The Frankencamera:
An Experimental Platform
for Computational

Photography

Andrew Adams, Eino-Ville Talvala, Sung Hee Park,
Dawvid E. Jacobs, Boris Ajdin, Natasha Gelfand,
Jennifer Dolson, Daniel Vaquero, Jongmin Baek,
Marius Tico, Hendrik P. A. Lensch, Wojciech Matusik,
Kar1 Pulli, Mark Horowitz, Marc Levoy

]

Viewfinder Alignment

+ A pixel-accurate alignment algorithm that runs at

320x240 at 30fps on an N95

+ Low-noise Viewﬁnding

+ Align and average a moving window of previous frames

+ Panorama capture

+ automatically take new images when the view has moved
to a new location

Computational Photography

for (...) |
Change camera settings
Take pilcture

J

Comblne the pictures

Problem 1: Platform 1s closed

+ On N95, no control over
+ exposure time
white balance
focus
frame rate
image format/resolution
post-processing pipeline parameters

metering algorithm

+ 0+ 4+ 4+

autofocus algorithm
+ 1Phone/Android is equivalent or worse

+ “Real” cameras can't be reprogrammed at all

Problem 2: Wrong sensor model

+ Real image sensors are pipelined
+ While one frame 1s post-processing,
+ the next one is exposing,

+ and the sensor 1s being configured for the one after that

+ N95 Viewhinding mode:
+ Pipelined, high frame rate

+ Settings changes take effect an unknown number of
frames into the future

+ N95 Sull Capture mode:
+ Not pipelined
+ Throughput (frame rate) = 1/pipeline latency

Computational Photography

for (}L\) { ,
Change{s.merﬁ settlngs
Take plct

Combip#”the pictureg

A Programmable Camera Platform

1. Should be open, all the way down

2. Should be able to capture or stream bursts of 1mages
with deterministically varying settings at tull frame rate

3. Should have enough compute and memory to do
computational photography

4. Should be easy to program for using standard tools

5. Should be a credible walking-around camera

The Frankencamera

+ A system architecture for programmable cameras
+ 'Two implementations

+ An API to program for the architecture (FCam)

+ Example applications

The Frankencamera Architecture

+ A general architecture for programmable cameras

+ All settings are embedded in the requests and frames
flowing through the imaging pipeline.

4) (\mage Sensor)

Requests Image Sensor

o Configure
Application

Processor

Devices

Actions Expose

y

Readout

L

Images and

Imaging Processor
__Statistics Image Statistics 4
k Processing Collection

The Sensor

+ The sensor 1s a pipeline that converts requests for
1mages Into 1mages

+ The sensor has no visible state. A request for an image
specifies all parameters to be used in that image’s

capture.
/ \ Requests 3 Image Sensor) i
icati : Configure :
Application Devices
Processor

\ Actio : Expose

. J

Imaging Processor
Images and ging
Statistics Image Statistics 4
k Processing Collection

Readout

3

Metadata

11

The Image Signal Processor (ISP)

+ Receives sensor data, and optionally transtorms 1t

+ Untransformed raw data must be available to the
application 1if requested

+ May create histograms, other statistics for each image

(\ Requests B Image Sensor
icati Configure
Application Devices
Processor

Expose

. J

Metadata

Readout

A
>
@)
=
: >
. n

Images ancg

Imaging Processor £
Statistics § Image Statistics 4 1
] Processing Collection 3

Other Devices

+ Other devices (like the lens and flash) can schedule
Actions to be triggered at a given time into an
exposure, and can tag returned images with extra
metadata.

AT

(\ Requests Image Sensor

Configure

Application ,e.s~ o

Processor

$Actions Expose

Readout

ok

Imaging Processor

Images and
Statistics Image Statistics 4
k Processing Collection

Everything 1s visible

+ No hidden daemon running autofocus/metering

+ Programmer has tull control over sensor settings, and
full access to the supplemental statistics the ISP
computes for each frame.

|

mage Sensor

4 A

Application Devices
Processor

. J

Requests

Configure

\ Actions Expose

Readout

Metadata

ok

Imaging Processor
Images and
Statistics Image Statistics 4
k Processing Collection

14

The Frankencamera

+ A system architecture for programmable cameras
+ 'Two implementations
+ An API to program for the architecture (FCam)

+ Example applications

15

Implementations

F2 Frankencamera

Nokia N900

16

Implementations

F2 Frankencamera - Internals

Implementations

\/

e O) .
) o Phidgets
Touchscreen LCD GPI USB Controller
|

OMAP3 EVM /OMAP3430 Shutter

Button
SD card () (128MB) 12C

Flash
Ethernet DSP GPU
RS-232 [ose) DVI
- / " _~14.4Wh Li-lon
Battery Pack

Aptina MT9P031
5MP CMOS Sensor

1
Birger EF-232
Lens Controller

Canon EOS Lens)

F2 Frankencamera - Internals

e

>/

Nl

Implementations

e) .
) o Phidgets
Touchscreen LCD GPI USB Controller
OMAP3 EVM o map3430 i Sy

‘ 1 Button
SD card (I 123l | 12C
., ARMCPU RAM |
¢ Flash
| DSP || GPU |H S-Video
RS-232 { Dvi
A §

i
e

\ N -;h.‘:_—;;i_.;;: gt :) {4'4 Wh LHO@
Battery Pack
Aptina MT9P031
<5MP CMOS Sensor)
1
Birger EF-232

Lens Controller

1

(Canon EOS Lens)

F2 Frankencamera - Internals

Implementations

\/

e O) .
) o Phidgets
Touchscreen LCD GPI USB Controller
|

OMAP3 EVM /OMAP3430 Shutter

128MB Button
(o H o) (B
Flash
(e or) e v
| RS-232 | bVl
\ - /){4.4 Wh Li-lon
Battery Pack

e

§(~ AptinaMToP031)\
¥\ 5MP CMOS Sensor /3§
5 I ;
Birger EF-232
Lens Controller !

'; Canon EOS Lens)

>/

F2 Frankencamera - Internals

20

Implementations

A
0000 oeee '

Nokia N900 - Internals

Implementations

KC ouch LD) QWERTY h
ouchscreen
| Keyboard
. Button
Nokia N900 /~, OMAP3430

32GB
256MB
Bluetooth

3 k(P y USB

/

|
ek Toshiba ET8EKS 4.9 Wh Li-lon
LED Flas 5MP CMOS Sensor Battery Pack
|
Carl Zeiss
F/2.8 5.2mm Lens

Nokia N90O0 - Internals

[\
\]

Implementations

QWERTY
Keyboard

(
C Touchscreen LCD

Shutter
—~ . Button

Nokia N90O§ /", IOVMAsv(‘)
256MB 1 if Blyetooth

32GB \§
Storage | ARM CPU RAM
’ DSP GPU | GPS

. N
../

LED Flash Toshiba ET8EKS8 4.9 Wh Li-lon
as 5MP CMOS Sensor Battery Pack

Carl Zeiss
F/2.8 5.2mm Lens

Nokia N90O0 - Internals

()
(S|

Implementations

KC ouch LD) QWERTY h
ouchscreen
| Keyboard
. Button
Nokia N900 /~, OMAP3430

32GB
256 MB
Bluetooth

| :
GED Flash |§

Toshiba ETS8EKS §(49Wh Li-lon
5MP CMOS Sensor /§\ Battery Pack
I :a

Carl Zeiss
F/2.8 5.2mm Lens :

Nokia N90O0 - Internals

24

The Frankencamera

+ A system architecture for programmable cameras
+ 'Two implementations
+ An API to program for the architecture (FCam)

+ Example applications

Simple HDR Burst

#include <FCam/N900.h>

Simple HDR Burst

#include <FCam/N900.h>

f Sensor sensor; i
: Shot shortReq, midReq, longReq; §
! Frame short, mid, long;]

]
N

Simple HDR Burst

#include <FCam/N900.h>

Sensor sensor;
Shot shortReq, midReqg, longReq;
Frame short, mid, long;

{ shortReq.exposure = 10000; // microseconds |
§ midReqg.exposure = 40000;

§ longReg.exposure = 160000; }
| shortReq.image = Image (sensor.maxImageSize (), RAW);@
ﬁgmidReq.image = Image (sensor.maxImageSize(), RAW) ; §
Q;longReq.image = Image (sensor.maxImageSize (), RAW) ;|

Simple HDR Burst

#include <FCam/N900.h>

Sensor sensor;
Shot shortReq, midReqg, longReq;
Frame short, mid, long;

shortReqg.exposure = 10000; // microseconds
midReqg.exposure = 40000;

longReqg.exposure = 160000;

shortReqg.1image = Image (sensor.maxImageSize(),
midReq. 1image = Image (sensor.maxImageSize (),
longReg.image = Image (sensor.maxImageSize (),

; sensor.capture (shortReq
. sensor.capture (midReq) ;
I sensor.capture (longReq) ;

)7

RAW) ;
RAW) ;
RAW) ;

Simple HDR Burst

#include <FCam/N900.h>

Sensor sensor;
Shot shortReq, midReqg, longReq;
Frame short, mid, long;

shortReqg.exposure = 10000; // microseconds
midReqg.exposure = 40000;

longReqg.exposure = 160000;

shortReqg.1image = Image (sensor.maxImageSize(),
midReq. 1image = Image (sensor.maxImageSize (),
longReg.image = Image (sensor.maxImageSize (),

sensor.capture (shortReq) ;
sensor.capture (midReq) ;
sensor.capture (longReq) ;

.fshort = sensor.getFrame () ;§
fmid = sensor.getFrame () ;
{ long = sensor.getFrame(); §

RAW) ;
RAW) ;
RAW) ;

HDR Viewfinder with metering

#include <FCam/N900.h>

while (1) {

30

31

HDR Viewfinder with metering

#include <FCam/N900.h>

; hdr[0] .exposure = 40000; §
i hdr[l].exposure = 10000; }

while (1) {

HDR Viewfinder with metering

#include <FCam/N900.h>

vector<Shot> hdr (2) ;
hdr[0] .exposure = 40000;
hdr[1] .exposure = 10000;

While(ll,ﬁ, -
,_sensor.stream

(har);)

32

53

HDR Viewfinder with metering

#include <FCam/N900.h>

vector<Shot> hdr (2) ;
hdr[0] .exposure = 40000;
hdr[1] .exposure = 10000;

while (1) {
sensor.stream (hdr) ;

f Frame longExp = sensor.getFrame(); }
i F'rame shortExp = sensor.getFrame();}

HDR Viewfinder with metering

#include <FCam/N900.h>

vector<Shot> hdr (2) ;
hdr[0] .exposure = 40000;
hdr[1] .exposure = 10000;

while (1) {
sensor.stream (hdr) ;

Frame longExp = sensor.getFrame()
Frame shortExp = sensor.getFrame() ;

f hdr[0].exposure = autoExposelLong (longExp.histogram(), |
: longExp.exposure ()); i
hdr[1l] .exposure = autoExposeShort(shortExp.histogram()}

shortExp.exposure());

34

55

HDR Viewfinder with metering

#include <FCam/N900.h>

vector<Shot> hdr (2) ;
hdr[0] .exposure = 40000;
hdr[1] .exposure = 10000;

while (1) {
sensor.stream (hdr) ;

Frame longExp = sensor.getFrame()
Frame shortExp = sensor.getFrame() ;

hdr[0] .exposure = autoExposelong (longExp.histogram(),
longExp.exposure ()) ;

hdr[1l] .exposure = autoExposeShort (shortExp.histogram(),
shortExp.exposure ()) ;

" overlayWidget.display(blend(longExp, shortExp))}

36

Firing a second-curtain sync flash

Shot flashShot;
flashShot.exposure = 100000; // 0.1 sec

Firing a second-curtain sync flash

Shot flashShot;
flashShot.exposure = 100000; // 0.1 sec

f Flash::FireAction fire(&flash);ﬁ

38

Firing a second-curtain sync flash

Shot flashShot;
flashShot.exposure = 100000; // 0.1 sec

Flash flash;
Flash::FireAction fire(&flash);
fire.duration = 1000; // 1 ms |

§ fire.brightness = flash.maxBrightness() }
t fire.time = flashShot.exposure - fire.duration;]}

Firing a second-curtain sync flash

Shot flashShot;
flashShot.exposure = 100000; // 0.1 sec

Flash flash;
Flash::FireAction fire (&flash);

fire.duration = 1000; // 1 ms
fire.brightness = flash.maxBrightness() ;
fire.time = flashShot.exposure - fire.duration;
flashShot.addActions (fire);

§ sensor.capture(flashShot);

t Frame flashFrame = sensor.getFrame();

40

Double-flash example

+ Using the F2 Frankencamera and two Canon flash units

41

Double-flash example

+ Using the F2 Frankencamera and two Canon flash units

Implementation problems

+ Resolution switching is slow
+ Due to underlying ISP driver
+ Roughly 700 ms ‘shutter lag’
+ Not fundamental to the architecture, but hard to fix.

+ Getting image frames to the GPU seems to have a 300
ms latency

+ Hardware bugs also crop up

+ Had to disable vignetting compensation

+ F2 Frankencamera issues
+ Small format sensor (1/2.5")
+ Hard to duplicate in large quantities

43

The Frankencamera

+ A system architecture for programmable cameras
+ 'Two implementations
+ An API to program for the architecture (FCam)

+ Example applications

44

Automatic Panorama Capture

capture interface individual images

T T —

extended dynamic range panorama

45

High-resolution HDR Capture

+ Created completely on-camera, ~1 minute processing time

46

Low-noise Viewhinder and Capture

+ Combines multiple aligned frames in viewfinder mode

+ High resolution capture combines two captures:

+ Noisy short exposure

+ Blurry long exposure

47

Lucky Imaging

Attach 3-axis gyroscope to the N900

Estimate 1f a captured image suffers |
from handshake, and keep capturing ||
if it does. Usually done in 10 frames.

Allows sharp hand-held 1/3 second

exposures.

Images

Gyroscope Data

48

Applications from CS448

+ FCam API just finished before course started

+ First assignment: Autofocus - 1 week

+ Robustness was most important, speed a second goal

+ Best method: double-sweep
+ Coarse scan through entire focal range

+ Fine scan through sharpest region

+ Course projects...

Remote Flash over Bluetooth

+ By Michael Barrientos and David Keeler

+ Allows a device action to be sent to some other N900
over Bluetooth, to enable multi-camera coordination.

Figure 4: On-camera flash resulting in a red-eye effect Figure 5: Off-camera flash eliminates red-eve

49

50

Blur-Free Available Light Photography

+ By Dmitr1 Makarov and Ben Olson

+ Short/long exposure fusion using blind deconvolution.

51

Photomontage

+ By Nikhil Gupta and Juan Manuel Tamayo

+ Assistant for taking multiple images to be merged later

59

Painted Aperture for Portraits

+ By Edward Luong

+ Combines images from multiple camera positions to
nicely blur out the background of a portrait.

+ Offline implementation for the merging, using SIFT
features and RANSAC. Feature detection is the slow
part.

(a) Using 8 images for blur. (b) Using 16 images for blur.

Getting Started with FCam

+ http://fcam.garage.maemo.org/

+ Includes API, code examples, and FCamera
+ BSD licensed

+ From Nokia: HDR, Low-Light

+ Feel free to stop us in the halls and ask us to demo
these

54

Future Work

+ Support courses using FCam
+ A bundle of N900s

+ Some courseware

+ An F3
+ The F3

+ The F2 uses a cell-phone-quality image sensor
+ We're currently engineering a DSLLR-quality replacement

(I
I

(]

(T

1 OO R

55

Conclusion

+ Current APIs are bad for computational photography

+ Camera platforms should be open

_ Statistics

(aae Samcar)
/ \ Requests . Image Sensor
icati Configure
Application Devices
Processor
Actions Expose

Readout

L

Imaging Processor
Images and (S

Image Statistics 4
k Processing Collection

