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Exploring Connectivity of the Brain’s White Matter
with Dynamic Queries

Anthony Sherbondy, David Akers, Rachel Mackenzie, Robert Dougherty, and Brian Wandell

Fig. 1. The corona radiata. Our system uses dynamic queries to find structure in neural pathways suggested by MR tractography.

Abstract— Diffusion Tensor Imaging (DTI) is a magnetic
resonance imaging method that can be used to measure local
information about the structure of white matter within the
human brain. Combining DTI data with the computational
methods of MR tractography, neuroscientists can estimate the
locations and sizes of nerve bundles (white matter pathways)
that course through the human brain. Neuroscientists have used
visualization techniques to better understand tractography data,
but they often struggle with the abundance and complexity of the
pathways. In this paper, we describe a novel set of interaction
techniques that make it easier to explore and interpret such
pathways. Specifically, our application allows neuroscientists
to place and interactively manipulate box- or ellipsoid-shaped
regions to selectively display pathways that pass through specific
anatomical areas. These regions can be used in coordination
with a simple and flexible query language which allows for
arbitrary combinations of these queries using Boolean logic
operators. A representation of the cortical surface is provided
for specifying queries of pathways that may be relevant to gray
matter structures, and for displaying activation information
obtained from functional magnetic resonance imaging. By
precomputing the pathways and their statistical properties, we
obtain the speed necessary for interactive question-and-answer
sessions with brain researchers. We survey some questions that
researchers have been asking about tractography data and show
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how our system can be used to answer these questions
efficiently.

Index Terms— Computer Graphics Interaction Techniques,
Computer Graphics Applications, Visualization, DTI, MR Trac-
tography.

I. I NTRODUCTION

T HE brain is a massively interconnected organ. Individual
neurons in the cortex typically connect to between 1,000

and 10,000 nearby neurons within the gray matter. The entire
central core of the brain, known as the white matter, com-
prises relatively large fiber tracts that mediate communication
between neurons at widely separated locations. Until recently,
scientists have had limited ability to measure these white
matter connections in human brains.

Knowledge about these white matter connections should
enhance our understanding of normal brain function. Such
knowledge should also help diagnose certain pathological
disorders in patients. For example, recent research has found
white matter pathway syndromes related to language deficits
[17], [20], [9]. Furthermore, an understanding of white matter
structure could help surgeons to avoid damaging important
pathways.

Motivated by such concerns, a new technology called Dif-
fusion Tensor Imaging (DTI) has emerged, providing a non-
invasive way to measure properties of white matter pathways.
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Based on magnetic resonance imaging, DTI estimates the
random diffusion of water molecules within biological tissue.
It is widely believed that water diffuses fastest along the
length of axons (rather than across their boundaries), which
suggests that the principle direction of diffusion can be used to
approximate the local orientation of nerve fiber bundles. (See
Basser et al. [5] for a discussion.)

The inherent complexity of the diffusion data has motivated
a variety of visualization algorithms designed to assist the
researcher in analysis. One class of techniques known as
MR tractography seeks to trace the principal direction of
diffusion through the tensor field, connecting points together
into pathways (also referred to in other literature as “fiber
tracts”). As a visual representation, MR tractography is well-
suited to the problem of determining white matter structure,
since it implies possible anatomical connections between the
endpoints of the pathways.

The pathways produced by tractography do not represent
individual nerve fibers, nor do they represent bundles of these
fibers. Rather, these pathways are abstract representations of
possible routes through the white matter of the brain. While
tractography algorithms typically produce tens of thousands
of pathways, neuroscientists now believe that there are tens of
millions of white matter nerve fibers grouped into hundreds
of major fiber tracts. Nevertheless, the tractography estimates
do have the potential to suggest real neural connections,
especially when there are additional data to corroborate these
estimates. This could include post-mortem dissections, animal
studies, or Functional Magnetic Resonance Imaging (fMRI).
fMRI suggests possible connections between regions of the
brain’s gray matter surface based on correlations in activity
[7]; it is particularly compelling since it is non-invasive, like
DTI.

Our contribution (extending the work of Akers et al. [3])
is a new interaction technique to assist in the exploration and
identification of the pathways suggested by MR tractography.
We precompute the pathways and their statistical properties
and query the resulting database on-the-fly, allowing for easy
exploration of tractography results using a direct-manipulation
interface. We enable the specification and interactive manipu-
lation of box- or ellipsoid-shaped regions of interest within the
brain, making it possible to selectively display pathways that
pass through specific anatomical regions. The researcher can
also use fMRI data to search for pathways that might connect
several functionally-defined regions of the brain’s gray matter
surface. Querying by other path properties such as length and
average curvature allows the researcher to further limit the
data displayed simultaneously, making results more compre-
hensible. The dynamic query approach enables researchers to
answer specific questions about brain connectivity with farless
time or effort than is required by existing approaches.

II. RELATED WORK

A variety of techniques have emerged for the visualization
of diffusion tensor data. Methods based on visual abstractions
of the tensors have been used effectively to convey information
about tensors at local scales within the volume (see Westin et

al. [35] for a summary). Direct volume rendering techniques
[15], [16], [34] provide views of the larger trends in the
data. These methods are not designed to extract or visualize
estimated white matter pathways.

More relevant to our purpose of estimating white matter
connectivity are MR tractography techniques that attempt
to trace white matter pathways from DTI data. Streamlines
Tracking Techniques (STT) trace pathways by following the
principle direction of diffusion [21], [7], [5]. Mori et al.[21]
developed the Fiber Assignment through Continuous Tracking
(FACT) algorithm, a variable-step STT method that can change
directions at the boundary of each voxel. Conturo et al. [7]
used a constant step size, while Basser et al. [5] suggested
dynamically adjusting the step size to account for pathway
curvature. Lazar et al. [18] described the tensor-deflection
algorithm (TEND) based on previous work by Weinstein
[33]. TEND may provide more accuracy in reconstructing
certain anatomical features. Poupon et al. [24] developed a
regularization technique for improved tracking, and suggested
ways to model branching of nerve fiber bundles. Zhukov and
Barr [37] have used regularization based on assumptions of
anatomical smoothness to extract pathways in the presence of
noisy data.

Many of these techniques have been criticized for their
inability to handle branching or represent uncertainty [4],
but they have been shown to be capable of recovering ba-
sic anatomical structures [37]. Zhang et al. [36] render the
resulting pathways as streamtubes, where the cross-section of
the streamtube is determined by the two smaller eigenvectors
of the diffusion tensor. da Silva et al. [8] use streamtubes
to visualize differences between diffusion tensor data sets,
comparing both tractography algorithms and data sets from
multiple subjects.

Several groups have pointed out the potential value of
filtering MR tractography data, both for rendering efficiency
and simplicity of display. Zhang et al. [36] pre-filter stream-
tubes based on length, average linear anisotropy, and distance
separating neighboring streamtubes. Conturo et al. [7] use
volumetric regions of interest to select pathways that connect
anatomically or functionally defined regions. Wakana et al.
[32] have combined region-of-interest filters with AND, OR,
and NOT operations to isolate particular neurological path-
ways. All three groups filter streamtubes as a pre-processing
step; unlike the present application, those applications do not
describe an interactive filtering technique.

While there has been significant progress on DTI visual-
ization algorithms, surprisingly little has been written about
interaction techniques. Zhang et al. [36] have been displaying
streamtubes in a CAVE environment to explore the possibility
that virtual reality will help doctors to make diagnoses. In
addition, interactive volume rendering techniques have also
been employed for the purposes of DTI visualization [15],
[16], [34].

Our interactive software is based on the principles of direct
manipulation [28], [14] and dynamic queries [2]. An important
motivation for our technique has been the development of
recent methods for visual query and analysis. Hochheiser
and Shneiderman [13] showed the power and simplicity of a
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visual query approach for answering specific questions about
time-series data. By defining and manipulating rectangular
regions of interest within the data set, a researcher could select
quantities (e.g. stock prices) that followed certain patterns of
behavior over time. Our software can be seen as an application
of their 2-D spatio-temporal method to the 3-D spatial domain
of the brain.

III. PREPROCESSING

A. Acquiring and Processing the Data

All DTI data were acquired from a neurologically normal
male human subject aged 35. The DTI protocol involved eight
three-minute whole-brain scans, averaged to improve signal
quality. We acquired 38 axial slices for two b-values,b = 0
andb= 800s/mm2 along 12 different diffusion directions. We
used a 1.5T GE Signa LX and a diffusion-weighted single-shot
spin echo, echo planar imaging sequence with a nominal 2x2x3
mmvoxel size (63msTE; 12s TR; 1 NEX; 90◦ flip angle; 260
mmFOV; 128x128 matrix size;±110 kHz bandwidth; partial
k-space acquisition).

We also collected high-resolution T1-weighted anatomical
images using an eight minute sagittal 3D-SPGR sequence
(1x1x1 mm voxel size). The DTI data were coregistered to
the T1 data by automatically aligning the B0 to T1 using a
mutual information algorithm [1]. We confirmed that this co-
registration technique aligns the DTI and T1 images to within
a few millimeters (except in regions prone to susceptibility
artifacts, such as orbito-frontal and anterior temporal regions).

The following anatomical landmarks were defined in the T1
images: anterior commissure (AC), the posterior commissure
(PC) and the mid-sagittal plane. With these landmarks we
utilized a rigid-body transform to convert both DTI and T1
data to the conventional AC-PC aligned space. The DTI data
were then resampled to 2mm isotropic voxels using a spline-
based tensor interpolation algorithm [22], taking care to rotate
the tensors to preserve their orientation with respect to the
anatomy. The registration process took about twenty minutes.

When combined with DTI, fMRI allows the neuroscientists
to simultaneously view connectivity and activation information
about specific brain regions [7]. Functional MR data were
acquired with a spiral pulse sequence with 21-30 obliquely ori-
ented slices acquired every 2.4 seconds (30msTE; 1.2 s TR;
2 interleaves; 70◦ flip angle; 2x2x3 mm effective voxel size).
Each individual functional scan lasted about four minutes and
the subject was given a brief break between scans. Visual field
maps were measured using rotating wedge and expanding ring
stimuli. A thorough description of the collection of the fMRI
data and the registration of the data with the high-resolution
anatomy data is described by Dougherty et al. [10]. We map
the fMRI data to our cortical surface mesh, as described in
Section III-C. We demonstrate the coordination of the fMRI
data with pathway queries in an example in Section V-D.

We precomputed fractional anisotropy values for each dif-
fusion tensor. Fractional anisotropy (FA) is derived from the
normalized variance of the eigenvalues of each diffusion tensor
[23]. FA is a scalar value that summarizes the anisotropy
of the ellipsoid representation for diffusion. An FA of zero

indicates spherical diffusion, as is found in the gray matter.
As FA increases, the diffusion becomes more anisotropic.
FA values near 0.5 indicate either linear (cigar-shaped) or
planar (pancake-shaped) ellipsoids, as are typically found in
the white matter. As FA approaches 1, the diffusion becomes
increasingly linear, indicated by long and thin ellipsoids. We
use the precomputed FA values to establish termination criteria
for path tracing algorithms (Section III-B), to calculate the
average FA along pathways for query purposes (Section III-
D), and in our interactive application to aid in navigation
(Section IV-B). Our decision to use FA was motivated by
its widespread adoption in the literature; there is reason to
consider alternatives if the goal is to develop new tractography
algorithms. See Westin et al. [35] for a good discussion of
anisotropy measures and their uses in DTI.

B. Precomputing Pathways

Most existing tractography software traces pathways during
interaction: the user selects a region of interest and the soft-
ware traces pathways from seed points within this region. This
approach has the disadvantage that path tracing can be time
consuming, leading to frustrating delays during interaction.
Instead, our approach is to precompute pathways that cover
the entire white matter region of the brain, then use our
software interface to efficiently “prune” these pathways to
answer specific questions. Accordingly, we initialized seed
points for path tracing at every other voxel in each dimension,
evenly sampling the volume with seed points. (A similar
seeding approach was described by Conturo et al. [7].) This
sampling strategy ensured that each white matter region would
have at least some pathways passing through it. However,
because the pathway shapes cannot be predicted at seeding
time, some regions contain more pathways than others. In
the future we may explore other seeding methods that discard
pathways that are too closely packed, as suggested by Zhang
et al. [36] and Vilanova et al. [31].

We generated our pathways using two standard tractography
methods. We chose these two algorithms because they are
simple and have already been compared in the literature [18]:

• STT: This method follows the principal diffusion direc-
tion throughout the volume. We used a constant step size
of 2 mm, an FA termination threshold of 0.15, and an
angular threshold of 90◦. The paths generated by STT
often take sharp turns because they always follow the
largest magnitude eigenvector, even in regions where the
two or three largest eigenvalues are nearly identical.

• TEND: This method uses the tensor at each point to
multiply the incoming path vector, resulting in a new
vector that is deflected toward the principal direction of
diffusion [18]. As with STT, we used a constant step size
of 2 mm, an FA termination threshold of 0.15, and an
angular threshold of 90◦. The paths generated by TEND
are relatively straight, since TEND avoids sharp turns
when it encounters regions of low anisotropy.

To interpolate between tensors during tracing, we used a
simple linear interpolation approach [37]. After thresholding
by FA, our precomputation process produced about 26,000
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pathways, including about 13,000 from each algorithm. All
26,000 pathways were computed in about five minutes on an
Intel Pentium 1.6GHz PC.

C. Representing The Cortical Surface

We also precomputed two mesh representations of the corti-
cal surface to allow a neuroscientist to answer questions about
pathway connectivity to the cortex. First, the white matter
voxels were classified semi-manually by a neuroscientist in
a separate custom software platform [30]. This process can
take approximately 30 minutes for the expert to complete,
depending on the success of the automated portion of the
segmentation.

Next, we used the Marching-Cubes algorithm [19] to obtain
a triangle mesh for the interface. The resulting cortical surface
mesh is complex to navigate on with its many folds and
creases. To remedy this, we smoothed the mesh using a
windowed sinc filter [29]. Smoothing the cortical surface was
first described by Sereno et al. [27], who used the smoothed
representation to display fMRI data. In our system, we also
used the smoothed cortical surface to help the researcher to
perform surface constrained queries, as described in Section
IV-B.3. The smoothed surface and the original surface are
stored as unstructured meshes of triangle strips. Both surface
meshes utilize the same list of vertex indices; the smoothed
surface is different from the original surface only by vertex lo-
cation. For our test subject, the cortical surface representations
each contain about 230,000 vertices. The surface triangulation
and smoothing required approximately 2 minutes on a 1.6GHz
Pentium laptop PC.

D. Precomputing Statistical Properties of Pathways

Besides precomputing the pathways, the system also pre-
computes statistics and other aggregate path information that
can be used to specify queries. The statistical criteria we have
chosen are meant as examples, and by no means represent an
exhaustive set. Currently, we calculate and store the following
properties for each pathway:

• Length: Longer paths are less likely to represent real
anatomical connections, since error accumulates during
path tracing. Additionally, very short paths are often
distracting.

• Average Fractional Anisotropy: Pathways that pass
through areas of low FA may be less likely to represent
physical connections. (In these nearly isotropic regions,
tractography algorithms differ greatly in how to proceed
with path tracing.)

• Average Curvature: Pathways that make sharp turns are
often suspect and may represent incorrect connections.
Neuroscientists often have prior knowledge about the
shapes of pathways, and can use this property to remove
pathways that do not follow expected shapes. Curvature
is computed for each set of three consecutive points along
the path, by using Heron’s formula to find the osculating
circle, then computing the reciprocal of its radius.

• Tractography Algorithm : For later querying, the system
tags each pathway with the algorithm used to generate it

(STT or TEND). Querying by the algorithm allows the
user of our application to compare the results of several
tractography algorithms, as described in Section V.

IV. T HE DYNAMIC QUERY APPLICATION

This section describes the user interface to the interac-
tive application we have developed. The main purpose of
our application is exploratory data visualization: we wantto
make it easier for neuroscientists to understand the neural
pathways suggested by MR tractography algorithms. Fig. 2
shows a labeled screen-shot of the application. With our
direct-manipulation interface, it is possible to identifyand
display pathways that satisfy statistical constraints, orthat
pass through specific volumes of interest (VOIs). The inter-
face consists of three components: The VOI panel (bottom
right) allows the investigator to specify box- or ellipsoid-
shaped regions for use in queries. The query panel (bottom
left) provides mechanisms to query the pathways based on
intersections with VOIs and statistical properties. The scene
window (top) displays the currently selected pathways and
assists in navigating the volumetric data space.

We explain the use of this interface in Sections IV-
B and IV-C. Please also see the video footage at
http://graphics.stanford.edu/papers/dti-query-extended for ex-
amples of its use.

A. Navigating The Scene

Before querying the data, an investigator must be able to
navigate the volumetric data space represented in the scene
window. The investigator can change the camera position and
orientation using a standard trackball/mouse interface. As a
further aid to navigation, the scene window provides three
moveable cutting planes (tomograms), which display planar
reformations of FA data. Features visible in FA are commonly
used by neuroscientists to navigate the brain’s white matter
structures.

B. Specifying Dynamic Queries

There are three ways to specify queries using our interface,
as described below.

1) Querying By Pathway Statistics:Often a query sequence
begins with the selection of a set of desired pathways based
on the statistical criteria described in Section III-D. A set
of slider bars in the query panel allows for the interactive
specification of a range (min, max) of acceptable values. As
the investigator drags any slider bar, the matching pathways
are found and displayed in the scene window.

2) Querying By Volumes Of Interest:A key feature of our
application involves the use of VOIs to display pathways
that pass through specific anatomical regions (see Fig. 3).
Once specified, VOIs can be used to form queries by setting
the VOI query expression in the query panel. VOIs can be
combined using simple AND and OR operations, or by typing
an arbitrary Boolean logic expression. The VOI editing panel
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Tomograms:

Axial, sagittal and 

coronal cutting planes of 

fractional anisotropy 

values aid in navigation.

Neural Pathways:

Pathways are rendered as

lines with a simple 

random jitter applied to 

the luminance.

VOI Controls:

Each VOI has its own size, position and label, 

and can be constrained to move symmetrically to 

another VOI in the opposite brain hemisphere.

Query Settings:

The researcher can 

query by tractography 

algorithm and control 

how the VOI queries 

are combined using 

logical expressions.

Scalar Value Query Sliders:

One can remove pathways that do not satisfy 

maximum or minimum values in length, average 

FA or average curvature.

Status Information:

Displayed are the current

coordinate system, the

position of each

tomogram, the current

coloring method, and the 

number of pathways 

matching the query.

Volumes of Interest:

VOIs can be used to

selectively display

pathways that pass

through specific

anatomical regions.

Fig. 2. The user interface to our pathway exploration software.The interface consists of three components: The VOI panel (bottom right) allows the
investigator to specify box- or ellipsoid-shaped regions for use in queries. The query panel (bottom left) provides mechanisms to query the pathways based
on statistical properties and intersections with VOIs. Thescene window (top) displays the currently selected pathways and assists in navigating the volumetric
data space. Neuroscientists use the VOI and query control panels to identify specific neural pathways, which are then displayed in the scene window above.

(Fig. 2, lower right) allows for the exact specification of
VOI dimensions and position. As a VOI is modified using
the slider bars or text widgets, the query is re-evaluated
immediately and the scene window is updated with new
pathway information. A VOI can be controlled more directly
in the scene window, by using the mouse to click and drag
the VOI. The investigator simply selects a tomogram and
then drags the VOI to any position on the plane. One can also
link two VOIs to move them symmetrically in opposite brain
hemispheres. This was made possible by aligning the data to
AC-PC space, which defines the plane halfway between the
hemispheres.

3) Querying By Surface-Constrained Volumes Of Interest:
As shown in Fig. 4, our application also allows the neurosci-

entist to constrain the motion of a VOI to a representation of
the cortical surface. After adding the surface representation to
the scene window, the neuroscientist can simply drag a VOI
along this surface using the mouse.

As described in Section III-C, we also precomputed a
smoothed version of the original surface. By dragging the VOI
along the smoothed surface, the neuroscientist can easily reach
regions of the brain surface that would otherwise be obscured
from view by the many peaks (gyri) or valleys (sulci) of the
brain. However, this approach is limited by low anisotropy
near the cortical surface, which causes difficulties for path
tracing. Moreover, the cortical surface is not perfectly aligned
to the DTI data, because of registration errors caused by the
geometric distortions introduced during DTI data acquisition
(as described in III-A). This alignment problem is exacerbated
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(a)

(c) (d)

(b)

Fig. 3. Sequence of dynamic queries identifying the spatial organization of fiber pathways.a) All 13,000 pathways computed using the STT algorithm.
Patterns are difficult to discern because of visual clutter.b) Using a length filter, we show only the pathways that are greater than 4cm in length (about 30%
of the total number of pathways). c) By placing VOI 1 in the scene, we show only the pathways that pass through the internal capsule (bottom). d) By placing
VOIs 2 and 3, we obtain a picture showing connections between1 and either 2 or 3.

(a) (b)

Fig. 4. Constraining VOI motion to the cortical surface. a) The cortical surface with an ellipsoid-shaped VOI placedon a section of the back of the
brain. b) A smoothed representation of the cortical surface with a projection of the same VOI. Both surfaces present a higher intensity gray level for gyri and
a lower intensity gray for the sulci. The smoothed surface allows the neuroscientist to manipulate a VOI on the cortical surface without the bumps and folds
of the original surface obscuring the view to the VOI.
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by the mesh smoothing we perform.
To display the VOI on the smoothed surface, the VOI is

intersected with the original surface mesh and the resulting
triangles are warped onto the smoothed representation using
the one-to-one vertex correspondence. The warped surface
patch is shaded green, as shown in Fig. 4. To accelerate
the required picking operations on either surface mesh, we
compute and store octree representations of the meshes.

To provide additional information to the neuroscientist, a
color map can be applied to either surface representation.
Coloring based on curvature helps to convey the shape of the
cortical surface, particularly for the smoothed representation
where the sulci and gyri have been smoothed. In Fig. 4 the
surface of the smoothed and bumpy meshes both display light
shades of gray for peaks and darker shades of gray for valleys.
Optionally, the neuroscientist can overlay a color map of fMRI
data. Coloring based on fMRI data allows the neuroscientistto
drive VOI navigation with brain activation information. This
was used extensively in Section V-D to guide VOI placement.

C. Pathway Rendering

While others have used streamtubes to represent pathways
[36], we have chosen simply to use lines. Lines can be drawn
much faster than streamtubes, and they adequately represent
connectivity information of interest to neuroscientists (at the
cost of losing local information about the underlying tensor
data along the path). To visually distinguish the pathways,we
use a simple ‘color jittering’ technique. In HSV color space,
we compute a random luminance offset for each pathway. The
luminance of each pathway is determined at startup and is held
constant to avoid shimmering artifacts.

Differences in hue are used to establish logical groupings
of pathways, using a process we call ‘virtual staining’. Here,
the investigator can choose a hue and use it to color all of
the pathways currently displayed in the scene window. This
allows investigators to identify specific pathways and then
visualize them within their surrounding context: as the query
is modified, the original pathways remain stained. Virtual
staining was used extensively in generating the results shown
in Section V, and in generating Fig. 1.

D. Implementation

This section describes the implementation details of our
interactive application. The program was written entirelyin
C++, and was designed to work on any modern inexpensive
PC without any special hardware requirements. The program
makes use of the Visualization ToolKit (VTK) [26] for 3D
scene generation and interaction.

Since data exploration naturally involves making iterative
adjustments to queries, our main goal has been to make the
system immediately responsive when the investigator changes
a query. One key to this interactivity is the preprocessing
described in the previous section, but this preprocessing is
not enough by itself to make our system interactive. At
runtime, we also need to be able to interactively compute
intersections between VOIs and pathways. To facilitate fast
intersection tests, our program stores each pathway’s geometry

as a hierarchical oriented bounding box (or OBBTree). For
this we used the freely-available RAPID software from the
University of North Carolina [12]. All VOIs and pathways are
represented as sets of triangles that can be efficiently tested
for intersection. The box- or ellipsoid-shaped VOIs are trivial
to triangulate, and the pathways are triangulated as very small
area (long and thin) triangles. Since the RAPID software only
reports object intersections between triangles, our application
also tests the endpoints of each pathway to determine whether
the pathway is fully contained within the VOI.

Queries based on precomputed pathway properties are very
fast since the precomputed values need only be compared
against the current range of the query. The performance
of RAPID is described by Gottschalk et al. [12], but their
execution times are based on an older SGI Reality Engine.
In our own benchmarks on a 1.6 GHz Pentium laptop PC,
we are able to intersect a VOI with between 80,000 and
220,000 pathways per second, depending on the size of the
VOI. (Larger VOIs require more bounding-box tests, since
they intersect with more of the pathways.) This allows us to
maintain a frame rate of 3-8 fps while manipulating the VOIs.
While not the most efficient solution for intersection with our
current ellipsoid and box VOIs, using RAPID will allow us
to implement more complex (e.g. non-convex) VOI shapes in
the future, without a major change in performance.

On average, each pathway consumes approximately 20KB
of memory, including the OBBTree structure and the points
used for rendering. Accordingly, we use 510MB of memory
to represent all 26,000 pathways. The cortical surface meshes
and all their accompanying data structures currently occupy
about 160MB of memory. This memory is consumed by the
original surface mesh, the smoothed surface mesh, and the
octree acceleration data structure.

V. RESULTS

In this section we demonstrate some of the capabilities
of our system. First, we acquired a DTI data set collected
from a single normal subject (described in Section III-A).
Using this data set as input to our system, we identified three
types of queries that are especially useful to neuroscientists.
In particular, we will show how our system has been used to
validate known white matter pathways, to explore previously
unidentified pathways, and to visually compare tractography
algorithms. We will then show results of our system in a
more complex neurobiological investigation of the pathways
between the left and right hemispheres of the retinotopy
map on the cortical surface of the brain. All four examples
were produced by a novice user of our system who is a
neuroscientist specializing in brain imaging.

A. Validating Known Pathways

Using our dynamic query system, the neuroscientist easily
identified two known neural pathways in the test subject
data, the left and right Inferior Longitudinal Fasciculi (ILF).
Shown in Fig. 5, these pathways connect the occipital and
frontal lobes in each hemisphere of the brain.1 To locate the

1There is still some debate over the extent of the ILF; see Catani et al. [6]
for a recent discussion.
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(a) (b)

(c) (d)

Fig. 5. Validation of known white matter pathways. The left and right inferior longitudinal fasciculi are known anatomical pathways that connect the
occipital and frontal lobes in each hemisphere. In four simplesteps, a researcher used the system to produce a visual representation of these known pathways.
a) Placing a VOI covering the occipital lobes shows pathwaysproduced by our system that may be involved in human visual processing. b) Placing a second
VOI in the right frontal lobe and using an AND operation showsonly the pathways that traverse between the occipital lobe and a position on the right frontal
lobe, which are stained blue. c) Moving the second VOI to a symmetric position on the left captures the pathways traversing between the occipital lobe and
the left hemisphere, which are stained yellow. d) Removing thesecond VOI from the query shows the results of b and c within the original set of pathways.
The pathways shown were all produced using the STT algorithmand were also limited to lengths greater than 4cm to reduce visual clutter.

pathways, first our neuroscientist test subject placed a single
VOI covering both occipital lobes, revealing neural pathways
produced by our system which may be involved in visual
processing. Next, he placed an additional VOI in the right
frontal lobe above the eye and used an AND operation to
show pathways connecting the two brain regions. The many
pathways passing between these VOIs comprise the right
ILF. Interested to see whether these neural pathways were
located symmetrically on both sides of the brain, the researcher
moved the second VOI to a symmetric position in the left
hemisphere, identifying the left ILF. Finally, using virtual
staining, the neuroscientist separately colored the pathways
from each hemisphere so that they could be visually compared.
This exploration was performed in about five minutes.

B. Exploring Unidentified Pathways

Our system also enables exploration of novel pathways that
could motivate future research. Fig. 6 shows all the pathways
generated by our system which pass between the occipital
lobes (responsible for visual processing). To isolate these path-
ways, the neuroscientist placed VOIs on each of the occipital
lobes and displayed the conjunction of the VOI queries. The
majority of the connections follow a known neural pathway,
crossing the posterior corpus callosum and terminating at a
symmetric location in the opposite hemisphere. Interestingly,
some of them travel forward to cross at what appears to be the
anterior commissure, a small bundle of fibers connecting the
two hemispheres beneath the corpus callosum. These pathways
then return back to the occipital lobe. Further research is
necessary to determine whether this anterior pathway is real.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 6. Exploration of candidate neural pathways. The query results
show many pathways (shown in green) reflecting the well-knownconnection
between the left and right occipital lobes, passing throughthe splenium.
Intriguingly, the query also suggests a possible connection (shown in purple)
through the anterior commissure. This suggested pathway may incite further
validation research. Our system helps to form such hypotheses by allowing
researchers to interactively pose and answer specific questions about connec-
tivity. The pathways shown were all produced using the STT algorithm and
were also limited to lengths greater than 4cm to reduce visual clutter.

In situations like this, our system can help form hypotheses
about novel pathways by allowing researchers to interactively
pose and answer specific questions about connectivity. This
exploration was performed in about five minutes.

C. Comparing Tractography Algorithms

As a third example, our system can be used to visually
compare the pathways estimated by different tractography
algorithms. Fig. 7 shows pathways generated by the STT and
TEND algorithms (described in Section III-B). By virtually
staining pathways passing through a region in the corpus
callosum, the neuroscientist was able to visualize an important
difference between the two algorithms. The STT algorithm,
following the direction of greatest diffusion at each point,
generates only ’U-shaped’ pathways. The TEND algorithm
additionally produces pathways passing from the corpus cal-
losum to each temporal lobe. As this example illustrates, the
pathways generated by these algorithms can differ greatly.
Such visualizations are useful to the neuroscientist who is
uncertain about the reliability of estimates across algorithms,
and to the expert in tractography who wants to understand
the consequences of algorithmic assumptions. This exploration
was performed in about ten minutes.

D. Investigating Inter-Hemispherical Connections Between
Visual Areas

Neuroscientists can utilize this system to explore connec-
tions between the left and right hemispheres within visual
areas of the human brain. Fig. 8 shows pathways connecting
the calcarine fissure on the right hemisphere and visual areas

Fig. 7. Visual comparison of tractography algorithms. The VOI in this
query is placed within the corpus callosum. The pathways werecomputed
using the STT (blue) and TEND (yellow) algorithms. Using virtual staining,
a neuroscientist was able to easily inspect the differencesby overlaying the
pathways. While both TEND and STT show callosal projections to superior
regions, the TEND pathways also include callosal projections to both temporal
lobes. This example shows the extent to which the two algorithms can differ.
The pathways shown were limited to lengths greater than 4cm to reduce
visual clutter.

on the left hemisphere. Guided by fMRI activation data (as
described in Section IV-B.3), the neuroscientist placed a VOI
within the calcarine fissure on the right hemisphere and an-
other VOI on an interesting visual area on the left hemisphere.
The neuroscientist then slowly moved the left hemisphere VOI
to a location slightly below the previous position. Both VOIs
were then iteratively adjusted to visualize pathway shape and
location. By performing incremental VOI adjustments on the
cortical surface, the neuroscientist was able to explore how
pathways may traverse from the calcarine fissure to dorsal or
ventral regions of the visual areas on the opposite hemisphere.
Such queries allow for neuroscientists to discover pathways
that they can isolate for further study. The examination of the
entire occipital lobe required approximately ten minutes.

VI. D ISCUSSION

This section describes the potential applications of our
system, current limitations, and future directions for research.

A. Applications

Our colleagues in neuroscience stressed the significance of
this program as an exploratory tool; quickly browsing through
connections in the brain could be invaluable in identifying
areas of interest for future study. The system could also assist
scientists investigating the neurological bases of disorders, as
has been done with other methods for analyzing DTI data [20],
[9], [17], or provide a diagnostic tool for such disorders. It
could be employed as an educational aid for students learning
about neuroanatomy, as it allows for interactive viewing ofthe
primary anatomical pathways.
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(a) (b)

(c) (d)

Fig. 8. Investigation of connections between hemispheres in the retinotopic map. Guided by the fMRI activation data, a neuroscientist investigates the
proposed pathways that connect the calcarine fissure on the right hemisphere to visual areas on the left hemisphere. a) An fMRI scan is mapped to the cortical
surface, in order to guide the neuroscientist to the appropriate visual areas. The fMRI color map can be toggled on and off as VOIs are placed. b) Placing
a VOI in the right hemisphere within the calcarine fissure (orange arrow) and a second VOI in the left hemisphere within the visual areas (blue arrow). c)
The cortical surface representation is removed so that the paths are visible within the context of the tomograms. d) The VOI on the left hemisphere (blue
arrow) is moved slightly ventrally along the cortical surface. With dynamic queries, the neuroscientist can repeat many small adjustments to the VOI in the
left hemisphere or the VOI in the calcarine fissure on the righthemisphere to understand the types of connections within thevisual areas.
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Our system may also be useful for exploring data from
sources other than DTI. Saleem et al. [25] have developed a
method of tracing axonal connections across synapses in live
monkeys.MnCl2 is injected into the monkey brain and trans-
ported along neuronal tracts where it can later be detected with
MRI. This approach may generate large amounts of verifiable,
high-resolution data that could be browsed efficiently withour
system.

B. Limitations

The speed we have achieved during dynamic queries relies
upon extensive precomputation, and this does have certain
disadvantages. For example, using our system a neuroscien-
tist cannot interactively manipulate the parameters used to
generate the pathways and surfaces that we display. This
is a standard tradeoff between speed and flexibility, and
similar tradeoffs have been described in other literatures(e.g.
precomputed lighting calculations for computer graphics).

The connectivity results we have obtained with our system
have been limited by the resolution of the data, the geometric
distortions introduced by the data acquisition process, and the
quality of the tractography algorithms. It is important to realize
that these are not limitations of our interactive technique, but
rather they are limitations of the current acquisition technology
and algorithms. Current DTI data are highly restricted in
spatial resolution. The 2x2x3 mm resolution used in this scan
represents the current state of the art. The voxel dimensions are
roughly two orders of magnitude larger than the cross-sectional
width of white matter axons (between 10 and 50 microns).
This makes ambiguities in tracing inevitable when estimating
neural pathways from the diffusion tensor field. However,
despite limitations in data quality our system remains viable
and useful for exploring MR tractography data and suggesting
possible hypotheses about connectivity.

C. Future Work

The methodology of precomputation and dynamic queries
should yield several interesting enhancements in the future. In
particular, it will be useful to expand our system to handle
multiple data sets. Pathways from multiple subjects could be
used to compare pathological cases (e.g. multiple sclerosis) to
normal ones, or simply to understand normal population vari-
ance. It could also be used to study developmental disorders
as they unfold over time within a single subject. While these
problems can benefit from a dynamic query approach, they
will also require the development of methods to co-register
the various data sets.

We believe that useful improvements could be made in the
visual representation of the pathways. Currently the pathways
are drawn simply as lines; however, it might be advantageous
to aggregate pathways into groups, or to simplify their paths
for easier interpretation. Such abstractions could also contain
visual cues that measure either local DTI properties or statis-
tical information regarding the certainty of the path estimates.

We plan to make the source code to our system freely
available, at http://graphics.stanford.edu/projects/dti.

VII. C ONCLUSION

In summary, we have presented a novel interaction tech-
nique and a software system designed to assist in the explo-
ration of white matter connectivity in the brain. The key to our
system’s utility is its ability to respond to queries at interactive
rates. This allows neuroscientists to optimize the critical loop
of hypothesis generation and evaluation.

Finding known anatomical pathways with our system has
demonstrated the ability to resolve large-scale anatomical
structures with DTI. Using our software as a hypothesis-
generation tool for previously undiscovered pathways has been
intriguing, but risky due to current limitations in acquisition
technology and path tracing algorithms. Comparing pathways
suggested by multiple path tracing algorithms has pointed out
the uncertainty in path tracing, giving us reason to distrust the
pathway estimates suggested by individual algorithms.

As the field proceeds forward with new acquisition tech-
nologies and more sophisticated path tracing algorithms, we
should continue to benefit from the dynamic query approach.
Indeed, this system remains an integral part of our own long-
term plan for answering questions about brain connectivity.
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