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The principles of photography have remained 
largely unchanged since its invention by Jo-
seph Nicéphore Niépce in the 1820s. A lens 

focuses light from the scene onto a photosensitive 
plate, which records this information directly to 
form a picture. Because this picture is a simple 
copy of the optical image reaching the plate, im-
provements in image quality have been achieved 
primarily by refi ning the optics and the recording 
method. These refi nements have been dramatic 
over the past few decades, particularly with the 
switchover from fi lm to digital sensors, but they’ve 
been incremental.

Computational photography challenges this view. 
It instead considers the image the sensor gathers to 
be intermediate data, and it uses computation to 
form the picture. Often, it requires multiple im-
ages to be captured, which are combined in some 
way to produce the fi nal picture. Representative 
techniques include high-dynamic-range (HDR) 
imaging, fl ash/no-fl ash imaging, coded-aperture 
and coded-exposure imaging, photography under 
structured illumination, multiperspective and pan-
oramic stitching, digital photomontage, all-focus 
imaging, and light-fi eld imaging.

In this article, I look at the lack of experimental 
platforms for computational photography (that is, 
cameras that are programmable), and I talk about 
one possible solution—the Frankencamera archi-
tecture designed in my laboratory at Stanford as 
part of our Camera 2.0 project (http://graphics.
stanford.edu/projects/camera-2.0).

A	Bit	about	Computational	Photography
The term “computational photography” has been 
reinvented several times over the past 20 years. 
Its current defi nition stems from a symposium I 
co-organized in 2005 with Frédo Durand of the 
Massachusetts Institute of Technology’s Computer 
Science and Artifi cial Intelligence Laboratory and 

Richard Szeliski of Microsoft Research (http://scpv.
csail.mit.edu). Since then, the fi eld has grown 
enormously. Of the 439 papers submitted to Sig-
graph 2009, nearly 40 percent were about 2D im-
aging applied to photography or video, making this 
area larger than the traditional areas of modeling, 
animation, and rendering.

The fi eld has also evolved; it now spans com-
puter vision and applied-optics topics, some of 
which were active research areas before anyone 
applied the term computational photography to 
them. Since 2009, the fi eld has had its own yearly 
conference with peer-reviewed papers—the Inter-
national Conference on Computational Photogra-
phy—and it will soon have its fi rst monograph.1

Why	Can’t	I	Buy	a	Computational	Camera?
Despite this buzz, a demon haunts the computa-
tional photography community. Besides panoramic 
stitching, few of these techniques have found their 
way into commercial cameras. Why is this so? I 
believe four factors are involved.

Corporate Secrecy
First, the camera industry is secretive to an extent 
unfamiliar to those of us who grew up in computer 
graphics. There’s little communication between 
companies and universities, as there has been, for 
example, between Silicon Graphics, Nvidia, ATI, 
and US academic graphics labs. Also, aside from 
image compression formats (such as JPEG) and 
color spaces (such as sRGB), the camera industry 
has few open standards or scholarly publications. 
Some of this secrecy is driven by culture, but it’s 
also quietly acknowledged that camera companies 
are violating each other’s patents. If you don’t dis-
close your technology, nobody can sue you.

While pursuing the Camera 2.0 project, my col-
leagues and I have run into fear-driven secrecy 
among not only camera manufacturers but also the 
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companies that make camera processing chips. This 
secrecy makes it hard to insert open source compo-
nents into the value chain because these chip mak-
ers won’t reveal their hardware interfaces.

The tangle of underlying patents, some of them 
quite broad, also constitutes a barrier to entry 
for new camera companies. When a patent war 
erupts, as it has between Nokia, Google, and Ap-
ple in the mobile phone space, it typically ends 
with negotiations and cross-licensing of patents, 

further raising the entry barrier. Starting a new 
camera company isn’t impossible, but profit mar-
gins are razor-thin, partly due to licensing fees. 
So, unless you introduce technology that lets you 
charge significantly more for your camera, making 
money is difficult.

Hardware versus Software
Second, traditional camera manufacturers are pri-
marily hardware, not software, companies. Of course, 
digital cameras contain a tremendous amount of 
software, but these companies treat software as a ne-
cessity, not a point of departure. So, computational 
photography represents a threat because its value 
comes largely from algorithms. Fredo Durand likes 
to say that “software is the next optics”—meaning 
that future optical systems will be hybrids of glass 
and image processing. Besides placing more em-
phasis on software, computational photography 
results are being published in journals and either 
placed in the public domain or patented by uni-
versities, who often issue nonexclusive licenses. 
These trends run counter to the camera industry’s 
hardware-intensive, secrecy-based structure.

Traditional camera companies are also uncom-
fortable with Internet ecosystems, which typically 
involve multiple vendors, permit (or encourage) 
user-generated content, and thrive or falter on the 
quality of their user interfaces. It’s worth noting 
that, as of this writing, not a single point-and-
shoot or single-lens reflex (SLR) camera offers a 
3G connection (although a few offer Wi-Fi). This 
will change soon, driven by market pressure from 
the increasingly powerful and connected cameras 
on mobile devices. Also, no traditional camera 

manufacturer runs a photo-sharing site with sig-
nificant penetration into Euro-American markets, 
although several are trying (for example, Nikon’s 
My Picturetown or Kodak’s Gallery).

Branding and Conservatism
Third, traditional camera companies are inherently 
conservative. For example, every component in a 
Nikon or Canon SLR is treated by the company 
as reflecting on the brand’s quality as a whole. So, 
new technologies are refined for years before they’re 
introduced in a commercial product. This strategy 
yields reliable products but slow innovation.

The open source software community advocates 
exactly the opposite strategy—“release early, re-
lease often.”2 This strategy yields fast innovation 
and (eventually) high quality, as has been proven 
with Linux, the Apache Web server, the Thunder-
bird mail client, and most iPhone applications, 
even though the latter are not open source. When 
I proposed to a prominent camera manufacturer 
recently that they open their platform to user-
generated plug-ins, they worried that if a photog-
rapher took a bad picture using a plug-in, he or she 
might return the camera to the store for warranty 
repair. Although this attitude was understandable 
20 years ago, it’s now antiquated; iPhone users 
know that if a third-party application crashes, it 
isn’t Apple’s fault.

As an example of this conservatism, although 
algorithms for HDR imaging have existed since the 
mid-1990s, except for a few two-exposure models 
from Fuji and Sony, no camera manufacturer of-
fers an HDR camera. Instead, these manufacturers 
have been locked in a “megapixel war,” leading to 
cameras with more pixels than most consumers 
need. This war is finally winding down, so compa-
nies are casting about for a new feature on which 
to compete. Once one of them offers such a feature 
(which might be HDR imaging), the rest will join 
in. They’ll compete fiercely on that feature, to the 
exclusion of others that might be ready for com-
mercialization and could be useful to consumers.

Research Gaps
Finally, while published computational photog-
raphy techniques might appear ready for com-
mercialization, key steps are sometimes missing. 
Although HDR imaging has a long history, the re-
search community has never addressed the ques-
tion of automatically deciding which exposures to 
capture—that is, metering for HDR. This omission 
undoubtedly arises from the lack of a program-
mable camera with access to a light meter. In ad-
dition, published techniques often aren’t robust 

Although published computational 
photography techniques might appear 

ready for commercialization, key steps are 
sometimes missing. 
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enough for everyday photography. Flash/no-flash 
imaging is still an active research area partly be-
cause existing techniques produce visible artifacts 
in many common photographic situations. Again, 
I believe progress has been slow in these areas for 
lack of a portable, programmable camera.

Other Problems
Although most SLR cameras offer a software de-
velopment toolkit (SDK), these SDKs give you no 
more control than the buttons on the camera. You 
can change the aperture, shutter speed, and ISO, 
but you can’t change the metering or focusing al-
gorithms or modify the pipeline that performs de-
mosaicing, white balancing, denoising, sharpening, 
and image compression. Hackers have managed to 
run scripts on some cameras (see http://chdk.wikia.
com/wiki/CHDK_for_Dummies), but these scripts 
mainly just fiddle with the user interface.

Another potential source of programmable cam-
eras is development kits for the processing chips 
embedded in all cameras. But, except for Texas 
Instruments’ OMAP (Open Multimedia Applica-
tion Platform) platform, on which our cameras are 
based, these kits (and the hardware interfaces to 
the underlying chips) are either completely secret 
(as with Canon and Nikon) or carefully protected 
by nondisclosure agreements (such as Zoran and 
Ambarella).

Of course, you can always buy a machine vision 
camera (from Point Grey, Elphel, or others) and 
program everything yourself, but you won’t enjoy 
trekking to Everest Base Camp tethered to a laptop.

Frankencamera: An Architecture for
Programmable Cameras
My laboratory’s interest in building programmable 
cameras grew out of computational photography 
courses we’ve offered at Stanford since 2004. In 
these courses, I found it frustrating that students 
could perform computations on photographs but 
couldn’t perform them in a camera or use these 
computations’ results to control the camera. I raised 
this Achilles’ heel of computational photography 

in a town hall meeting at the 2005 symposium I 
mentioned earlier. But, at the time, it wasn’t clear 
how to address it.

The pivotal event for us was a 2006 visit to my 
laboratory by Kari Pulli, a Nokia research manager. 
He pointed out that over the past five years, the 
cameras in cell phones have dramatically improved 
in resolution, optical quality, and photographic 
functionality. Moreover, camera phones offer fea-
tures that dedicated cameras don’t—wireless con-
nectivity, a high-resolution display, 3D graphics, 
and high-quality audio. Perhaps most important, 
these platforms run real operating systems, which 
vendors have begun opening to third-party devel-
opers. With Nokia funding, Mark Horowitz (chair 
of Stanford’s Department of Electrical Engineer-
ing), Kari, and I began developing computational 
photography applications for commercially avail-
able cell phones.

Early Experiments
Among our early experiments in this area was a 
real-time, in-camera algorithm for aligning succes-
sive frames captured by a Nokia N95 smartphone’s 
video camera. Real-time image alignment is a 
low-level tool with many immediate applications, 
such as automated panorama capture and frame-
averaged low-light photography.3 In my spring 2008 
computational photography course, we loaned N95s 
to every student. The resulting projects (see http://
graphics.stanford.edu/courses/cs448a-08-spring) 
demonstrated the value of a programmable camera 
platform and the added value of having that plat-
form portable and self-powered.

For example, Abe Davis developed a system for 
capturing, transmitting, and displaying a 4D light 
field (see Figure 1a). He waved a phone around a 
physical object to capture a light field. He then 
transmitted the light field to a second phone, on 
which you could view it by waving that phone. The 
second phone computed its pose in real time using 
its camera, displaying the appropriate slice from 
the light field so that the object appeared station-
ary behind the viewfinder.

(a) (b)

Image on screen

Card with
markers

Figure 1. Two student projects with programmable cameras. (a) Abe Davis’s system captured, transmitted, and displayed a 4D
light field. (b) Derek Chen mounted five camera phones facing backward on his car’s ceiling, creating a virtual rearview mirror
with no blind spots.
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Derek Chen mounted five N95s facing backward 
on his car’s ceiling (see Figure 1b). He combined 
the video streams to form a synthetic aperture 
picture that could, in principle, be displayed live 
on the rearview mirror. Because the aperture’s 
baseline was large, Chen could blur out the posts 
supporting the car’s roof, thereby providing a vir-
tual rearview mirror with no blind spots. In the 
experiment shown in this figure, he blurs out wide 
strips of blue tape arranged on the rear window in 
a way that partly obscured his view. Note that you 
can barely see the tape in these synthetic pictures.

A Succession of Prototypes
Despite these successes, there are computational 
photography experiments that we can’t imple-
ment on today’s camera phones, because either the 
cameras’ sensors or optics aren’t good enough, the 
computing resources aren’t powerful enough, or 
the APIs connecting the camera to the comput-
ing are too restrictive. To address this problem, 
we planned to define a programmable-camera ar-
chitecture, then build a reference platform for it. 
Fortunately, Stanford PhD student Kayvon Fataha-
lian advised us to first build some cameras and see 
what their problems were, before trying to define 
an architecture. This approach seemed prudent.

So, in 2007, we began building a succession of 
cameras. Because we stitched together our early 
prototypes from parts of other devices, often dead 
ones, we called them “Frankencameras,” after Fran-
kenstein’s monster in Mary Shelley’s novel.

Figure 2 shows these prototypes, arranged in 
chronological order. Frankencamera F1 (see Figure 
2a) employed an Elphel 353 network camera, a 
Nokia 800 Internet tablet as a viewfinder, and a 
Canon 10–22 mm EOS lens attached to a Birger 
EF-232 lens controller. The Elphel contains an 
Aptina MT9P031 sensor, the same 5-megapixel 
chip used in Nokia N95 cell phones. Unfortu-
nately, separating the viewfinder from the camera 
forced us to burn most of the system’s bandwidth 
feeding video to the viewfinder screen.

Frankencamera F2 (see Figure 2b) employed a Texas 
Instruments OMAP 3 system-on-a-chip mounted on 
a Mistral EVM (evaluation module). The Mistral 
has an integral touch screen display, thus solving 
the bandwidth problem, letting us encase the en-
tire camera in a laser-cut plastic body. Attached 
to the Mistral is the Elphel 353’s sensor tile and 
hence the same Aptina sensor.

The third camera (see Figure 2c) was a retail Nokia 
N900 smartphone with a Toshiba ET8EK8 5-mega-
pixel CMOS (complementary metal-oxide semicon-
ductor) sensor and a custom software stack.

The Frankencamera Architecture
After two years of building cameras and forcing 
them on the students in my computational pho-
tography courses, the key elements of our archi-
tecture began to take shape. Our most important 
insight was that to provide a live electronic view-
finder, digital cameras must have a pipeline of 
images in flight—the sensor is being configured 
to capture one image, while the previous image 
is still exposing and the one before that is being 
postprocessed.

However, current digital cameras have only a 
single state representing the camera’s settings. This 
means that any change in settings will take ef-
fect at some unpredictable time in the future, and 
there’s no way to know which image was captured 
with which settings. To capture a burst of images 
with different known settings, you must clear the 
pipeline, set up for the first image, trigger a frame, 
wait for it to pass through the pipeline, and set up 
for the next image. This incurs a latency equal to 
the pipeline’s length for each image in the burst, as 
anyone who has driven an SLR from a laptop knows 
painfully well.

Our solution was to retain a pipeline but treat the 
camera as stateless. Instead, each frame in the pipe-
line specifies the recommended settings for produc-
ing that frame, a list of actions to synchronize to 
the shutter—such as if and when the flash should 
fire—and a frame ID. This makes it easy to program 

(a) (b) (c)

Figure 2. A gallery of Frankencameras. (a) Frankencamera F1, (b) Frankencamera F2, and (c) a Nokia N900 F—
a retail smartphone with a custom software stack.
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a burst of images having different exposures, ISOs, 
focus settings, and even different spatial resolu-
tions or regions of interest in the field of view. 
This, in turn, facilitates many computational pho-
tography algorithms.

In the end, our architecture consisted of a 
hardware specification, a software stack based on 
Linux, and FCam, an API with bindings for C++. 
To demonstrate our architecture’s viability, we 
implemented it on the Frankencamera F2 and our 
modified Nokia N900. We then programmed six 
applications: HDR viewfinding and capture, low-
light viewfinding and capture, automated acquisi-
tion of extended-dynamic-range panoramas, foveal 
imaging, gyroscope-based hand-shake detection, 
and rephotography.4

As it happens, my favorite application was none 
of these six; it was a weekend hack in which PhD 
student David Jacobs mounted two Canon flash 
units on the Frankencamera F2 (see Figure 3a) and 
programmed them to obtain bizarre lighting effects 
on playing cards thrown into the air (see Figure 3b). 
What’s cool about this application is that, beginning 
with Frankencamera F2 and FCam, Jacobs took only 
a few hours to assemble the hardware and write the 
code. It’s exactly the sort of ad hoc experimentation 
we had hoped our architecture would enable.

FCam’s Pros and Cons
So, how useful is FCam? In my 2010 computa-
tional photography course, we loaned Nokia N900 
Fs to every student and asked them to replace the 
autofocus algorithm. (The phone’s camera, al-
though small, has a movable lens.) We graded the 
assignment on the accuracy with which they could 
focus on a test scene we provided and on focus-
ing speed in milliseconds. An assignment such 
as this would have been impossible before FCam. 
Two students submitted algorithms that were bet-
ter than Nokia’s; we presented these in Finland at 
the course’s conclusion.

That said, FCam isn’t perfect. While implement-
ing it, we ran up against limitations in our refer-
ence platforms’ hardware and low-level software.4

For example, although our API supports changing 
spatial resolution (the total number of pixels) on 
every frame in a video stream, the Video for Linux 2 
(V4L2) software layer on which our system is built 
has a pipeline with fixed-sized buffers. Changing 
resolutions requires flushing and resetting this 
pipeline, making it slower than we wanted.

Bootstrapping a World of
Open Source Cameras
Defining a new architecture isn’t a goal; it’s only 

one step on a journey. Our goal is to create a com-
munity of photographer programmers who develop 
algorithms, applications, and hardware for compu-
tational cameras. By the time this article appears 
in print, we’ll have published our architecture and 
released the source code for our implementation 
on the Nokia N900. We’ll have also released a bi-
nary you can download to any retail N900 (with-
out bricking the phone), thereby making its camera 
programmable. When we finish building Franken-
camera F3 (based on the LUPA-4000 sensor), we’ll 
make it available at cost to anyone who wants one—
with luck, by December 2010.

My hope is that, once programmable cameras 
are widely available to the research community, 
camera technology can be studied at universities, 
published in conferences and journals, and fiddled 
with by hobbyists and photographers. This should 
foster a computational photography software in-
dustry, including plug-ins for cameras. Headed 
out to shoot your daughter’s soccer game? Don’t 
forget to download the new “soccer ball focus” ap-
plication everybody’s raving about! When I walk 
through the Siggraph 2020 exhibition, I expect to 
see a dizzying array of cameras, add-ons, software, 
photography asset management systems, and 
schools offering vocational training in computa-
tional photography.

Speaking of vocational training, I’d like to see 
our Frankencameras used for not only research 
but also education. Photography is a US$50 bil-
lion business—as large as moviemaking and video 
gaming combined. If we succeed in opening up 
the industry, we’re going to need more univer-
sity-trained engineers in this area. To seed this 
growth, my laboratory will loan a Frankencamera 
F3 and 10 Nokia N900s to any US university that 
uses them to teach a computational photography 
course. (This program, which will begin in 2011, is 

(a) (b)

Figure 3. A weekend hack. (a) Frankencamera F2 with two flash units
attached. (b) Using our FCam API, David Jacobs programmed one flash
to strobe repeatedly during a one-second exposure, producing the card
trails. Programming the other, more powerful flash to fire once at the
end of the exposure produced the three cards’ crisp images.
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supported by a grant from the US National Science 
Foundation and a matching gift from Nokia.) In 
thinking through what it might take to triple the 
number of universities teaching computational 
photography, it’s interesting to compare this na-
scent field to the older, larger field of computer 
graphics. I conjecture that the ubiquity and quality 
of university computer graphics curricula are due 
to three factors: the existence of good textbooks 
(such as Newman and Sproull, and Foley, van Dam, 
Feiner, and Hughes), experimental platforms with 
an open API (Silicon Graphics + OpenGL), and 
a high-quality publication venue (Siggraph). To 
accomplish this in computational photography, 
we’ll need the same three ingredients. Good pub-
lication venues are already in place. The Franken-
camera is a platform and an API, but it’s only 
one—we need more.

For introductory textbooks, however, we’re start-
ing from zero. There are good photography books, 
but they don’t cover its technical aspects. As a glar-
ing example, not one how-to book on photography 
contains a formula for depth of field. To find one, 
you must turn to an optics monograph such as Ru-
dolf Kingslake’s classic Optics in Photography (SPIE, 
1992). To fill this gap in my courses at Stanford, my 
students and I have written narrated Flash applets 
on the technical aspects of photography (see http://
graphics.stanford.edu/courses/cs178/applets). How-
ever, these aren’t an adequate substitute for a text-
book. Somebody needs to write one.

Grand Challenges
Suppose the community succeeds in making cam-
eras programmable and teaching a generation of 
students about camera technology. What should 
these students work on? What are the hard prob-
lems “on the dark side of the lens?”5 Here are a 
few suggestions.

Shader Languages for Cameras
When students write camera applications using 
FCam, they typically do their image processing on 
the CPU, then complain about speed. It’s not their 
fault. Although cameras and cell phones have other 
computing resources—GPUs, digital signal proces-
sors, and image signal processors—these aren’t de-
signed with computational photography in mind, 
and their hardware interfaces are often secret.

Fortunately, we believe this situation will 
change. Similar to the revolution occurring in 
graphics chips, we envision photographic image 
processors that use software-reconfigurable execu-
tion stages. To control such a processor, you could 
design a domain-specific language akin to CUDA 

(Compute Unified Device Architecture), OpenCL, 
or Adobe’s PixelBender, but better suited to com-
putational photography.

Single-Shot Computational Photography
Many papers on computational photography take 
this form: “Capture a burst of images varying 
camera setting X and combine them to produce a 
single image that exhibits better Y.” It’s a clever 
strategy. However, once researchers start doing 
this in a portable camera, they’ll discover that 
few photographic situations lend themselves to 
this solution—people walk, breezes blow, foliage 
moves, and hands shake.

If we want to make computational photography 
robust, we must focus on single-frame solutions. 
But why must cameras record the world in discrete 
frames? Isn’t this a holdover from film days? Us-
ing novel optics and sensor designs we can mea-
sure the light falling on the focal plane when and 
where we wish.

Computational Video
Although this article emphasizes still photography, 
the computational photography community is also 
interested in video. Representative techniques here 
include video stabilization, spatiotemporal upsam-
pling, video summarization, and continuous ver-
sions of still-photography algorithms—for example, 
HDR video, light field videography, and object in-
sertion and removal. Here, a special challenge is to 
ensure that the processing is temporally coherent—
that is, it doesn’t introduce jarring discontinuities 
from frame to frame.

Integration of In-Camera and In-Cloud Computing
Although high-end cameras don’t yet contain 3G 
radios, this will change soon. Once cameras are 
connected to the cloud, you can imagine many ap-
plications that, for the foreseeable future, would 
take too long to run on the camera or burn too 
much battery power. A good example is video sta-
bilization. I don’t need this to run on the camera; 
just make sure my video is stable when it’s posted 
to YouTube. You can also imagine using images 
from photo-sharing sites to help control the cam-
era—my photo albums prove that my dog is black; 
why does my camera’s light meter insist on making 
her look gray?

Progress in science and engineering is a dia-
logue between theory and experimentation. In 

this dialogue, the experimental platform’s quality is 
paramount. We built our Camera 2.0 project on the 
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premise that a tethered SLR isn’t an adequate ex-
perimental platform for computational photography. 
In particular, an SLR’s lack of controllability makes 
it hard to do innovative research, and its lack of 
transparency makes it hard to do definitive research. 
(What are the noise characteristics of a Canon 5D 
Mark II’s image sensor? Only Canon knows.)

Michael Faraday, one of the greatest experimen-
tal scientists, built his own laboratory equipment. 
Faraday wasn’t a fanatic; the devices available to 
him in the early 19th century were neither flex-
ible enough nor accurate enough for his delicate 
experiments in electromagnetism. As Thomas 
Kuhn writes in his seminal study, The Structure of 
Scientific Revolutions, “Novelty ordinarily emerges 
only for the man who, knowing with precision 
what he should expect, is able to recognize that 
something has gone wrong.”6 Kuhn further hy-
pothesizes that intellectual revolutions occur 
only when a scientist casts aside the tools of the 
dominant paradigm and begins to invent wild 
theories and experiment at random. The Camera 
2.0 project’s primary goal is to facilitate this sort 
of wild experimentation.
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