

www.computer.org/internet computing

Experimental Platforms for Computational
Photography

Marc Levoy

Vol. 30, No. 5
September/October 2010

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

	Published	by	the	IEEE	Computer	Society	 0272-1716/10/$26.00	©	2010	IEEE	 IEEE	Computer	Graphics	and	Applications 81

Editors: Lawrence Rosenblum
and Simon JulierProjects in VR

Experimental	Platforms	for	
Computational	Photography
Marc Levoy
Stanford University

The principles of photography have remained
largely unchanged since its invention by Jo-
seph Nicéphore Niépce in the 1820s. A lens

focuses light from the scene onto a photosensitive
plate, which records this information directly to
form a picture. Because this picture is a simple
copy of the optical image reaching the plate, im-
provements in image quality have been achieved
primarily by refi ning the optics and the recording
method. These refi nements have been dramatic
over the past few decades, particularly with the
switchover from fi lm to digital sensors, but they’ve
been incremental.

Computational photography challenges this view.
It instead considers the image the sensor gathers to
be intermediate data, and it uses computation to
form the picture. Often, it requires multiple im-
ages to be captured, which are combined in some
way to produce the fi nal picture. Representative
techniques include high-dynamic-range (HDR)
imaging, fl ash/no-fl ash imaging, coded-aperture
and coded-exposure imaging, photography under
structured illumination, multiperspective and pan-
oramic stitching, digital photomontage, all-focus
imaging, and light-fi eld imaging.

In this article, I look at the lack of experimental
platforms for computational photography (that is,
cameras that are programmable), and I talk about
one possible solution—the Frankencamera archi-
tecture designed in my laboratory at Stanford as
part of our Camera 2.0 project (http://graphics.
stanford.edu/projects/camera-2.0).

A	Bit	about	Computational	Photography
The term “computational photography” has been
reinvented several times over the past 20 years.
Its current defi nition stems from a symposium I
co-organized in 2005 with Frédo Durand of the
Massachusetts Institute of Technology’s Computer
Science and Artifi cial Intelligence Laboratory and

Richard Szeliski of Microsoft Research (http://scpv.
csail.mit.edu). Since then, the fi eld has grown
enormously. Of the 439 papers submitted to Sig-
graph 2009, nearly 40 percent were about 2D im-
aging applied to photography or video, making this
area larger than the traditional areas of modeling,
animation, and rendering.

The fi eld has also evolved; it now spans com-
puter vision and applied-optics topics, some of
which were active research areas before anyone
applied the term computational photography to
them. Since 2009, the fi eld has had its own yearly
conference with peer-reviewed papers—the Inter-
national Conference on Computational Photogra-
phy—and it will soon have its fi rst monograph.1

Why	Can’t	I	Buy	a	Computational	Camera?
Despite this buzz, a demon haunts the computa-
tional photography community. Besides panoramic
stitching, few of these techniques have found their
way into commercial cameras. Why is this so? I
believe four factors are involved.

Corporate Secrecy
First, the camera industry is secretive to an extent
unfamiliar to those of us who grew up in computer
graphics. There’s little communication between
companies and universities, as there has been, for
example, between Silicon Graphics, Nvidia, ATI,
and US academic graphics labs. Also, aside from
image compression formats (such as JPEG) and
color spaces (such as sRGB), the camera industry
has few open standards or scholarly publications.
Some of this secrecy is driven by culture, but it’s
also quietly acknowledged that camera companies
are violating each other’s patents. If you don’t dis-
close your technology, nobody can sue you.

While pursuing the Camera 2.0 project, my col-
leagues and I have run into fear-driven secrecy
among not only camera manufacturers but also the

82	 September/October	2010

Projects	in	VR

companies that make camera processing chips. This
secrecy makes it hard to insert open source compo-
nents into the value chain because these chip mak-
ers won’t reveal their hardware interfaces.

The tangle of underlying patents, some of them
quite broad, also constitutes a barrier to entry
for new camera companies. When a patent war
erupts, as it has between Nokia, Google, and Ap-
ple in the mobile phone space, it typically ends
with negotiations and cross-licensing of patents,

further raising the entry barrier. Starting a new
camera company isn’t impossible, but profit mar-
gins are razor-thin, partly due to licensing fees.
So, unless you introduce technology that lets you
charge significantly more for your camera, making
money is difficult.

Hardware versus Software
Second, traditional camera manufacturers are pri-
marily hardware, not software, companies. Of course,
digital cameras contain a tremendous amount of
software, but these companies treat software as a ne-
cessity, not a point of departure. So, computational
photography represents a threat because its value
comes largely from algorithms. Fredo Durand likes
to say that “software is the next optics”—meaning
that future optical systems will be hybrids of glass
and image processing. Besides placing more em-
phasis on software, computational photography
results are being published in journals and either
placed in the public domain or patented by uni-
versities, who often issue nonexclusive licenses.
These trends run counter to the camera industry’s
hardware-intensive, secrecy-based structure.

Traditional camera companies are also uncom-
fortable with Internet ecosystems, which typically
involve multiple vendors, permit (or encourage)
user-generated content, and thrive or falter on the
quality of their user interfaces. It’s worth noting
that, as of this writing, not a single point-and-
shoot or single-lens reflex (SLR) camera offers a
3G connection (although a few offer Wi-Fi). This
will change soon, driven by market pressure from
the increasingly powerful and connected cameras
on mobile devices. Also, no traditional camera

manufacturer runs a photo-sharing site with sig-
nificant penetration into Euro-American markets,
although several are trying (for example, Nikon’s
My Picturetown or Kodak’s Gallery).

Branding and Conservatism
Third, traditional camera companies are inherently
conservative. For example, every component in a
Nikon or Canon SLR is treated by the company
as reflecting on the brand’s quality as a whole. So,
new technologies are refined for years before they’re
introduced in a commercial product. This strategy
yields reliable products but slow innovation.

The open source software community advocates
exactly the opposite strategy—“release early, re-
lease often.”2 This strategy yields fast innovation
and (eventually) high quality, as has been proven
with Linux, the Apache Web server, the Thunder-
bird mail client, and most iPhone applications,
even though the latter are not open source. When
I proposed to a prominent camera manufacturer
recently that they open their platform to user-
generated plug-ins, they worried that if a photog-
rapher took a bad picture using a plug-in, he or she
might return the camera to the store for warranty
repair. Although this attitude was understandable
20 years ago, it’s now antiquated; iPhone users
know that if a third-party application crashes, it
isn’t Apple’s fault.

As an example of this conservatism, although
algorithms for HDR imaging have existed since the
mid-1990s, except for a few two-exposure models
from Fuji and Sony, no camera manufacturer of-
fers an HDR camera. Instead, these manufacturers
have been locked in a “megapixel war,” leading to
cameras with more pixels than most consumers
need. This war is finally winding down, so compa-
nies are casting about for a new feature on which
to compete. Once one of them offers such a feature
(which might be HDR imaging), the rest will join
in. They’ll compete fiercely on that feature, to the
exclusion of others that might be ready for com-
mercialization and could be useful to consumers.

Research Gaps
Finally, while published computational photog-
raphy techniques might appear ready for com-
mercialization, key steps are sometimes missing.
Although HDR imaging has a long history, the re-
search community has never addressed the ques-
tion of automatically deciding which exposures to
capture—that is, metering for HDR. This omission
undoubtedly arises from the lack of a program-
mable camera with access to a light meter. In ad-
dition, published techniques often aren’t robust

Although published computational
photography techniques might appear

ready for commercialization, key steps are
sometimes missing.

IEEE	Computer	Graphics	and	Applications 83

enough for everyday photography. Flash/no-flash
imaging is still an active research area partly be-
cause existing techniques produce visible artifacts
in many common photographic situations. Again,
I believe progress has been slow in these areas for
lack of a portable, programmable camera.

Other Problems
Although most SLR cameras offer a software de-
velopment toolkit (SDK), these SDKs give you no
more control than the buttons on the camera. You
can change the aperture, shutter speed, and ISO,
but you can’t change the metering or focusing al-
gorithms or modify the pipeline that performs de-
mosaicing, white balancing, denoising, sharpening,
and image compression. Hackers have managed to
run scripts on some cameras (see http://chdk.wikia.
com/wiki/CHDK_for_Dummies), but these scripts
mainly just fiddle with the user interface.

Another potential source of programmable cam-
eras is development kits for the processing chips
embedded in all cameras. But, except for Texas
Instruments’ OMAP (Open Multimedia Applica-
tion Platform) platform, on which our cameras are
based, these kits (and the hardware interfaces to
the underlying chips) are either completely secret
(as with Canon and Nikon) or carefully protected
by nondisclosure agreements (such as Zoran and
Ambarella).

Of course, you can always buy a machine vision
camera (from Point Grey, Elphel, or others) and
program everything yourself, but you won’t enjoy
trekking to Everest Base Camp tethered to a laptop.

Frankencamera: An Architecture for
Programmable Cameras
My laboratory’s interest in building programmable
cameras grew out of computational photography
courses we’ve offered at Stanford since 2004. In
these courses, I found it frustrating that students
could perform computations on photographs but
couldn’t perform them in a camera or use these
computations’ results to control the camera. I raised
this Achilles’ heel of computational photography

in a town hall meeting at the 2005 symposium I
mentioned earlier. But, at the time, it wasn’t clear
how to address it.

The pivotal event for us was a 2006 visit to my
laboratory by Kari Pulli, a Nokia research manager.
He pointed out that over the past five years, the
cameras in cell phones have dramatically improved
in resolution, optical quality, and photographic
functionality. Moreover, camera phones offer fea-
tures that dedicated cameras don’t—wireless con-
nectivity, a high-resolution display, 3D graphics,
and high-quality audio. Perhaps most important,
these platforms run real operating systems, which
vendors have begun opening to third-party devel-
opers. With Nokia funding, Mark Horowitz (chair
of Stanford’s Department of Electrical Engineer-
ing), Kari, and I began developing computational
photography applications for commercially avail-
able cell phones.

Early Experiments
Among our early experiments in this area was a
real-time, in-camera algorithm for aligning succes-
sive frames captured by a Nokia N95 smartphone’s
video camera. Real-time image alignment is a
low-level tool with many immediate applications,
such as automated panorama capture and frame-
averaged low-light photography.3 In my spring 2008
computational photography course, we loaned N95s
to every student. The resulting projects (see http://
graphics.stanford.edu/courses/cs448a-08-spring)
demonstrated the value of a programmable camera
platform and the added value of having that plat-
form portable and self-powered.

For example, Abe Davis developed a system for
capturing, transmitting, and displaying a 4D light
field (see Figure 1a). He waved a phone around a
physical object to capture a light field. He then
transmitted the light field to a second phone, on
which you could view it by waving that phone. The
second phone computed its pose in real time using
its camera, displaying the appropriate slice from
the light field so that the object appeared station-
ary behind the viewfinder.

(a) (b)

Image on screen

Card with
markers

Figure 1. Two student projects with programmable cameras. (a) Abe Davis’s system captured, transmitted, and displayed a 4D
light field. (b) Derek Chen mounted five camera phones facing backward on his car’s ceiling, creating a virtual rearview mirror
with no blind spots.

84	 September/October	2010

Projects	in	VR

Derek Chen mounted five N95s facing backward
on his car’s ceiling (see Figure 1b). He combined
the video streams to form a synthetic aperture
picture that could, in principle, be displayed live
on the rearview mirror. Because the aperture’s
baseline was large, Chen could blur out the posts
supporting the car’s roof, thereby providing a vir-
tual rearview mirror with no blind spots. In the
experiment shown in this figure, he blurs out wide
strips of blue tape arranged on the rear window in
a way that partly obscured his view. Note that you
can barely see the tape in these synthetic pictures.

A Succession of Prototypes
Despite these successes, there are computational
photography experiments that we can’t imple-
ment on today’s camera phones, because either the
cameras’ sensors or optics aren’t good enough, the
computing resources aren’t powerful enough, or
the APIs connecting the camera to the comput-
ing are too restrictive. To address this problem,
we planned to define a programmable-camera ar-
chitecture, then build a reference platform for it.
Fortunately, Stanford PhD student Kayvon Fataha-
lian advised us to first build some cameras and see
what their problems were, before trying to define
an architecture. This approach seemed prudent.

So, in 2007, we began building a succession of
cameras. Because we stitched together our early
prototypes from parts of other devices, often dead
ones, we called them “Frankencameras,” after Fran-
kenstein’s monster in Mary Shelley’s novel.

Figure 2 shows these prototypes, arranged in
chronological order. Frankencamera F1 (see Figure
2a) employed an Elphel 353 network camera, a
Nokia 800 Internet tablet as a viewfinder, and a
Canon 10–22 mm EOS lens attached to a Birger
EF-232 lens controller. The Elphel contains an
Aptina MT9P031 sensor, the same 5-megapixel
chip used in Nokia N95 cell phones. Unfortu-
nately, separating the viewfinder from the camera
forced us to burn most of the system’s bandwidth
feeding video to the viewfinder screen.

Frankencamera F2 (see Figure 2b) employed a Texas
Instruments OMAP 3 system-on-a-chip mounted on
a Mistral EVM (evaluation module). The Mistral
has an integral touch screen display, thus solving
the bandwidth problem, letting us encase the en-
tire camera in a laser-cut plastic body. Attached
to the Mistral is the Elphel 353’s sensor tile and
hence the same Aptina sensor.

The third camera (see Figure 2c) was a retail Nokia
N900 smartphone with a Toshiba ET8EK8 5-mega-
pixel CMOS (complementary metal-oxide semicon-
ductor) sensor and a custom software stack.

The Frankencamera Architecture
After two years of building cameras and forcing
them on the students in my computational pho-
tography courses, the key elements of our archi-
tecture began to take shape. Our most important
insight was that to provide a live electronic view-
finder, digital cameras must have a pipeline of
images in flight—the sensor is being configured
to capture one image, while the previous image
is still exposing and the one before that is being
postprocessed.

However, current digital cameras have only a
single state representing the camera’s settings. This
means that any change in settings will take ef-
fect at some unpredictable time in the future, and
there’s no way to know which image was captured
with which settings. To capture a burst of images
with different known settings, you must clear the
pipeline, set up for the first image, trigger a frame,
wait for it to pass through the pipeline, and set up
for the next image. This incurs a latency equal to
the pipeline’s length for each image in the burst, as
anyone who has driven an SLR from a laptop knows
painfully well.

Our solution was to retain a pipeline but treat the
camera as stateless. Instead, each frame in the pipe-
line specifies the recommended settings for produc-
ing that frame, a list of actions to synchronize to
the shutter—such as if and when the flash should
fire—and a frame ID. This makes it easy to program

(a) (b) (c)

Figure 2. A gallery of Frankencameras. (a) Frankencamera F1, (b) Frankencamera F2, and (c) a Nokia N900 F—
a retail smartphone with a custom software stack.

IEEE	Computer	Graphics	and	Applications 85

a burst of images having different exposures, ISOs,
focus settings, and even different spatial resolu-
tions or regions of interest in the field of view.
This, in turn, facilitates many computational pho-
tography algorithms.

In the end, our architecture consisted of a
hardware specification, a software stack based on
Linux, and FCam, an API with bindings for C++.
To demonstrate our architecture’s viability, we
implemented it on the Frankencamera F2 and our
modified Nokia N900. We then programmed six
applications: HDR viewfinding and capture, low-
light viewfinding and capture, automated acquisi-
tion of extended-dynamic-range panoramas, foveal
imaging, gyroscope-based hand-shake detection,
and rephotography.4

As it happens, my favorite application was none
of these six; it was a weekend hack in which PhD
student David Jacobs mounted two Canon flash
units on the Frankencamera F2 (see Figure 3a) and
programmed them to obtain bizarre lighting effects
on playing cards thrown into the air (see Figure 3b).
What’s cool about this application is that, beginning
with Frankencamera F2 and FCam, Jacobs took only
a few hours to assemble the hardware and write the
code. It’s exactly the sort of ad hoc experimentation
we had hoped our architecture would enable.

FCam’s Pros and Cons
So, how useful is FCam? In my 2010 computa-
tional photography course, we loaned Nokia N900
Fs to every student and asked them to replace the
autofocus algorithm. (The phone’s camera, al-
though small, has a movable lens.) We graded the
assignment on the accuracy with which they could
focus on a test scene we provided and on focus-
ing speed in milliseconds. An assignment such
as this would have been impossible before FCam.
Two students submitted algorithms that were bet-
ter than Nokia’s; we presented these in Finland at
the course’s conclusion.

That said, FCam isn’t perfect. While implement-
ing it, we ran up against limitations in our refer-
ence platforms’ hardware and low-level software.4

For example, although our API supports changing
spatial resolution (the total number of pixels) on
every frame in a video stream, the Video for Linux 2
(V4L2) software layer on which our system is built
has a pipeline with fixed-sized buffers. Changing
resolutions requires flushing and resetting this
pipeline, making it slower than we wanted.

Bootstrapping a World of
Open Source Cameras
Defining a new architecture isn’t a goal; it’s only

one step on a journey. Our goal is to create a com-
munity of photographer programmers who develop
algorithms, applications, and hardware for compu-
tational cameras. By the time this article appears
in print, we’ll have published our architecture and
released the source code for our implementation
on the Nokia N900. We’ll have also released a bi-
nary you can download to any retail N900 (with-
out bricking the phone), thereby making its camera
programmable. When we finish building Franken-
camera F3 (based on the LUPA-4000 sensor), we’ll
make it available at cost to anyone who wants one—
with luck, by December 2010.

My hope is that, once programmable cameras
are widely available to the research community,
camera technology can be studied at universities,
published in conferences and journals, and fiddled
with by hobbyists and photographers. This should
foster a computational photography software in-
dustry, including plug-ins for cameras. Headed
out to shoot your daughter’s soccer game? Don’t
forget to download the new “soccer ball focus” ap-
plication everybody’s raving about! When I walk
through the Siggraph 2020 exhibition, I expect to
see a dizzying array of cameras, add-ons, software,
photography asset management systems, and
schools offering vocational training in computa-
tional photography.

Speaking of vocational training, I’d like to see
our Frankencameras used for not only research
but also education. Photography is a US$50 bil-
lion business—as large as moviemaking and video
gaming combined. If we succeed in opening up
the industry, we’re going to need more univer-
sity-trained engineers in this area. To seed this
growth, my laboratory will loan a Frankencamera
F3 and 10 Nokia N900s to any US university that
uses them to teach a computational photography
course. (This program, which will begin in 2011, is

(a) (b)

Figure 3. A weekend hack. (a) Frankencamera F2 with two flash units
attached. (b) Using our FCam API, David Jacobs programmed one flash
to strobe repeatedly during a one-second exposure, producing the card
trails. Programming the other, more powerful flash to fire once at the
end of the exposure produced the three cards’ crisp images.

86	 September/October	2010

Projects	in	VR

supported by a grant from the US National Science
Foundation and a matching gift from Nokia.) In
thinking through what it might take to triple the
number of universities teaching computational
photography, it’s interesting to compare this na-
scent field to the older, larger field of computer
graphics. I conjecture that the ubiquity and quality
of university computer graphics curricula are due
to three factors: the existence of good textbooks
(such as Newman and Sproull, and Foley, van Dam,
Feiner, and Hughes), experimental platforms with
an open API (Silicon Graphics + OpenGL), and
a high-quality publication venue (Siggraph). To
accomplish this in computational photography,
we’ll need the same three ingredients. Good pub-
lication venues are already in place. The Franken-
camera is a platform and an API, but it’s only
one—we need more.

For introductory textbooks, however, we’re start-
ing from zero. There are good photography books,
but they don’t cover its technical aspects. As a glar-
ing example, not one how-to book on photography
contains a formula for depth of field. To find one,
you must turn to an optics monograph such as Ru-
dolf Kingslake’s classic Optics in Photography (SPIE,
1992). To fill this gap in my courses at Stanford, my
students and I have written narrated Flash applets
on the technical aspects of photography (see http://
graphics.stanford.edu/courses/cs178/applets). How-
ever, these aren’t an adequate substitute for a text-
book. Somebody needs to write one.

Grand Challenges
Suppose the community succeeds in making cam-
eras programmable and teaching a generation of
students about camera technology. What should
these students work on? What are the hard prob-
lems “on the dark side of the lens?”5 Here are a
few suggestions.

Shader Languages for Cameras
When students write camera applications using
FCam, they typically do their image processing on
the CPU, then complain about speed. It’s not their
fault. Although cameras and cell phones have other
computing resources—GPUs, digital signal proces-
sors, and image signal processors—these aren’t de-
signed with computational photography in mind,
and their hardware interfaces are often secret.

Fortunately, we believe this situation will
change. Similar to the revolution occurring in
graphics chips, we envision photographic image
processors that use software-reconfigurable execu-
tion stages. To control such a processor, you could
design a domain-specific language akin to CUDA

(Compute Unified Device Architecture), OpenCL,
or Adobe’s PixelBender, but better suited to com-
putational photography.

Single-Shot Computational Photography
Many papers on computational photography take
this form: “Capture a burst of images varying
camera setting X and combine them to produce a
single image that exhibits better Y.” It’s a clever
strategy. However, once researchers start doing
this in a portable camera, they’ll discover that
few photographic situations lend themselves to
this solution—people walk, breezes blow, foliage
moves, and hands shake.

If we want to make computational photography
robust, we must focus on single-frame solutions.
But why must cameras record the world in discrete
frames? Isn’t this a holdover from film days? Us-
ing novel optics and sensor designs we can mea-
sure the light falling on the focal plane when and
where we wish.

Computational Video
Although this article emphasizes still photography,
the computational photography community is also
interested in video. Representative techniques here
include video stabilization, spatiotemporal upsam-
pling, video summarization, and continuous ver-
sions of still-photography algorithms—for example,
HDR video, light field videography, and object in-
sertion and removal. Here, a special challenge is to
ensure that the processing is temporally coherent—
that is, it doesn’t introduce jarring discontinuities
from frame to frame.

Integration of In-Camera and In-Cloud Computing
Although high-end cameras don’t yet contain 3G
radios, this will change soon. Once cameras are
connected to the cloud, you can imagine many ap-
plications that, for the foreseeable future, would
take too long to run on the camera or burn too
much battery power. A good example is video sta-
bilization. I don’t need this to run on the camera;
just make sure my video is stable when it’s posted
to YouTube. You can also imagine using images
from photo-sharing sites to help control the cam-
era—my photo albums prove that my dog is black;
why does my camera’s light meter insist on making
her look gray?

Progress in science and engineering is a dia-
logue between theory and experimentation. In

this dialogue, the experimental platform’s quality is
paramount. We built our Camera 2.0 project on the

IEEE	Computer	Graphics	and	Applications 87

premise that a tethered SLR isn’t an adequate ex-
perimental platform for computational photography.
In particular, an SLR’s lack of controllability makes
it hard to do innovative research, and its lack of
transparency makes it hard to do definitive research.
(What are the noise characteristics of a Canon 5D
Mark II’s image sensor? Only Canon knows.)

Michael Faraday, one of the greatest experimen-
tal scientists, built his own laboratory equipment.
Faraday wasn’t a fanatic; the devices available to
him in the early 19th century were neither flex-
ible enough nor accurate enough for his delicate
experiments in electromagnetism. As Thomas
Kuhn writes in his seminal study, The Structure of
Scientific Revolutions, “Novelty ordinarily emerges
only for the man who, knowing with precision
what he should expect, is able to recognize that
something has gone wrong.”6 Kuhn further hy-
pothesizes that intellectual revolutions occur
only when a scientist casts aside the tools of the
dominant paradigm and begins to invent wild
theories and experiment at random. The Camera
2.0 project’s primary goal is to facilitate this sort
of wild experimentation.

References
1. R. Raskar and J. Tumblin, Computational Photography:

Mastering New Techniques for Lenses, Lighting, and
Sensors, AK Peters, 2010.

2. E.S. Raymond, The Cathedral and the Bazaar, O’Reilly,
2001.

3. A. Adams, N. Gelfand, and K. Pulli, “Viewfinder
Alignment,” Proc. Eurographics, Eurographics Assoc.,
2008, pp. 597–606.

4. A. Adams et al., “The Frankencamera: An Experimen-
tal Platform for Computational Photography,” ACM
Trans. Graphics, vol. 29, no. 4, 2010, article 29.

5. N. Goldberg, Camera Technology: The Dark Side of the
Lens, Academic Press, 1992.

6. T. Kuhn, The Structure of Scientific Revolutions, Univ.
of Chicago Press, 1962.

Marc Levoy is a professor in Stanford University’s Computer
Science Department. Contact him at levoy@cs.stanford.edu.

Contact the department editors at cga-vr@computer.org.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

