exploded View

After the geometric analysis stage determines where to split the en-
vironment into stories, the rendering stage modifies each frame of
the original application to produce an interactive exploded view.
We use Chromium to buffer the stream of OpenGL calls corre-
sponding to a frame (i.e. all the functions and their parameters be-
tween calls to glSwapBuffers()). The frame is then replayed Num-
Splits times, with each playback pass responsible for rendering one
of the stories in the exploded view. Each playback stream modifies
three aspects of the original OpenGL stream:

e The original viewing projection is replaced by an external ax-
onometric view.

e Clipping planes are inserted into the stream to ensure that only
a single story is drawn.

e The geometry is translated along the up vector to separate the
current story from the previous story.

Technical illustrators often use an axonometric projection when
producing exploded views of architectural environments to elimi-
nate perspective distortions. We generate an axonometric view by
replacing the original application’s projection matrix with our own
axonometric projection. Our system allows viewers to interactively
adjust the viewpoint using an ArcBall interface [Shoemake 1992].
To allow this kind of control, we must locate the viewing transfor-
mations in the transformation matrix stack of the original applica-
tion and replace them with our own transformations. We assume
that the application first sets up the viewing transformation for the
environment and subsequent changes to the modelview stack repre-
sent relative motions of other graphical elements, such as players,
objects, or overlays. Thus we can change the viewpoint by replac-
ing the very first matrix placed on the OpenGL “modelview” stack.
When non-environmental graphical elements (players, objects, etc.)
are drawn, we use the inverse of the environment’s original projec-
tion matrix to place these elements correctly relative to our new
axonometric view.

To ensure each playback stream only draws the geometry asso-
ciated with a single story, we insert two OpenGL clipping planes
into the graphics stream just before the environment geometry. One
clipping plane is placed immediately below the ceiling of the cur-
rent story so that it clips all geometry above it. Similarly, the other
clipping plane is placed right below the previous ceiling so that it
clips all geometry below it.

Viewers can interactively specify the story separation distance.
To set the specified separation distance, we insert a global transla-
tion into each playback stream to move the entire scene along the
up vector. By interactively adjusting separation distance, viewers
can quickly see how the stories fit together and connect with one
another. This is another form of interaction that serves to expose
the 3D structure of the environment.

4 Results

We have tested our system using two existing OpenGL applications
for rendering architectural environments: a basic ArcBall-based
model viewer we wrote to display the Soda Hall environment, and
Quake I11. Examples of exploded views generated by our system are
shown in the color plate. Notice that the corresponding unexploded
view of each of these environments reveals little internal structure.

Since we are modifying the viewpoint without the application’s
knowledge we must disable any geometric culling performed by the
application. For Quake 11 we set the following options to disable
such culling: r_nocull 1, rnovis 1, and r_facePlaneCull 0.

While disabling culling allows us to non-invasively capture the
entire architectural model, rendering the exploded view can be-
come expensive because it requires one pass through the geome-
try for each story in the building. To alleviate this problem we use
Chromium’s parallel rendering capabilities with a cluster of 8 work-
stations each containing two 800 MHz Pentium 111 Xeon processors
and an NVIDIA GeForce4 graphics accelerator. Each node in the
cluster renders one story of the environment and their results are
composited using Chromium’s binaryswap SPU [Ma et al. 1994].
Using the cluster we can render exploded views of both Soda Hall
and the tourney4 environments at about 9 frames per second.

5 Discussion

In this work, we explicitly chose to develop a non-invasive approach
so that we could provide spectators with an exploded view of popu-
lar multi-player game environments. Although our ability to retrofit
existing applications in this manner is a strength of our technique,
it is also a limitation. In particular, this approach requires us to
analyze the environment at a very low level and to make several as-
sumptions about the semantics of the OpenGL stream issued by the
original application. For example, we assume that the vertices of
geometric primitives are specified in consistent counterclockwise
order, and that the first matrix added to the modelview transforma-
tion stack encodes the viewing transform.

The application writer has access to higher-level semantic
knowledge about the environment, such as the locations of the ceil-
ings and the viewing parameters. Access to this type of information
would make it easy to build our exploded view visualization tech-
nique into the original application. Our intention is not to simply
argue that a non-invasive technique should be used in all situations,
but rather to demonstrate a compelling new visualization technique
for architectural environments. We hope to encourage designers of
future systems to directly incorporate such visualizations into their
applications. For existing applications such as Quake 111 which do
not provide such an exploded view visualization mode, we believe
that our non-invasive system approach is a good strategy for adding
exploded view capabilities.

6 Future Work and Conclusion

There are several directions for future research. Our system is cur-
rently not fully automated and requires some user input, such as
the number of stories and the minimum story separation. While it
is very easy to set these parameters interactively, we are working
on a weighted clustering algorithm to automatically determine the
proper split locations without any user intervention.

When many players are interacting simultaneously in a large en-
vironment, it can be difficult to follow all the action, even though
all of it is visible in the exploded view. A combination of geometric
and semantic simplification would greatly increase the comprehen-
sibility of such an environment. For example, players often appear
quite small when the entire map is shown, and could be simplified
or even iconified without sacrificing much content.

We have presented a system that exposes the internal 3D struc-
ture of architectural models by automatically generating exploded
views. The visualization provides a much clearer view of the over-
all environment and the dynamic character interactions that may
occur within it. We have found that observing multi-player games
from this type of third-person perspective is much more satisfying
than watching the game through the eyes of a player, as it provides
a more complete understanding of the environment and the action.

References

BAXTER, W. V., SuD, A., GOVINDRAJU, N. K., AND MANOCHA, D. 2002. Gi-
gaWalk: Interactive walkthrough of complex environments. In Eurographics Ren-
dering Workshop.

BIESTY, S., AND PLATT, R. 1996. Stephen Biesty’s Incredible Explosions: Exploded
Views of Astonishing Things. Scholastic.

DRIsKILL, E. 1996. Towards the Design, Analysis and Illustration of Assemblies.
PhD thesis, University of Utah.

GIESECKE, F. E., MITCHELL, A., AND SPENCER, H. C. 1949. Technical Drawing
3rd Edition. MacMillan.

HUMPHREYS, G., HOUSTON, M., NG, R., AHERN, S., FRANK, R., KIRCHNER, P.,
AND KLOSowskl, J. T. 2002. Chromium: A stream processing framework for
interactive graphics on clusters of workstations. ACM Transactions on Graphics
21, 3, 693-702.

ID SOFTWARE. c. 2002. Quake 3: Arena. Tech. rep., Id Software Inc. http://www.
idsoftware.com/games/quake/quake3-arena/.

KARNS, J. A., AND TRAISTER, J. E. 1995. Firearms Disassembly with Exploded
Views. Stoeger Publishing Company.

KRoOLL, E., LENZ, E., AND WOLBERG, J. R. 1989. Rule-based generation of ex-
ploded views and assembly sequences. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing (Al EDAM) 3, 3, 143-155.

MA, K.-L., PAINTER, J. S., HANSEN, C. D., AND KROGH, M. F. 1994. Parallel
volume rendering using binary-swap compositing. IEEE Computer Graphics and
Applications 14, 4 (July), 59-68.

MOHAMMAD, R., AND KROLL, E. 1993. Automatic generation of exploded views
by graph transformation. In Proceedings of IEEE Al for Applications, 368-374.
MOHR, A., AND GLEICHER, M. 2001. Non-invasive, interactive, stylized rendering.

In ACM Symposium on Interactive 3D Graphics, 175-178.

MOHR, A., AND GLEICHER, M. 2002. HijackGL: Reconstructing from streams for
stylized rendering. In International Symposium on Non-Photorealistic Animation
and Rendering, 13-20.

RAAB, A., AND RUGER, M. 1996. 3D-ZOOM interactive visualization of structures
and relations in complex graphics. In 3D Image Analysis and Synthesis, 87-93.
RisT, T., KRUGER, A., SCHNIEDER, G., AND ZIMMERMAN, D. 1994. AWI: A
workbench for semi-automated illustration design. In Proceedings of Advanced

Visual Interfaces (AVI), 59-68.

SHOEMAKE, K. 1992. Arcball: A user interface for specifying three-dimensinal orien-
tation using a mouse. In Graphics Interface *92, Canadian Information Processing
Society, 151-156.

TELLER, S. 1992. Visibility Computations in Densely Occluded Polyhedral Environ-
ments. PhD thesis, University of California at Berkeley.

THoMAS, T. A. 1978. Technical Illustration 3rd Edition. McGraw Hill.

TUFTE, E. 1997. Visual Explanations. Graphics Press, 146-148.

Soda Hall Quake Il - demo7 Quake Il - tourney4

Figure 4: Exploded views generated by our system. Each column shows the environment from an external axonometric viewpoint, first unexploded and then
exploded. We non-invasively modified an ArcBall viewer to generate the Soda Hall example and we modified Quake 111 to generate the demo7 and tourney4
examples. While the unexploded view shows external structure, the exploded view simultaneously reveals both internal and external structure.

