
ClawHMMER: A Streaming HMMer-Search Implementation

Daniel Reiter Horn Mike Houston Pat Hanrahan

Stanford University

Abstract

The proliferation of biological sequence data has motivated
the need for an extremely fast probabilistic sequence search.
One method for performing this search involves evaluating
the Viterbi probability of a hidden Markov model (HMM)
of a desired sequence family for each sequence in a protein
database. However, one of the difficulties with current im-
plementations is the time required to search large databases.

Many current and upcoming architectures offering large
amounts of compute power are designed with data-parallel
execution and streaming in mind. We present a streaming
algorithm for evaluating an HMM’s Viterbi probability and
refine it for the specific HMM used in biological sequence
search. We implement our streaming algorithm in the Brook
language, allowing us to execute the algorithm on graphics
processors. We demonstrate that this streaming algorithm
on graphics processors can outperform available CPU im-
plementations. We also demonstrate this implementation
running on a 16 node graphics cluster.

Keywords: Bio Science, Data Parallel Computing, Stream
Computing, Programmable Graphics Hardware, GPU Com-
puting, Brook

1 Introduction

Biological sequence data are becoming both more plenti-
ful and more accessible to researchers around the world.
Specifically, rich databases of protein and DNA sequence
data are available at no cost on the Internet. For in-
stance, millions of proteins are available in the NCBI Non-
redundant protein database [2005] and at the Universal
Protein Resource [2005], and likewise the GenBank DNA
database [NCB 2005] contains millions of genes. With this
proliferation of data comes a large computational cost to
query and reason about the relationships of a given family
of sequences.

While a normal string compare is computationally sim-
ple, due to the randomness of evolution, proteins that share
a purpose or structure may contain different amino-acid
sequences, perhaps sharing a common sequence pattern.
BLAST [Altschul et al. 1990] uses dynamic programming
to perform a fuzzy string match between two proteins, pe-
nalizing gaps in the match to evaluate a sequence similarity
score. However, in practice, BLAST queries must be run
several times for an operator to identify suitable gap-penalty
values and get an appropriate number of hits for the task at
hand.

To mitigate the problem of choosing an ad-hoc gap
penalty for a given BLAST search, Krogh et al. [1994]
proposed bringing the probabilistic techniques of hidden
Markov models(HMMs) to bear on the problem of fuzzy pro-
tein sequence matching. HMMer [Eddy 2003a] is an open
source implementation of hidden Markov algorithms for use
with protein databases. One of the more widely used algo-
rithms, hmmsearch, works as follows: a user provides an
HMM modeling a desired protein family and hmmsearch
processes each protein sequence in a large database, eval-
uating the probability that the most likely path through the
query HMM could generate that database protein sequence.
This search requires a computationally intensive procedure,
known as the Viterbi [1967; 1973] algorithm. The search
could take hours or even days depending on the size of the
database, query model, and the processor used.

However, even given the lengthy execution time required
to search a database, hmmsearch is widely used in the biol-
ogy research community. For instance, Narukawa and Kad-
owaki [2004] built a model of a typical trans-membrane sec-
tion of a protein and used hmmsearch to search for pro-
teins that contain this trans-membrane domain. Staub et
al. [2001] trained a model with a few significant Spin/SSTY
protein homologues that were repeated, hence important,
in vertebrates and used this model to find similar amino-
acid sequences in the non-redundant database. Clark and
Berg [1998] leveraged their knowledge of the function of tran-
scription factor protein TRA-1 as controlling sexual develop-
ment in the C-Elegans worm and used hmmsearch to identify
genes in the C-Elegans genome that potentially bind with
TRA-1. Additional applications of hmmsearch to molecu-
lar and cell biology can be found in [Fawcett et al. 2000;
Sánchez-Pulido et al. 2004; Bhaya et al. 2002].

The utility of HMMer in biological research and the un-
wieldy query run times in its normal usage make hmmsearch
an important candidate for acceleration. There has been
a great deal of work on optimizing HMMer for traditional
CPUs [Lindahl 2005; Cofer and SGI. 2002]. However, there
is a new class of streaming processors currently available
and forthcoming that require different optimization strate-
gies. For example, modern graphics processors, GPUs, have
been shown to provide very attractive compute and band-
width resources [Buck 2005].

In this paper we present ClawHMMer, a streaming imple-
mentation of hmmsearch, running on commodity graphics
processors and parallel rendering clusters. We discuss the
transformation of the traditional algorithm into a streaming
algorithm and explore optimizing the algorithm for GPUs
and future streaming processors. On the latest GPUs, our
streaming implementation is on average three times as fast
as a heavily optimized PowerPC G5 implementation and
twenty-five times as fast as the standard Intel P4 imple-
mentation.



2 Streaming Architectures

Traditional CPU programming relies on optimizing sequen-
tial code and cache coherence for good performance. Tra-
ditional architectures rely on careful data layout and use
caches to amplify bandwidth, take advantage of data lo-
cality, and reduce memory latency. The addition of 4-way
SIMD instructions on CPUs, like SSE2 and AltiVec, have
also allowed limited data-parallel operations, placing more
requirements on caches for bandwidth and latency hiding to
keep the compute units full.

In contrast, streaming architectures rely on large amounts
of data parallelism to hide memory latency and provide com-
pute performance. As a result, algorithms must be reformu-
lated to be explicitly data-parallel. Data is expressed as
streams, a collection of records requiring similar computa-
tion. Data parallel code is expressed as kernels, functions
applied to each element of a stream, allowing for many com-
pute units to run simultaneously. A streaming processor
executes a kernel over all elements of an input stream, plac-
ing the results into an output stream. Instead of carefully
blocking data into caches, data is streamed into the com-
pute units. Data movement and dependencies are explicit
in this model. As stream elements are being processed, the
next elements are being fetched. This inherently changes the
programming and optimization strategies to require explicit
data parallelism.

There are many examples of stream processors. The Imag-
ine stream processor [Kapasi et al. 2002] showcased stream-
ing on a number of media processing applications. The Mer-
rimac project [Dally et al. 2003] is researching the design
of high-performance, low-power, streaming processors and
systems containing large numbers of such processors. IBM
recently announced the Cell processor, which has many of
the attributes of a streaming processor [Flachs et al. 2005].
Merrimac, Cell, and other streaming processors are currently
not available; however, we do have access to chips that re-
semble these processors: commodity programmable graphics
processors. While normally relegated to application-specific
multimedia processing, these processors can be treated as
streaming processors and are readily available [Buck et al.
2004b].

Graphics hardware has been shown to provide good per-
formance on streaming applications performing the same
operation over large collections of data such as image seg-
mentation and vector multiplication as well as applications
that have sufficient parallelism and computational intensity
to hide memory latency [Buck et al. 2004b]. Modern pro-
grammable graphics accelerators such as the ATI X800 series
and the NVIDIA GeForce 7800 series [ATI 2004; NVIDIA
2005] feature programmable fragment processors and float-
ing point support, making them available targets for stream-
ing computation. Each fragment processor executes a short
user-specified assembly-level shader program consisting of 4-
way SIMD instructions over a dataset, enabling it to be used
for generic processing [Lindholm et al. 2001].

Since graphics processors are widely available streaming
processors with the capability to provide increased perfor-
mance over traditional CPUs, this paper primarily concen-
trates on the design of our streaming HMMer algorithm and
its implementation running on GPUs.

3 Algorithm

A hidden Markov model (HMM) is a statistical model of
a Markov process, where the physical state of the system

is unobservable. However, observable events may be pro-
duced by the system at a given physical state with a known
probability distribution, and the system itself can transi-
tion between any two states with a known probability after
each observable event. A tutorial on HMMs is provided by
Rabiner [1989]. In this application of HMMs to structural
biology, observations are limited to the sequence of amino
acids in a protein string.

3.1 The Forward Algorithm

To explain the Viterbi algorithm we begin by describing the
idea of the Forward algorithm, which, given an HMM with
M states and a sequence of observations with length L, com-
putes the probability that the HMM generates the given se-
quence via any path through it. The Forward algorithm
starts with a vector of per-state probabilities indicating the
probability that the model is at each state during any given
observation. Before the first observation the per-state prob-
abilities are set to zero except for the start state, which re-
ceives probability one. Then one observation, Ai, is read,
and for each state s, the probability of that state generating
Ai is multiplied by the sum of the chance of being at each
possible predecessor, t, of s before having read Ai and then
moving to s over a transition with likelihood ptrans(t, s).
The function from state to state of transition probabilities,
ptrans can be represented as an MxM transition probability
matrix.

pstatei
(s) = pemit(s, Ai)

∑

t∈states

pstatei−1
(t) · ptrans(t, s)

This is repeated for each element in the string. To com-
pute the probability of the HMM generating the input string
and arriving at any of its states, a final sum must be per-
formed over the probabilities at each of the HMM’s states.

In pseudocode, the Forward algorithm appears as follows:

prob[0][0..length]=0, prob[0][startState]=1
for i = 1 to length(observ): //observation loop

for s in states: //state loop
for t in states: //transition loop

tmp=ptransition(t,s)·prob[i-1][t]
prob[i][s]=prob[i][s]+tmp·pemit(s, observ[i])

totalProbability=0
for s in states:

totalProbability=totalProbability+prob[length(observ)][s]

This algorithm is exactly L repeated matrix-vector mul-
tiplications. The vectors are the per-state probabilities, and
the matrix is the transition matrix with the rows individually
being scaled by the value of a per-state emission probability
for the current observation. Since each observation requires
(M+1)·M multiplies and M2 adds, the input string requires
O(M2

· L) operations to process.

3.2 The Viterbi Algorithm

In contrast to the forward algorithm, which computes the
likelihood of a HMM generating an observation sequence,
the Viterbi algorithm finds the most likely path through the
HMM given an observation sequence and the probability of
that path both occurring and producing that sequence. To
compute this probability, the same steps are performed as
the forward algorithm with a max instead of a sum over all
elements.



pstatei
(s) = pemit(s, Ai) max

t∈states

(pstatei−1
(t) · ptrans(t, s))

The most likely final state in the HMM is the state with
the highest probability after the final observation. This can
be used to find the most likely predecessor by reexamining
the predecessor state probabilities multiplied by their tran-
sitions and selecting the highest one. When performed all
the way back through the observation sequence, this proce-
dure is known as traceback, and it establishes the entire most
likely path.

We illustrate the procedure below in pseudocode that
computes the Viterbi probabilities of a given observation
string and then performs a traceback to find the most likely
path through it.

for i = 1 to length(observ): //observation loop
for s in states: //state loop

for t in states: //transition loop
tmp=ptransition(t,s)·prob[i-1][t]
prob[i][s]=max(prob[i][s],tmp·pemit(s, observ[i]))

call traceback(prob[][])

3.3 Streaming over an observation database

While CPU implementations focus on optimizing the cost of
a single query, they do not take advantage of the data paral-
lelism available when searching many observation sequences
to optimize across queries. We rewrite the previous pseu-
docode using parallel for semantics in order to explore the
possibilities for exposing data parallelism:

parallel for observ in database: //database loop
for i = 1 to length(observ): //observation loop

parallel for s in states: //state loop
for t in states: //transition loop

tmp=ptransition(t,s)·prob[i-1][t]
prob[i][s]=max(prob[i][s],tmp·pemit(s, observ[i]))

call traceback(prob[][])

Instead of evaluating the search on one database protein at
a time, we evaluate all database proteins at once, bringing
the database loop within the state loop. This transforms the
sequential algorithm into a data-parallel algorithm suited to
an extremely wide SIMD processor.

allProb[]=per-state probabilities for each database entry
for i = 1 to length(longest observation): //observation loop

parallel for s in states: //state loop
parallel for observ in database: //database loop

for t in states: //transition loop
prob=allProb[observ]
tmp=ptransition(t,s)·prob[i-1][t]
prob[i][s]=max(prob[i][s],tmp·pemit(s, observ[i]))

for observ in database:
call traceback(allProb[observ][][])

If the transition matrix is known to be sparse, computa-
tion can be avoided on transitions with no weight assigned to
them. For instance if a transition matrix is compressed into
an average of k nonzero elements per row, the asymptotic
running time of Viterbi can be tightened to O(k · M · L).

Start End

Junk

Start End

Junk

Insert Insert Insert Insert InsertInsert Insert Insert Insert Insert

Q S M K K

Del Del DelDel Del DelDelDel

Figure 1: The special hidden Markov model used in HM-
Mer. The gray states indicate important amino acids in the
query model and are considered likely match states. Circu-
lar states emit no amino acids, and diamonds represent junk
and insert states that emit unimportant amino acids in the
query model. All insert states appear between two match
states, but the junk state handles the large numbers of po-
tentially unrelated amino acids between one complete match
chain and another. Shaded ovals denote state triplets to be
processed at once.

3.4 Utilizing the specifics of the HMMer HMM

In the HMMer application, a very specialized HMM is used
to compute the Viterbi probability. This HMM models a
protein family, so there is a core chain of states that rep-
resents important amino acids in this family. These states,
known as match states, drive the HMM’s progression from
start to end states, making the HMM likely to produce pro-
teins contained in the family. On the way through the chain
of match states the HMM may generate meaningless amino
acids by transitioning to an insert state.

To model a protein family, the HMM should be able to
skip over match states. Normally this would entail a transi-
tion from any match state to any other match state further
down the chain. However, this would introduce a number
of transitions proportional to the square of the number of
states. Instead HMMer introduces a new type of state not
present in a general HMM, known as a delete state, which
does not produce an observation. Each match state can link
to a delete state chain which effectively allows the HMM to
skip amino acids, by transitioning to the delete state chain.

This HMM has the property that the all states but one
have four or fewer transitions into them, and only a single
state, the end state, has a number of incoming transitions
proportional to the number of states in the HMM, as illus-
trated in Figure 1. Thus, the transition matrix is not only
sparse, but k can be bounded by four, setting the running
time proportional to O(M · L). Likewise, it becomes pos-
sible to unroll the transition loop to only process incoming
transitions with nonzero probability in the max step of the
Viterbi algorithm.

Adding a new delete state type, however, is not without
cost: it introduces a loop-carry dependency into the state
loop. This occurs because the probability of being at
a delete state depends on the probability of being at its
predecessor delete state at the same index in the observation
sequence.

prob[i][deleteState[j]] depends on prob[i][deleteState[j-1]]

The dependency eliminates an entire axis of parallelism
that might have been exploited for a more general HMM;



however, because the database contains a large number of
proteins, the algorithm remains data-parallel.

Our inner loop, which will become our kernel, unrolls the
state loop 3 times, processing 3 states at once: a match
state, its following delete state and its previous insert state,
as illustrated in Figure 1. We denote this group of states a
state triplet. The state loop should be unrolled because each
state in a state triplet shares a number of predecessor states
with the others. The probability for the end state, the only
state with a number of transitions proportional to the HMM
size, is also accumulated in the same loop.

Additionally hmmsearch only requires a traceback if the
protein itself has a high-probability. Thus, for the major-
ity of cases only the two most recent per-state probabilities
vectors are needed. We utilize this property by bouncing be-
tween two per-state probability arrays, using the observation
index mod 2 to calculate which array to use as output.

The new arrangement of the code, with the unrolled loop,
is illustrated in the following pseudocode:

for i = 1 to length(longest protein): //observation loop
for s in greyMatchStates: //state loop

j = previousInsertState(s)
q = previousDeleteState(s), d = nextDeleteState(s)
parallel for protein in database: //database loop

curProb=allProb[protein][i mod 2]
prevProb=allProb[protein][(i + 1) mod 2]
//transition loop (unrolled)
tmps=max(s’s 4 incoming trans. in prevProb)
curProb[s]=tmps

curProb[d]=max(tmps · ptrans(),curProb[q]·ptrans())
curProb[j]=max(j’s 2 incoming trans. in prevProb)
curProb[end]=max(prevProb[end],tmps·ptrans())

for protein in database:
if (allProb[protein][last][endstate]>globalThreshold):

call generalViterbi(protein) for traceback

4 Implementation

4.1 Brook

BrookGPU provides a language and runtime system to use
GPUs as streaming processors [Buck et al. 2004b]. Data
is represented as finite streams and the computation is ex-
pressed as kernels. Every element in a stream is assumed to
be independent, so each data element can be operated upon
in parallel. On the GPU, streams are stored in texture mem-
ory and kernels are compiled to fragment programs. Geom-
etry is then sent to the GPU which generates fragments for
each element in the output stream. Each fragment invokes
the kernel, reading from the input streams and writing to the
output streams. Although BrookGPU abstracts the GPU as
a streaming architecture, stream size is limited to available
texture memory, and kernels are limited by the number of
instructions, registers, texture reads, and outputs allowed by
the hardware.

4.2 HMMer on the GPU

Graphics hardware has a very fast memory subsystem of lim-
ited size. For large databases, we divide the database into
batches upon which we execute our algorithm so that the
batches will fit in graphics memory alongside all the tempo-
rary state probabilities. To simplify the database division,
we pre-sort the database so similar length proteins reside

together. This causes the sequences within a batch to re-
quire similar amounts of computation. We stream batches
of database sequences onto the GPU as others are being
processed. We save state probabilities in 4-channel textures,
one texture per state triplet in the HMM, and we encode the
running-max operation for the end state in the last channel.
Thus, we must have one float4 texture per state triplet in
the HMM, which enforces an upper bound on the database
batch size we can work on while fitting in GPU memory.

Each kernel computes the unrolled transition loop of the
Viterbi process as illustrated in Section 3.4, performing a
max over all incoming transitions and accumulating the end
state probability. The transition probabilities are loaded
into constant registers which can be accessed quickly by each
fragment processor. The emission probability table is stored
as a 2x24 table in texture memory, representing the 24 amino
acids in the match and insert states respectively.

Because the origin of the nonzero transitions for a given
state triplet are known before the kernel is run, the appro-
priate textures needed for the shader to process a particular
state triplet are located and are presented to the GPU as
input through the texture units. The program also requires
a texture of bytes, representing amino acids at the same lo-
cation in respective proteins in the batch. The kernel uses
this amino-acid texture to do lookups on the emission prob-
ability table for each of the match and insert state emissions.
The state triplet probabilities, along with the current prob-
ability value of the end state, are output by the kernel as a
4-channel floating point texture.

The kernel is then run over the length of the database
batch, resulting in the execution of the parallel for in our
HMMer-specialized Viterbi algorithm. This is repeated in
series for each character in the longest protein for each state
in the HMM. A pictorial example of the execution is provided
in Figure 2.

4.3 Optimization

Lindahl [2005] illustrated the benefit of vectorizing the state
loop to process 24 HMM states in SIMD fashion to produce
24 intermediate state probabilities in the form of 8 state
triplets at once. On a CPU this reduces the number of
math ops that must be performed on the values because
the same number of instructions can operate on nearly four
times as many elements. It also helps the inner loop hide
latency from memory fetches by interleaving prefetch com-
mands with math for loading values. On a GPU, memory
latency is not as much of an issue because the hardware hides
memory latency with computation on other elements. The
entirety of Lindahl’s approach is not possible because of the
constraints of the GPUs memory system: we can only output
a maximum of 16 floating point values at once, the memory
subsystem only allows very constrained output patterns of
four 4-vectors, and we only have access to a small number
of registers to hold the intermediate state probabilities.

The concept of calculating multiple neighboring states
triplets in a single kernel also reduces the bandwidth re-
quirements of the algorithm. On the GPU, each kernel invo-
cation has to read input values, operate on them and write
output values. Since the delete state depends directly on the
previously produced values and there exists no way to pass
intermediate results directly to a subsequent kernel invoca-
tion, many memory reads could be avoided by directly us-
ing a previously computed delete state probability to calcu-
late the next delete state probability within the same kernel.
Likewise the insert and match state portions of neighboring



Protein Amino Acids

P
ro

te
in

 B
a

tc
h

e
s

YWVTSRQPNMLKIHGFEDCACD EFGHIKLMNPQRSTV

FGAGAGFEFEFEACDQPTKLHF EDACVWRSLDYEF

GHTFEGLMPQISTAVWADEHID EGLMPQVJIKLMNAQ

REQLVQKARLAEQAERYDDMAA AMKSVTELNEALSNEERNL

KEELVQRAKLAEQAERYDDMAQ SMKKVTELGAELSNE

YPSGAKCDLCNTNIFQSHVYHC TTCTNYDVCSKCFNKSPAP

DKVCFTCGVNCSQTWYHNLKNK KYDICPNCYKQGRFSSS

IHKVYICHTCGNESINVRYHNL RARDTNLCSRCFQ

FSWHIACNNCQRRIVGVRYQCS LCPSYNICEDC

CD E FGHIKLMNP

KLHFE E ACV

E E L

MAA AMKSVTELNEALSN

Q SM

T T CT

LKNK K Y

A RDTN

CSL L PSY

Start End

Junk

Start End

Junk

Junk Junk Junk Junk JunkInsert Insert Insert Insert Insert

F R N T PQ S M K K

Del Del Del DelDel Del Del Del

Junk

.84 (.2,.5,.1) (.1,.5,.1)

.74 (.1,.7,.2) (.1,.3,.1)

.82 (.3,.8,.2) (.1,.7,.1)

.41 (.4,.5,.4) (.2,.4,.1)

.27 (.1,.2,.1) (.1,.1,.1)

.94 (.6,.9,.4) (.5,.9,.4)

.14 (.1,.1,.1) (.1,.1,.1)

.74 (.2,.3,.7) (.1,.3,.5)

.22 (.1,.2,.1) (.2,.1,.1)

(.2,.5,.1)

(.1,.7,.2)

(.4,.8,.2)

(.1,.5,.4)

(.1,.2,.1)

(.2,.8,.6)

(.3,.1,.1)

(.2,.3,.5)

(.1,.1,.1)

(.2,.5)

(.1,.2)

(.8,.2)

(.4,.4)

(.2,.1)

(.6,.9)

(.1,.1)

(.2,.3)

(.2,.1)

Start End

Junk

Start End

Junk

Junk Junk Junk Junk JunkInsert Insert Insert Insert Insert

F R N T PQ S M K K

Del Del Del DelDel Del Del Del

Junk

.84 (.2,.5,.1)

.74 (.1,.7,.2)

.82 (.3,.8,.2)

.41 (.4,.5,.4)

.27 (.1,.2,.1)

.94 (.6,.9,.4)

.14 (.1,.1,.1)

.74 (.2,.3,.7)

.22 (.1,.2,.1) cu
rr

e
n

t 
co

m
p

u
ta

ti
o

n

Outer Amino Acid Loop

Middle State Loop

CD 

KLHFF DACVWR

HIDD G

MAA AMKSVTELNEALSN

DDMA Q SM

C C T

LKNK KYD

NLRL R

CSS C

HMM States

In
n

e
r 

P
ro

te
in

 B
a

tc
h

 L
o

o
p

ii- thth1

Figure 2: The outer loop of the GPU Viterbi process loops over one amino acid observation from each of many protein batches.
The inner loop uses these single amino acids, and the previously computed probabilities from the current and previous state
arrays, to compute probabilities of the most likely state at the current observation being the current state

Kernel 1-output 2-output 4-output
Input (bytes) 69 89 145
Output (bytes) 16 32 64
Ops (ARB/ps2b) 32 55 93
Calls (billions) 111.4 56.1 28.4
NVIDIA 6800 Ultra 943.3s 749.8s 643.1s
NVIDIA 7800GTX 475.8s 388.1s 361.4s
ATI X800XTPE 446.0s 348.6s 301.0s

Table 1: Cost of kernel calls in HMMer. Instructions are
listed in in number of ARB/ps2b statements. Number of
calls is measured from querying the Adenovirus model on
the NCBI Non-redundant database.

state triplets share predecessors in the state graph and can
reuse probabilities from the previous observation when iter-
ating over the incoming transitions. Calculating many state
triplets at once allows for some producer-consumer locality
between the calculations to be exploited. However, because
we are limited to sequential writes of 16 floats, we can only
process four state triplets simultaneously on current GPUs.

Our original kernel, which processes one state triplet at a
time, reads 69 bytes and writes 16, issuing 32 ARB/ps2b in-
structions. Our 2-output kernel processes 2 state triplets per
invocation inputs 89 bytes and writes 32, while issuing 55 in-
structions. This kernel is executed half as many times as the
original kernel, and hence does less than twice as much total
work. Our 4-output kernel processes 4 state triplets at once,
thus operating on 12 states simultaneously, half as many as
in the AltiVec loop [Lindahl 2005]. We read 145 bytes and
write the maximum allowable number on graphics hardware,
64. This kernel requires 93 instructions to execute, and is
run a fourth as many times as the original kernel that only
processed a single state triplet. This is summarized in Ta-
ble 1, and we analyze actual performance results of each
version in Section 5.

4.4 HMMer on a Cluster

Similar to SledgeHMMer [2004], we distribute the protein
database among the nodes in the cluster and issue the

0 20000 40000 60000

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

ATI X800XTPE
NVIDIA 7800 GTX

Figure 3: The efficiency of GPUs using different batch sizes

HMM query to each node. After initially sorting the protein
database by protein length, we give each node approximately
the same amount of total work. We first divide the database
into partitions of the same total size in bytes, rounded to
the nearest batch size, so that some partitions will receive
many short sequences and other partitions will receive few
long sequences. We choose sets of nodes to process each par-
tition. Then for each set we interleave the partition between
individual nodes.

We cannot maintain a perfect balance since we must re-
spect large batch sizes, and interleaving the databases re-
sults in the batches becoming unbalanced towards the end
of a query string, reducing effective batch size and hence
performance. We investigate scalability more in Section 5.3.

5 Results

For our performance tests, we compare our streaming ver-
sion of HMMer against the publicly available HMMer 2.3.2
running on a 2.8GHz Intel Pentium4 Xeon and a 2.5GHz
PowerPC G5 (Altivec path), as well as a highly tuned Altivec



Colipase Connexin50 Adenovirus Arfaptin PGI DUF499

HMM

0

10

20

30

R
el

at
iv

e 
P

er
fo

rm
an

ceP4 HMMer 2.3.2 
G5 Lindahl
ATI R520
ATI X800XTPE
ATI 9800XT
Nvidia 7800 GTX
Nvidia 6800 Ultra

Colipase Connexin50 Adenovirus Arfaptin PGI DUF499
139 states 211 states 427 states 739 states 1543 states 3271 states

Architecture Best Codepath Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)
P4 2.8 GHz HMMer 2.3.2 1589.1 2372.8 5030.6 12236.9 28423.6 29601.7
G5 2.5 GHz HMMer 2.3.2 539.9 729.0 1300.5 2229.1 4547.9 11778.4
G5 2.5 GHz Lindahl 279.4 320.8 546.0 836.5 1574.9 3341.6
R520 Brook 4-output 71.48 107.1 209.0 362.6 768.9 1508.4
X800XTPE Brook 4-output 107.5 148.5 301.0 555.5 1088.9 2800.6
9800XT Brook 2-output 217.2 324.2 594.4 988.7 2175.9 4861.3
7800 GTX Brook 4-output 141.9 206.4 361.4 594.3 1236.1 2747.2
6800 Ultra Brook 4-output 233.1 330.4 643.1 1142.8 2451.0 4461.0

Table 2: Performance results from scoring the 2.4 million proteins from the NCBI Non-redundant protein database against
HMMs trained from the Colipase C-terminal domains, Connexin50 Gap junction α-8, Adenovirus GP19K, an Arfaptin-like
domain, Phosphoglucose isomerase and Domain of Unknown Function #499 in the pfam HMM database.

version from Erik Lindahl. We demonstrate the algorithm
running on a ATI 9800XT and X800XTPE and a NVIDIA
6800 Ultra and 7800GTX, each with 256MB of graphics
memory, as well as a prerelease ATI R520 (600MHz core,
700MHz memory) with 512MB of graphics memory. Table 2
shows the performance of each architecture. As can be seen,
the ATI X800XTPE and R520 and the NVIDIA 7800GTX
outperform the standard versions of HMMer on both the P4
and G5 as well as the highly tuned Altivec version.

5.1 Batch Sizes

Because many GPUs have only 256MB of on board memory
and each state of the HMM requires additional temporary
storage, larger HMMs necessitate suboptimal batch sizes.
For example with Domain of Unknown Function #499 (DUF
499), we must reduce the batch size from 36864(192x192) to
9216(96x96) to fit in 256MB of memory. This causes an
overall decrease in performance since smaller batch sizes de-
crease the efficiency of the GPU as can be seen in Figure
5. On an ATI X800XT we obtain almost 90% of peak per-
formance at a batch size of 9216 (96x96), but the X800XT
loses performance rapidly below this mark. The NVIDIA
7800 GTX maintains 70% of peak performance for batches
as small as 4900 (70x70) but requires batch sizes of at least
16384(128x128) to achieve 90% of peak performance. How-
ever, both ATI and NVIDIA offer 512MB boards which can
support very long HMMs without decreasing the batch size
below 16384. For instance, on an 512MB ATI R520, the
DUF 499 HMM takes 23.2% less time than on the 256MB
version of the same board, 1508.4s instead of 1962.3s.

5.2 Performance Model

GPUBench [Buck et al. 2004a] provides a way to model
the performance characteristics of GPUs. We can run sim-
ple tests on each of our GPUs to determine the maximum
bandwidth for different access patterns, the peak FLOPS

rate, and information about latency hiding. For example,
from GPUBench, we know that the theoretical streaming
input bandwidth on an ATI X800XTPE is 17.5GB/s and
it takes 7 kernel instructions to hide a float4 texture fetch.
The NVIDIA 6800 Ultra can stream a maximum of 9.5GB/s
while the NVIDIA 7800GTX can stream 19GB/s, but it
takes 4 instructions, which cannot be hidden, to issue a float4
fetch. Output costs for both vendor’s hardware seem to be
hidden when large enough batch sizes are used.

Since the ATI X800XTPE can hide memory latency pro-
vided enough instructions, we expect the total cycle time of
a kernel to be the maximum of the instruction count and
the number of clock cycles required to access memory. For
example, for the single-output version of the code, we read
69 bytes, output 16 bytes, and issue 32 instructions. Since
we can issue one instruction per clock cycle, we expect the
cycle count from instructions alone to be 32 as written, but
the fragment program is optimized by the graphics driver
to around 27 cycles. We base our estimates on the driver’s
ability to optimize the fragment program by replacing tex-
ture fetches with fetching values from constant registers, re-
quiring no input bandwidth. Since all memory fetches are
streaming fetches, we estimate that 31 cycles are required to
access memory. Using the max of memory and instruction
cycles, we expect each kernel invocation to take 31 cycles.
From the time and the number of kernel invocations required
for computation, shown in Table 1, each invocation requires
33 cycles. This give us 16.1GB/s of input bandwidth, or 92%
of peak streaming input bandwidth. The 2 output version
of the algorithm is invoked half as many times as the sin-
gle output version, but does more work per invocation. The
goal of the 2-output version is to reduce the total amount of
data transfered. Bandwidth requirements have been reduced
enough for the application to become limited by instruction
issue. We expect 40 cycles of memory access, 55 cycles of
instruction issue, optimized to around 48 instructions by the
driver, and we observe the kernel requires 51 cycles per invo-
cation. The board is achieving 94% of peak instruction issue



rate and a streaming input bandwidth of 13.1GB/s. The 4-
output version continues this trend, and further reduces the
bandwidth usage and is also able to take better advantage
of the SIMD ALUs on the GPU. With this version, we ex-
pect 64 cycles of memory access, 93 instructions, optimized
to around 80 by the driver, and we observe 87 cycles per
invocation. Hence the hardware is operating at 92% of peak
instruction issue rate and at a streaming input bandwidth of
12.9GB/s. Similar conclusions can be drawn from the next
generation R520 and the previous generation 9800 hardware
when clock rates and pipe counts are taken into account,
except that the 9800 is limited to 64 ARB/ps2 instructions
precluding the use of the 4-output implementation.

For NVIDIA hardware, all texture latency can be hidden,
but it takes 4 cycles to fetch a float4. Including all texture
fetches, we expect 49 cycles for a single-output kernel. Given
the clock rate and execution time, the kernel actually re-
quires 60 cycles to complete. Thus even though GPUBench
predicts a maximum bandwidth of 9.5GB/s for the 6800 Ul-
tra and 19GB/s for the 7800GTX, the application exhibits
7.59GB/s and 13.5GB/s respectively. However, unlike the
ATI hardware, the NVIDIA hardware cannot directly use
previous outputs as inputs for future iterations without a
copy. When factoring in the extra data copy per iteration,
the total bandwidth is 9.34GB/s for the 6800 Ultra and
18.5GB/s for the 7800GTX, or 97% the peak bandwidth on
both boards. Using this analysis we obtain 8.44GB/s (88%)
and 16.3GB/s (85%) for the 2-output kernel and 8.59GB/s
(90%) and 15.3GB/s (80%) for the 4-output kernel.

5.3 Cluster Scalability

We demonstrate the scalability of ClawHMMer on SPIRE,
a 16-node parallel rendering cluster with a Radeon 9800 Pro
GPU in each machine. For the scalability test, the sorted
2.4 million, 1.06GB NCBI Non-redundant database was di-
vided as evenly as possible between the active nodes. We
first divide the database into even pieces, giving roughly
equal amounts of total work, and then interleave the proteins
among nodes, giving roughly equal length proteins to each
node to keep SIMD efficiency. For instance, for the 8 node
case, the database was partitioned into two sorted 544.5MB
pieces which were each interleaved on a per-protein basis
across 4 nodes. This maintained batches with proteins of
similar length while assuring that the 2 partitions were not
uneven due to batch sizes. For the 16 node case, the best per-
formance was demonstrated when the data was partitioned
into 4 nearly-even chunks which were each interleaved across
four nodes.

Figure 5.3 illustrates the scalability of our algorithm on
the cluster. With up to 10 nodes we are able to partition
the databases well and maintain both uniform batches and
balanced database sizes. At 10 nodes, the cost of interleaving
the database between nodes becomes noticeable. It becomes
more difficult to assign the same amount of work to each
node, causing a performance imbalance. However, on 16
nodes, the overall efficiency is still greater than 95%.

6 Discussion

6.1 Costs of Traceback

When performing queries over B sequences at a time, the
memory usage of saving the per-state probabilities for each
of M HMM states is O(B ·M). However, saving the informa-
tion needed for a traceback over a length L query amino-acid

0 5 10 15

Number of Nodes

0

5

10

15

Sp
ee

du
p

Observed
Ideal

Figure 4: Scalability of distributing the NCBI Non-
redundant database across a 16 node cluster with ATI 9800s.
As expected, we scale almost linearly in performance with
added nodes. As the number of nodes increases, it becomes
difficult to evenly subdivide work among the nodes, which
causes performance to decrease to 95% of ideal for 16 nodes.

requires O(B ·M ·L) memory. This drastically decreases the
maximum batch size we can use, lowering the efficiency of
the processor. Thus, we can only efficiently apply the GPU
as an early-reject phase in the hmmsearch utility, and we per-
form tracebacks for high probability matches on the CPU.
This precludes efficiently running hmmpfam, the sister ap-
plication to hmmsearch, because hmmpfam is often run with
a special score correction step. The score correction requires
a traceback to compensate for observations that are emitted
by junk states as opposed to match states. Eddy [2003b] as-
serts that without score correction, pfam searches will have
less specificity, yet more sensitivity to matches.

Future work includes investigating the possibility of lim-
iting the traceback for score correction by saving only the
list of characters that caused the start or end of an entire
match state chain. This could be used to separate the Match
or Insert states from the Junk state of the HMM and could
potentially assist in approximating a score correction term.

6.2 Applying GPU’s to General HMMs

Much of our analysis and implementation has relied on the
specific HMM layout when performing a HMMer protein
search to achieve good performance. However the Viterbi
process and other techniques involving hidden Markov mod-
els are common in a variety of domains including speech
recognition, voice printing, economics, and AI. These do-
mains usually employ more general HMMs with fewer re-
strictions on transition layouts. For instance, the possibility
of a transition from any HMM state to any other state obvi-
ates the need for the delete states which emit no observable
characters, exposing an additional axis of parallelism over
the states themselves. This parallelism reduces the number
of batches needed for a GPU to run at peak efficiency, which
in turn allows for much larger HMM’s to fit into a GPU’s
onboard memory. The Viterbi algorithm for general HMMs
is very similar to iterated matrix vector multiplication as
explained in Section 3.

The performance of GPU’s on this more general applica-
tion will vary with HMM size. The transition matrix for
small HMM’s might completely fit into the cache of a CPU,
allowing for very efficient use of producer-consumer local-



ity and resulting in compute-limited performance. On the
GPU, we cannot take advantage of producer-consumer lo-
cality, so the performance will be limited by the memory
system, which is currently competitive with the CPU cache.
However, as GPUs increase compute performance, it may
be difficult for the memory subsystems to keep pace. In
contrast, large HMMs might not fit in a CPU cache forc-
ing the CPU’s main memory system to compete with the
GPU’s higher performance memory system. The GPU has
memory which is designed for streaming multimedia applica-
tions, making Viterbi on large, general HMM’s a potentially
effective algorithm on a GPU.

6.3 Limited Data Reuse on the GPU

When the optimized HMMer AltiVec code computes the
probabilities of a particular amino acid being emitted from
each of the states, the previous probability array fits in the
G5’s 64GB/s cache. This gives fast access to more states, al-
lowing the inner loop to be unrolled, which in turn increases
the ability to use more SIMD math operations. Operating
over more states at once can help exploit producer-consumer
locality and instruction-level parallelism. On the GPU, loop
unrolling is accomplished by fusing kernels together, creat-
ing a larger kernel representing multiple iterations of the
loop. The amount of kernel fusion is limited by the amount
of data that may be output. Furthermore, since all writes
must commit to off-chip memory, we do not have fast access
to previously computed values, limiting our ability to use
producer-consumer locality across kernel invocations. How-
ever, even with the limited loop unrolling available to current
GPUs, we can create instruction-issue bound applications on
ATI hardware.

For many algorithms to achieve good performance on
CPUs, clever blocking strategies are employed to ensure that
the data to be reused resides in the cache for the majority of
its use. The fundamental idea is to fit the working set within
the fastest memory, often a high speed cache. This property
allows both the HMM add-max inner-loop as well as the
matrix-vector multiply-add inner-loop to be executed from
a cached value to a cached value, and since the cache runs at
or near clock rate, the math units remain busy, constantly
processing new values from the cache.

The GPU, on the other hand, supports random read-only
access from a much larger array of texture memory, com-
pared to most CPU caches. The latency from the mem-
ory system is hidden by the sheer number of items being
processed in parallel along with computation that can be
overlapped with communication. Thus, as Fatahalian et
al. [2004] argued, to run at peak efficiency, all the math
units would need to have work to process during the entire
duration of the memory fetch. For an algorithm like Ma-
trix Multiply, which involves a single multiply-add per pair
of memory reads, or even the more math-intensive Viterbi
algorithm, which requires a trio of add and max operations,
the application is entirely limited by the speed of the texture
memory system. However the larger, but slower, GPU mem-
ory subsystem must compete with a much faster, but much
smaller, CPU cache. While trends have shown that graph-
ics hardware computes at rates that continue to increase
at a rate that dwarfs competing hardware, this algorithm,
like Matrix Multiply, will continue to be dominated by the
texture memory performance on graphics processors unless
caches or scratch-pads are added.

6.4 HMMsearch on future architectures

As GPUs get faster, it is unclear if the texture memory sys-
tem will keep pace with the available compute performance.
Without faster memory access, either from the texture mem-
ory system, caches, or scratch-pads, memory performance
will begin to dominate the cost of many algorithms. How-
ever, architectures that provide fast local memory systems
can benefit from the design considerations of a streaming
formulation of HMMer. In order to maximize throughput,
our streaming algorithm saves enough state probabilities to
fill the closest memory system, which on the GPU is a large
texture memory. For a larger HMM, like the 3271 state
DUF499, to remain entirely in 256 MB of texture memory
we decrease the batch size from 36,864 to 9,216, trading ef-
ficiency for a working set that avoids slow access to host
memory.

Thus, on future parallel architectures with fast local stores
like the Cell processor, a similar batching mechanism should
be employed to fill the memory system and each 256KB local
store [Dhong et al. 2005]. Yet, since the size of the local store
is much smaller than the texture memory on the GPU, an
optimized version of HMMer on Cell would most likely run
on the order of 10’s of protein strings per processing element
instead of the much larger batches used on the GPU. How-
ever, because we do not have the output limitations as we do
on the GPU, we can perform more kernel fusion in order to
hide memory latency, exploit SIMD units more effectively,
and reduce the total bandwidth requirements.

While batching the queries is a necessity on graphics hard-
ware, it also mitigates the repeated lookup of numerous tran-
sition probabilities, favoring their storage in instruction code
as constants until the amino-acid at the current position for
the whole batch has been processed.

For these reasons, our streaming implementation on GPUs
can be viewed as a prototype for the next generation of par-
allel architectures including the Cell processor, future GPUs,
and Intel’s projected many-core [Borkar et al. 2005] archi-
tectures.

7 Conclusion

We have presented a streaming version of the Viterbi al-
gorithm and demonstrated its implementation on GPUs.
Our implementation running on GPUs outperforms cur-
rently available CPU implementations, including heavily op-
timized, hand-tuned ones. Our algorithm performs well on
current graphics hardware and remains viable on varying
parallel and streaming architectures. We have performed
an analysis that demonstrates the bottlenecks of our algo-
rithm and the efficiency of our implementation on current
hardware.

We have demonstrated a cluster version of hmmsearch
with linear scalability. A cluster of GPUs running our im-
plementation is now a competitive alternative to traditional
CPU clusters running HMMer. As GPUs continue to get
faster, using GPUs and clusters of GPUs for tasks such as
protein sequence matching becomes even more attractive.

We hope that as new streaming architectures and multi-
core CPUs become widely available, we can explore the ef-
ficiency of our algorithm as well as the many other applica-
tions currently written and targeted for GPUs.



8 Acknowledgments

We would like to thank Erik Lindahl for his prerelease source
code and helpful optimization hints, and Sean Eddy for his
tireless work on HMMer and careful responses to our queries.
We would like to thank Jeff Golds, Raja Koduri, Gianpaolo
Tommasi and Kai Tai at ATI and Nick Triantos and Ian
Buck at NVIDIA for hardware donations, driver support and
immense patience. This work is supported by the US De-
partment of Energy (contract B527299).

References

Altschul, S., Gish, W., Miller, W., Myers, E., and
Lipman, D. 1990. Basic local alignment search tool. Jour-
nal of Molecular Biology 215, 3 (October), 403–410.

ATI, 2004. Radeon X800 product site.
http://www.ati.com/products/radeonx800.

Bhaya, D., Dufresne, A., Vaulot, D., and Grossman,
A. 2002. Analysis of the hli gene family in marine and
freshwater cyanobacteria. FEMS Microbiology Letters 215 ,
209–219.

Borkar, S. Y., Dubey, P., Kahn, K. C., Kuck, D. J.,
Mulder, H., Pawlowski, S. S., and Rattner, J. R.
2005. Platform 2015: Intel processor and platform evolu-
tion for the next decade. Technology@Intel Magazine 3, 3
(April).

Buck, I., Fatahalian, K., and Hanrahan, P. 2004.
Gpubench: Evaluating gpu performance for numerical and
scientific applications. In Poster Session at GP2 Workshop
on General Purpose Computing on Graphics Processors.
http://gpubench.sourceforge.net.

Buck, I., Foley, T., Horn, D., Sugerman, J., Hanra-
han, P., Houston, M., and Fatahalian, K. 2004. Brook
for GPUs: Stream Computing on Graphics Hardware. In
Proceedings of the ACM SIGGRAPH 2004.

Buck, I. 2005. Taking the plunge into GPU comput-
ing. In GPU Gems 2: Programming Techniques for High
Performance Graphics and General Purpose Computation,
M. Pharr, Ed. Addison Wesley, 880.

Chukkapalli, G., Guda, C., and Subramaniam, S. 2004.
SledgeHMMER: a web server for batch searching the pfam
database. Nucleic Acids Research 32 (July), W542–544.

Clarke, N., and Berg, J. M. 1998. Zinc fingers in
caenorhabditis elegans: Finding families and probing path-
ways. Science 282 (December), 2018–2022.

Cofer, H., and SGI., 2002. HMMER on Silicon Graphics.
http://sgi.com/industries/sciences/chembio/resources/hmmer .

Dally, W. J., Hanrahan, P., Erez, M., Knight, T. J.,
Labonté, F., Ahn, J.-H., Jayasena, N., Kapasi, U. J.,
Das, A., Gummaraju, J., and Buck, I. 2003. Merrimac:
Supercomputing with Streams. In Proceedings of SC2003,
ACM Press.

Dhong, S. H., Takahashi, O., White, M., Asano, T.,
Nakazato, T., Silberman, J., Kawasumi, A., and
Yoshihara, H. 2005. A 4.8 GHz fully pipelined embedded
SRAM in the streaming processor of a CELL processor.
In Proceedings of IEEE International Solid-state Circuits
Conference, 486–487,612.

Eddy, S., 2003. HMMER: Profile HMMs for protein se-
quence analysis.
http://hmmer.wustl.edu.

Eddy, S. 2003. HMMER user’s guide. Howard Hughes Med-
ical Institute and Dept. of Genetics, Washington University
School of Medicine. (October).

European Bioinformatics Institute, Swiss Institute
of Bioinformatics, and Georgetown University,
2005. Universal protein resource.
http://www.uniprot.org.

Fatahalian, K., Sugerman, J., and Hanrahan, P. 2004.
Understanding the efficiency of GPU algorithms for matrix-
matrix multiplication. In Proceedings of Graphics Hard-
ware, Eurographics Association.

Fawcett, P., Eichenberger, P., Losick, R., and
Youngman, P. 2000. The transcriptional profile of early to
middle sporulation in Bacillus subtilis. Proceedings of the
National Academy of Sciences USA 97, 14 (July), 8063–
8068.

Flachs, B., Asano, S., Dhong, S. H., Hofstee, P.,
Gervais, G., Kim, R., Le, T., Liu, P., Leenstra, J.,
Liberty, J., Michael, B., Oh, H., Mueller, S. M.,
Takahashi, O., Hatakeyama, A., Watanabe, Y., and
Yano, N. 2005. A streaming processor unit for a CELL
processor. In Proceedings of IEEE International Solid-state
Circuits Conference, 134–135.

Forney, G. D. 1973. The Viterbi algorithm. Proc. IEEE
61 (Mar.), 268–78.

Kapasi, U., Dally, W. J., Rixner, S., Owens, J. D.,
and Khailany, B. 2002. The Imagine Stream Proces-
sor. Proceedings of International Conference on Computer
Design (September).

Krogh, A., Brown, M., Mian, S., Sjolander, K., and
Haussler, D. 1994. Hidden markov models in computa-
tional biology: Applications to protein modeling. Journal
of Molecular Biology 235 , 1501–1531.

Lindahl, E., 2005. Altivec HMMer, version 2.
http://lindahl.sbc.su.se/software/altivec/altivec-hmmer,-version-
2.html.

Lindholm, E., Kilgard, M. J., and Moreton, H. 2001.
A user-programmable vertex engine. In Proceedings of
SIGGRAPH 2001, ACM Press/Addison-Wesley Publishing
Co., 149–158.

Narukawa, K., and Kadowaki, T. 2004. Transmem-
brane regions prediction for G-protein-coupled receptors
by hidden markov model. In Proceedings of the 15th In-
ternational Conference on Genome Informatics, Universal
Academy Press.

2005. National Center for Biotechnology Information.
ftp://ncbi.nlm.nih.gov.

NVIDIA, 2005. GeForce 7800: Product overview.
http://nvidia.com/page/geforce 7800.html.

Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77, 2 (Februrary).

Sánchez-Pulido, L., Rojas, A., van Wely, K.,
Martinez-A, C., and Valencia, A. 2004. Spoc: A widely
distributed domain associated with cancer, apoptosis and
transcription. BMC Bioinformatics 5, 1, 91.

Staub, E., Mennerich, D., and Rosenthal, A. 2001.
The Spin/Ssty repeat: a new motif identified in proteins
involved in vertebrate development from gamete to embryo.
Genome Biology 3, 1, research0003.1–research0003.6.

Viterbi, A. J. 1967. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm. IEEE
Trans. on Information Theory 13, 2, 260–269.


