
Frequency Domain Volume Rendering

Takashi Totsuka� Marc Levoyy

�SONY Corporation
yComputer Science Department, Stanford University

Abstract

The Fourier projection-slice theorem allows projections of volume
data to be generated in O(n2 logn) time for a volume of size n3.
The method operates by extracting and inverse Fourier transforming
2D slices from a 3D frequency domain representation of the volume.
Unfortunately, these projections do not exhibit the occlusion that is
characteristic of conventional volume renderings. We present a new
frequency domain volume rendering algorithm that replaces much
of the missing depth and shape cues by performing shading calcula-
tions in the frequency domain during slice extraction. In particular,
we demonstrate frequency domain methods for computing linear
or nonlinear depth cueing and directional diffuse reflection. The
resulting images can be generated an order of magnitude faster than
volume renderings and may be more useful for many applications.

CR Categories: I.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism.; I.3.3 [Computer Graphics]: Picture/Image
Generation; Display Algorithms.

Additional Keywords: Volume rendering, Fourier transform,
Shading models, Scientific visualization, Medical imaging, Digi-
tal signal processing.

1 Introduction

Volume rendering is an important tool for visualizing 3D scalar
fields. Most existing algorithms operate in the spatial domain.
They can be classified as either image space algorithms (e.g. [7])
or object space algorithms (e.g. [4], [15]) depending on the order
in which the data is traversed: along each ray cast from the image
plane or along X, Y, and Z axis of the volume data. The complexity
of these algorithms is O(n3) since all voxels must be visited to
render an image. This high cost limits the use of these algorithms
in interactive environments. Although efficient algorithms exist for
sparse data sets [8], [14],[16], such optimization is data dependent.

In an effort to drastically reduce rendering costs, frequency do-
main algorithms based on the Fourier projection slice theorem have
been proposed [5], [10]. It is well known that the integral of a 1D
signal is equal to the value of its spectrum at the origin. The Fourier
projection slice theorem extends this notion to higher dimensions.

* Sony Corporation. 6-7-35 Kitashinagawa, Shinagawa
Tokyo 141, Japan (totsuka@av.crl.sony.co.jp)

y Center for Integrated Systems, Stanford University
Stanford, CA 94305 (levoy@cs.stanford.edu)

Spatial Domain Frequency Domain

FT

IFT

f(p)
F(s)

projection
slice extraction

Figure 1: Volume rendering using Fourier projection slice
theorem

For a 3D volume, the theorem states that the following two are a
Fourier transform pair:

� The 2D image obtained by taking line integrals of the volume
along rays perpendicular to the image plane.

� The 2D spectrum obtained by extracting a slice from the
Fourier transform of the volume along a plane which includes
the origin and is parallel to the image plane.

Using this theorem, once a volume data is Fourier transformed,
an (orthographic) image for any viewing direction can be obtained
by extracting a 2D slice of the 3D spectrum at the appropriate
orientation and then inverse Fourier transforming it (figure 1). The
cost of this approach is dominated by the 2D inverse fast Fourier
transform (IFFT) which is O(n2 logn). Hence, the overall cost
is also O(n2 logn). Since logn grows slowly, the advantage of
this approach over spatial domain algorithms is greater at large data
sizes.

Despite their theoretical speed advantage, frequency domain vol-
ume rendering algorithms suffer from several well-known problems:

High interpolation cost: Because the sample points of the 3D
spectrum and those of the 2D slice do not coincide except
at the origin, the 3D spectrum must be interpolated and then
resampled in order to extract a 2D slice. Since this interpo-
lation is imperfect, replicas of the volume data are not fully
suppressed, causing ghosts to appear on the projection image.
Because any filter that provides a sharp cutoff in the spatial
domain also has wide support, high-quality interpolation is
expensive. As the interpolation is O(n2), the FFT is still
asymptotically dominant. However, due to a large constant
factor associated with the interpolation, current implementa-
tions spend the majority of their running time in interpolation,

1

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
©1993 ACM-0-89791-601-8/93/008/0015…$1.50

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
©1993 ACM-0-89791-601-8/93/008…$1.50

271

making the algorithm not attractive for practical data sizes
(1283 or 2563).

Memory cost: Due to the wide dynamic range and complex arith-
metic associated with Fourier transforms, a pair of floating
point numbers is required for each voxel. Assuming a 64-
bit double precision representation, 16 bytes are required per
voxel. By contrast, only 1 byte per voxel is necessaryin spatial
domain algorithms.

Lack of depth information: The projection obtained by the
Fourier projection slice theorem is a line integral normal to
the direction of view. Voxels on a viewing ray contribute
equally to the image regardless of their distance from the eye.
The image therefore lacks occlusion, an important visual cue.
While some users (diagnostic radiologists in particular) prefer
integral projections since nothing is hidden from view, this
characteristic would be considered a drawback in most appli-
cations.

The first two problems listed above are technical in nature, and
several promising solutions are proposed later in this paper. The
lack of occlusion is fundamental, however, in so far as no projection-
slice theorem is known that mimics the integro-differential equation
([6]) approximated by volume rendering algorithms. Fortunately,
occlusion is only one of many cues employed by the human visual
system to determine the shape and spatial relationships of objects.
Other available cues include perspective, shading, texture, shadows,
atmospheric attenuation, stereopsis, ocular accommodation, head
motion parallax, and the kinetic depth effect.

It is possible, of course, to apply any shading technique in the
spatial domain before the volume is Fourier transformed. However,
such a naive approach would require recomputation of the volume
followed by an expensive 3D forward FFT each time the view or
the lighting condition is changed.

In an earlier paper [9], we instead showed that for a limited
class of shading models, the dependence on viewing direction and
lighting direction could be factored out of the projection integral,
yielding equations of the form

I =

nX
i=0

wi

�Z +1

�1

fi
�
x(t); y(t); z(t)

�
dt

�
: (1)

Here, effects of viewing and lighting direction are solely expressed
by weights wi while the volumes fi are independent of them. The
indicated integration can be evaluated efficiently using the projection
slice theorem. For example, linear depth cueing can be computed
as the weighted sum of projections through three volumes that are
depth cued before 3D forward FFT along X, Y, and Z directions,
respectively.

The obvious disadvantage of this hybrid spatial-frequency do-
main approach is that it requires multiple copies of the volume.
While still asymptotically faster than conventional spatial domain
volume rendering, implementation considerations (problems one
and two above) make it barely superior in practice.

In the present paper, we describe methods for rendering vol-
umes with depth cueing and directional shading that operate entirely
within the frequency domain. They are based on two well-known
properties of the Fourier transform.

� Multiplication by a linear ramp in the spatial domain is equiv-
alent to differentiation in the Fourier domain.

� Differentiation in the spatial domain is equivalent to multipli-
cation by a linear ramp in the Fourier domain.

Using these properties, depth cueing implemented in [9] as spatial
domain multiplication, is implemented in the present paper using
frequency domain differentiation. Similarly, directional shading,

f(x)

pm(x)

h(x)

Spatial Domain Frequency Domain

H(s)

F(s)

F(s) Pm(s)*

f(x)

Figure 2: Premultiplication of the volume data

implemented in [9] using spatial domain differentiation, is imple-
mented in the present paper using frequency domain multiplication.

The remainder of the paper is organized as follows. Section 2
reviews the previous works. Section 3 presents our new frequency
domain shape cueing techniques. Sections 4 and 5 refer to solutions
to the interpolation and the memory cost problems, respectively.
Section 6 shows results from our implementation, and section 7
gives conclusions and possible future directions.

2 Base Algorithm

We begin by briefly reviewing current frequency domain volume
rendering algorithms. In the following discussion, small letters (
f; g; . . .) represent data in the spatial domain and capital letters (
F;G; . . .) represent data in the frequency domain. We also assume
that the transform between the two domains is the Fourier transform
which is denoted by F .

Let f(x) be a volume and F (s) be its Fourier transform. x and
s are 3D vectors in the spatial and frequency domain, respectively.
Given f(x), the algorithm first transforms it into the frequency
domain to yield F (s). This is done only once. For each view, the
discrete spectrum F (s) is interpolated along the extraction plane
(parallel to the image plane and passing through the origin) using
a filter H(s). The interpolated spectrum is resampled to obtain a
2D spectrum which is then inverse transformed to obtain a spatial
domain projection.

By the convolution theorem, interpolation F (s) � H(s) corre-
sponds to f(x) � h(x) in the spatial domain. Here, h(x) is the
response of the filter. Unless H(s) is an ideal lowpass filter, its
response has a smooth shoulder. Thus, the periphery of the volume
and consequently the periphery of the projected image is attenuated.
To cope with this “vignetting” problem, the volume data f(x) can
be premultiplied by the reciprocal of the response, pm(x) = 1

h(x)

before its forward transformation [10]. AsH and Pm cancel during
interpolation, we obtain a correct slice of F (figure 2). We have
implemented this method using filters obtained from Malzbender
and have obtained excellent results, as documented in section 4 and
6.

272

3 Shape Cueing Techniques

3.1 Depth Cueing

Depth cueing is obtained by weighting voxels according to their
distance from the observer. Let d(x) be the weighting function or
depth cueing function for a given eye position. Then, a depth-cued
volume is expressed as f(x) � d(x). By transforming it to the
frequency domain and extracting a slice, we obtain a depth cued
projection. As stated earlier, this straightforward approach requires
an expensive 3D FFT (n3 logn) for each view. There is, however, an
elegant and inexpensive equivalent operation in frequency domain.

Including the compensation pm(x) for the filter response, spatial
domain depth cueing can be expressed as f(x) � d(x) � pm(x). By
transforming and interpolating, this corresponds to Fff(x) �d(x) �
pm(x)g � H(s) at sample points on the slice in the frequency
domain. Using the convolution theorem, this expression can be
rewritten as follows:

Fff(x)d(x) pm(x)g � H(s)

= (F (s) �D(s) � Pm(s)) � H(s)

= (F (s) � Pm(s)) � (H(s) �D(s))

= Fff(x) pm(x)g � H
0(s) (2)

where H 0(s) = H(s) �D(s).
Thus, merely by replacing the interpolation filter H with H 0, we

have obtained depth cueing. Note that the above expression operates
entirely in the frequency domain, and moreover is evaluated only on
the plane of the slice being extracted. Hence, it is a 2D operation.
Note also that becauseFff(x) � pm(x)g is independent of the eye
position, the 3D forward transform is performed only once.

AlthoughH 0 must be computed for each view, the cost of recom-
putation is small because the support of filter H is small (33 � 53)
and D(s) is usually a simple expression. In practice, the recompu-
tation is negligible compared with the cost of interpolation itself.

This frequency domain depth cueing method applies to any depth
cueing function d(x). Indeed, the method can be designed to
highlight the middle portion of the volume while attenuating the
front and back portions.

By way of example, we first consider simple linear depth cueing,
dl(x). Let the view vector be V . The signed depth measured from
the origin of the volume is thus given by (V �x), and dl(x) can be
written as

dl(x) = Ccue(V �x) +Cavg (3)

where Ccue is the strength of the depth cueing effect and Cavg is a
constant (see figure 3). Taking Fourier transforms, we obtain

Dl(s) = �
Ccue

i2�
(V ��) +Cavg �(s) (4)

where� = [�x;�y;�z] is the differential operator of convolution
(�x � f = @

@x
f). Substituting the interpolation filter with depth

cueing (H 0) yields

H
0(s) = H(s) �Dl(s)

= �
Ccue

i2�
(V � rH(s)) + CavgH(s) (5)

The first term exhibits the depth cueing effect. Since rH can
be precomputed and stored in a table, computation of H 0 is of
insignificant cost. An example of frequency domain linear depth
cueing and projection is shown in figure 6(b). As a reference, the
same volume rendered without depth cueing is shown in figure 6(a).

Although any function can be used for D, finding one that has
a simple form reduces the cost of computing H 0. The size of H 0

is also a consideration, since it directly impacts rendering time.
To illustrate this important issue, let us employ a half period of

Figure 3: Linear depth cueing

a sine wave as d(x). Since the transform of a sine function is
two impulses, H 0 can be computed by shifting H and adding three
copies1 with complex weights. Note that this considerably increases
the size of the filter kernel. By adjusting the origin, amplitude, and
period such that the value is zero at the farthest voxel and unity at
the closest voxel, we eliminate the need for a DC term. D now
has the form C1 �(s� sw) + C2 �(s+ sw) where C1 and C2 are
complex constants determined by the amplitude and the shift of the
wave and sw is determined by the period of the wave. The period is
typically made long enough so that the depth cueing appears almost
linear. We can further remove one of the impulses by doubling the
weight of the remaining impulse. By removing one of the impulses,
the projection image is no longer a real2. However, the real part
of the result still contains the correct projection image. With this
technique, depth cueing is implemented by an interpolation with a
shifted H , which is practically free.

The notion of a shiftedH gives us an alternative way to look at the
process. Extracting a slice from a spectrum at a position translated
from the origin by a distance d in a direction V corresponds to
phase-shifting the spatial domain projection by ei2�d t at distance
t in the same direction V . The real part of such a phase-shifted
projection appears to fade in and out as a function of position in
directionV and, for appropriate values of d, the visual effect is that
of depth cueing.

3.2 Directional Shading

In a scene composed of surfaces, directional shading using the well-
known Lambertian reflection model is given by

Camb OcLamb + Cdif OcLdif MAX
�

0; (N �L)
�

(6)

whereCamb andCdif are constants defining the strength of ambient
and directional shading terms, Oc is an object color, Lamb and Ldif
are constants defining the color of ambient and directional lights,
andN andL are unit surface normal and light vectors, respectively.

1Two for the impulses of the sine wave term and one for the constant
term of d(x).

2The imaginary part is a cosine wave since we are using the analytic signal
of the depth cueing function. See the discussion on the Hilbert transform in
[1].

273

N
Lθ

Figure 4: Hemispherical light source

Ignoring the attenuation of light inside the volume, the ambient
term can be approximated using

Camb Lamb f(x) (7)

The diffuse term, however, must be handled carefully because the
nonlinear function MAX does not have a simple frequency domain
representation. Note that the frequently used alternative, jN �Lj,
which shadessurfaces as if they are two-sided rather than the bound-
ing surface of a solid, is also nonlinear and cannot be handled directly
in the frequency domain.

To avoid this problem, we employ a hemispherical light source
[12], [9]. The irradiance Ei on a surface having normal vector N
illuminated by a hemisphere whose pole points in direction L as
shown in figure 4 is proportional by Nusselt’s analog (as described
in [3]) to the projection of the visible portion of the hemisphere
down onto the plane containing the surface, or

Ei = Ldif
1
2
(1 + cos �) = Ldif

1
2

�
1 + (N �L)

�
(8)

With this shading model, the diffuse term in a surface model is
expressed as

Cdif OcLdif
1
2

�
1 + (N �L)

�
(9)

For volumes, we have

CdifLdif
1
2
jrf(x)j

�
1 +

(rf(x) �L)

jrf(x)j

�

= CdifLdif
1
2

�
jrf(x)j+

�
rf(x) �L

��
(10)

Since volume datasets do not have explicitly defined surfaces,
rf(x) is used as the normal vector at each location. The strength
of directional shading in volume rendering algorithms is commonly
made proportional to the gradient magnitude as a simulation of the
surface-ness of the volume [4],[7]. Locales having high gradient
magnitudes (i.e., steep jumps in density) reflect more light.

Equation (10) can be computed entirely in the frequency domain.
By the derivative theorem, the gradient in one domain is the first
moment in the other domain. Thus, the shading computation can
be performed as a moment computation in the frequency domain.
This useful property of linear shading can also be exploited in image
understanding algorithms. For example, [13] uses the moment to
estimate the orientation of surfaces assuming that the reflectance
function is linear with respect to the slope of the surfaces.

Transforming equations (7) and (10) to the frequency domain and
including compensation for the filter response, we obtain

F
�
Camb Lamb f(x)

Fff(x) pm(x)g Ff jrf(x)j pm(x) g

H(s)

k1

k2

k3

Extracted slice

Spectra

Figure 5: Shading computation in frequency domain.
k1 = Camb Lamb (ambient term), k2 = i�Cdif Ldif (s�L) (shad-
ing term), k3 =

1
2Cdif Ldif (constant term).

+ CdifLdif
1
2

�
jrf(x)j+

�
rf(x) �L

��	
=

�
Camb Lamb + i�Cdif Ldif (s �L)

�
�
�
Fff(x) pm(x)g �H(s)

�
+

1
2
Cdif Ldif

�
Ffjrf(x)j pm(x) g �H(s)

�
(11)

The first term corresponds to the ambient term and the (N � L)
part of equation (9) while the second term corresponds to the ac-
companying constant 1. Once f(x) pm(x) and jrf(x)j pm(x)
are Fourier transformed, the shading computation can be performed
during slice extraction (figure 5). Note that the interpolation fil-
ter H is applied first in order to reconstruct the pure spectrum of
f(x) from the premultiplied volume. Then, the first moment of the
spectrum is computed to apply the directional shading.

Although computing a moment incurs a few additional floating
point operations per sample on the slice, the additional expense
is small relative to the number of operations that are required to
evaluate the convolution at the sample point. It should also be noted
that equation (11) can be easily extended to multiple light sources.
In this case, we only have to add the moment terms for additional
light sources. The increase in the computation cost is minor.

Figure 6(c) shows a projection shaded using this technique. As
before, the method operates entirely in the frequency domain and
requires computations only on the plane of the slice being extracted

The major drawback of this shading model is that it requires
a second spectrum, Ffjrf(x)j pm(x)g since there is no simple
way to compute a gradient magnitude in the frequency domain.
Hence, two slices must be extracted from two volumes. A linear
shading equation such as Camb Lamb f(x) + CdifLdif rf(x)
that requires only one volume can be derived under an appropriate
interpretation. However, the upper bound of Cdif is restricted in
order not to generate negative values and consequently the shading
effect is restricted.

3.3 Combining Depth Cueing and Shading

It is possible to combine the depth cueing and directional shad-
ing techniques described in the foregoing section. When the two

274

techniques are used together, the shading must be applied first.
Otherwise, distortion by the depth cueing would result in incorrect
gradient vector by which the shading effect is computed. However,
this order of operation requires two convolutions: one performed
before the shading computation to recover F by interpolation fil-
ter H and one performed after shading in order to apply the depth
cueing function. This approach makes depth cueing no longer an
inexpensive operation since we can’t use the composite filter H 0.

We can work around this problem by reversing the order of shad-
ing and depth cueing and then adjusting the result to get the desired
effect. Using this ordering, we employ the composite filter H 0 to
perform the interpolation and the depth cueing at once. As we will
see, for practical settings, even this adjustment is not necessary.

Here, we will examine the effect of reversed order operation
in spatial domain. We focus on the gradient term of the shading
equation (second term of equation (10)) since other terms are not
affected by the order. Applying depth cueing function d(x) to
equation (10), we obtain the shaded and depth cued term. Omitting
the coefficient 1

2Cdif Ldif , the gradient term is (rf(x) �L) d(x).
Reversing the order of computation, we get�

r[f(x)d(x)] �L
�

= (rf(x) �L)d(x) + f(x) (rd(x) �L) (12)

The second term is the difference from the correct value. Since
d(x) is a function of depth (V �x), the difference can be rewritten
as

f(x) (r[d1D

�
V �x

�
] �L)

= f(x)d01D
�
V �x

�
(V �L) (13)

where d1D(t) is a 1D depth cueing function. To maximize the
shading effect, L is usually set perpendicular to V (i.e., the scene
is illuminated from the side). In this case, the difference term
becomes zero and the adjustment is not necessary. An example of
this common special case is shown in figure 6(d).

If (V �x) is non-zero, we need an adjustment. For linear depth
cueing, the difference term including all the coefficients is

1
2
CcueCdif Ldif f(x) (V �L) (14)

which we can compute during slice extraction without convolution.
For a more complex depth cueing function, a convolution is neces-
sary.

4 Reducing Rendering Time

Although the interpolation required in order to extract an arbitrarily
oriented slice from the 3D spectrum is O(n2), it consumes most of
the running time. As might be expected, the cost of this interpolation
step is almost entirely determined by the size of the filter. For the
3 � 3 � 3 filter we employ, 27 input samples contribute to each
output sample. If we instead employed a 1 � 1 � 1 filter, only one
input sample would contribute to each output sample, a great saving
in time. Because a smaller filter has less sharp cut off in spatial
domain, the resulting image would contain strong ghosts if it were
used uniformly over the entire interpolation process. However, by
adaptively changing the filter size, we can reduce rendering time
while maintaining high image quality.

Most of the energy in a spectrum usually resides in a small
number of low frequency components, while the vast majority of
high frequency components are nearly zero. We have observed
that usually 99% of the energy is contained by about 10% of the
frequency components.

This property makes an adaptive scheme which selects an inex-
pensive filter for weak frequency components very attractive. For

simplicity, let us consider interpolation of a 1D spectrum F by two
filters; a larger filter H1 and a smaller filter H2. Each input sample
component is filtered or scattered by either H1 or H2 according to
its strength. Let F1 be the set of those samples that are filtered by
H1 and F2 be those filtered by H2. Obviously, F1 + F2 = F . The
correct result we want is F �H1 or in the spatial domain, f h1. The
adaptive scheme can thus be written as follows:

F�1 fF1 �H1 + F2 �H2 g

= F�1 fF �H1 + F2 � (H2 �H1) g

= f h1 + f2 (h2 � h1) (15)

The term f2 (h2�h1) denotes the difference between the adaptively
filtered image and the correct image. The mean square error is given
by integrating the power of this error term. Using Rayleigh’s theo-
rem, its upper bound is given in the frequency domain as follows.

1
L

Z +1

�1

j f2 (h2 � h1) j
2
dx

�
1
L
h

2
d-max

Z +1

�1

j f2 j
2
dx

=
1
L
h

2
d-max

Z +1

�1

jF2 j
2
ds (16)

where L is the length of the non-zero region of f and hd-max is the
maximum of jh2 � h1j. This upper bound allows us to select input
samples to be filtered by H2 such that the mean square error of the
rendered image is below a user defined tolerance. Similar analysis
provides an upper bound for the mean square error when more than
2 filters are employed. The idea extends straightforwardly to 3D
discrete signals.

This adaptive scheme is incorporated to the slice extraction as
follows. First, each sample in the 3D spectrum is examined, and
those whose magnitude is small enough to satisfy equation (16)
are marked. This process is done only once after a volume data is
transformed to the frequency domain. During slice extraction, each
sample point on the slice plane is visited. If for a given sample
point all of the 3D spectrum voxels that fall within the support of
the larger filter are marked, the smaller filter is employed instead.

It is possible to improve this scheme further. To avoid testing
all voxels falling within the support of the larger filter, we modify
the preprocess to mark only those voxels that themselves satisfy
equation (16) and for which all neighboring voxels lying within a
distance from them equal to one-half of the support of the larger
filter satisfy the equation. Given this more conservative marking,
it is sufficient during slice extraction to test the spectrum voxel
closest to the slice sample position. If that voxel is marked, we
know without visiting any other voxels that it is safe to employ the
smaller filter.

5 Reducing Memory Cost

Because the 3D spectrum is complex and requires a floating point
representation due to its large dynamic range, a straightforward
implementation using a double precision format consumes 16 times
more memory than a spatial domain algorithm3. This explosion in
memory cost can be controlled by using the Hartley transform [10]
and a shorter number representation.

The Hartley transform is a direct relative of the Fourier transform
[2]. The transform is defined as follows:

Hff(x)g = FH(s) =

Z +1

�1

f(x) cas2�sx dx (17)

3Assuming each voxel is represented by one byte in the spatial domain
algorithm. With shading, spatial domain algorithms require more memory.

275

(a) (b) (c) (d)

Figure 6: Examples of frequency domain depth cueing and shading. (a) projection without depth cueing, (b) linear depth
cueing, (c) directional shading without depth cueing, (d) directional shading with depth cueing.

where cas2�sx = cos 2�sx + sin 2�sx. Since the kernel is a real
function, this transform maps a real function f(x) to a real spectrum
FH(s). Use of the Hartley transform, therefore, eliminates the need
for a complex number. Since the Fourier spectrum of a real signal
is hermitian4, the same amount of memory saving is possible with
the Fourier transform by dropping half of the spectrum (e.g., store
only the positive coefficients along the Sx axis). However, such
implementation would unnecessarily complicate the slice extraction
process.

Due to wide dynamic range of spectra, a floating point format is
necessary. Considering the necessity of premultiplying the volume
before transforming, a 64-bit double precision format is a safe choice
to represent a spectrum of a 2563 volume. However, even using the
Hartley transform, this occupies 8 times more memory than the
original volume. This problem can be minimized by using a shorter
floating point format. We have defined and used a 16-bit floating
point format which reduces the memory cost factor to two.

6 Results

Figures 7-9 show images rendered using the algorithms we have
described. The shading, depth cueing, adaptive filtering, the Hart-
ley transform, and the 16-bit floating point format are all used in
rendering these three images.

Figure 7 shows a human skull mounted in a lucite head cast.
The data was acquired using computed tomography (CT). Zeros are
padded to the original data (1063) and resulting 1283 volume data
was rendered. The volume is shaded by a hemispherical light source
located to the right and is also linearly depth cued with respect to
the observer’s position.

The use of multiple light sources is shown in figure 8. A polyg-
onalization of the Utah teapot has been 3D scan-converted into a
2563 volume data which is then shaded by a red, a green, and a blue
light located perpendicular to the observer and 120 degrees apart.
The resulting color on the surface provides some intuition for the
orientation of the gradient vector.

Figures 9 and 10 compare the frequency domain rendering tech-
nique with a conventional spatial domain volume rendering. These
images were generated using identical shading and depth cueing.
There is no visible difference between the two images.

The adaptive filtering scheme described in section 4 was imple-
mented using a 3 � 3� 3 and a 1 � 1 � 1 filter with the maximum

4A signal whose real part is even and whose imaginary part is odd, i.e.
f(x) = f�(�x).

Figure 7: Human head. Frequency domain volume render-
ing. Data courtesy of North Carolina Memorial Hospital.

difference in response set to (hd-max) 0.3. Figures 7-9 were gener-
ated using this scheme. As shown in table 1, the scheme reduced the
cost of interpolation to about 15% of the non-adaptive case. Relative
error was always below 40dB, a level at which image differences
are not visible.

Table 1 also shows rendering times to generate figures 7-9. Ren-
dering times by a spatial domain renderer are also shown for com-
parison. These times include all necessary operations to create a
2D projection. For the frequency domain rendering technique, it
consists of slice extraction (interpolation and resampling), inverse
Harteley transform, and format conversion to and from the 16-bit
floating point format and the machine’s native format. Times were
measured on an IRIS Crimson with a 50Mhz R4000 processor us-
ing non-optimized code. As the table shows, the running time of
the frequency domain method grows much slower than the spatial
domain method, which grows at O(n3).

The effect of round off error caused by the 16-bit floating format
was very small. Relative difference from images generated using a
64-bit double precision representation were below 50dB. Figures 7-
9 were generated using this format.

7 Conclusions

The use of the Fourier projection slice theorem allows us to re-
place the O(n3) spatial domain projection computation that arises

276

Adaptive filtering
Rendering timeVolume data Size Non adaptive Adaptive

Num. ops.y Num. ops.y (Ratio) Freq. domain Spatial domain

Head 1283 5:92� 105 1:01 � 105 (17.1%) 0.54 sec 3.15 sec
Teapot 2563 1:81� 106 2:33 � 105 (12.9%) 1.77 24.29
Turbine 2563 1:85� 106 3:00 � 105 (16.2%) 2.03 24.38

yA filtering operation consists of a filter table look up, a reference to a voxel, a multiplication, and an addition.

Table 1: Effect of adaptive filtering

Figure 8: Utah teapot. Frequency domain volume rendering.
The pot is lit by a red light (right), a green light (upper left),
and a blue light (lower left).

in volume rendering with an O(n2 logn) frequency domain com-
putation, although the frequency domain projection operator is non-
occluding, resulting in a loss of realism. In this paper, we have
shown that other O(n3) spatial domain rendering computations that
arise in volume rendering (i.e., shading and depth cueing) can be
replaced with O(n2) frequency domain methods, and we propose
that a judicious selection of these methods can restore much of the
realism lost by using a non-occluding projection.

The speed advantage of our algorithm over volume rendering
is considerable. As our experiments show, a 1283 volume can be
rendered in a fraction of a second on a conventional workstation.
Further optimization of the code should achieve interactive render-
ing without specialized hardware.

Besides its speed advantage, the frequency domain approach
lends itself to simple and elegant speed-accuracy tradeoffs. By
extracting only the central portion of the 3D spectrum present on a
slice, a renderer could provide a low resolution image quickly while
the user is rotating the volume, to be replaced with a higher quality
image when the mouse button or joystick is released.

Since the core computations of the algorithm are convolution and
the FFT, an implementation using digital signal processors (DSPs)
obviously suggests itself. With the growth of multimedia appli-
cations involving video and sound encoding and decoding, such
processors are becoming a standard part of most graphics worksta-
tions. It should also be noted that these computations exhibit high
data level parallelism and can be parallelized in any one of several
ways.

With regard to limitations and improvements, further effort
should be made to relax the limitations imposed by the linear nature
of the Fourier/Hartley transform. The algorithm currently does not

Figure 9: Turbine blade. Frequency domain volume ren-
dering. The blade is lit by a green light (top), a blue light
(bottom), and a dim red light (right). Data courtesy of Gen-
eral Electric.

allow non-linear attenuation.

Acknowledgements

The authors wish to thank Tom Malzbender for helpful suggestions
and his interpolation filter coefficients and Ronald Bracewell for
useful hints on the use of the Hartley transform. The notion that
shading could be factored with respect to digital compositing, an
idea that inspired the present work, was suggested by Brice Tebbs.
Discussions with Adam Levinthal were useful in the early stages
of this project. Hide Hirase’s volume modeling toolkit helped us
creating test datasets.

This research was supported by the National Science Founda-
tion (NSF), the National Aeronautics and Space Administration
(NASA), and the sponsoring companies of the Stanford Center for
Integrated Systems (CIS).

References

[1] Bracewell, Ronald, The Fourier Transform and its Applica-
tions, revised second edition , McGraw-Hill, 1986.

[2] Bracewell, Ronald, The Hartley Transform , Oxford Univer-
sity Press, 1986.

[3] Cohen, Michael and Greenberg, Donald, “The Hemicube: A
Radiosity Solution for Complex Environments”, Computer
Graphics, Vol.19, No.3, pp.31-40, 1985.

277

Figure 10: Same dataset as figure 9. Rendered with identical
shading and depth cueing but using a spatial domain volume
renderer.

[4] Drebin, Robert, Carpenter, Loren, and Hanrahan, Pat, “Vol-
ume Rendering”, Computer Graphics, Vol.22, No.4, pp.65-
74, 1988.

[5] Dunne, Shane, Napel, Sandy, and Rutt, Brian, “Fast Repro-
jection of Volume Data”, Proceedingsof the First Conference
on Visualization in Biochemical Computing, IEEE Computer
Society Press, pp.11-18, 1990.

[6] Hottel, Hoyt, and Sarofim, Adel, “Radiative Transfer”,
McGraw-Hill, 1967.

[7] Levoy, Marc, “Display of Surfaces from Volume Data”, IEEE
Computer Graphics and Applications , Vol.8, No.3, pp.29-37,
1988.

[8] Levoy, Marc, “Efficient Ray Tracing of Volume Data”, ACM
Transactions on Graphics , Vol.9, No.3, pp.245-261, 1990.

[9] Levoy, Marc, “Volume Rendering using the Fourier
Projection-Slice Theorem”, Proceedings of Graphics Inter-
face ’92, Canadian Information Processing Society, pp.61-
69, 1992.

[10] Malzbender, Tom, “Fourier Volume Rendering”, ACM Trans-
actions on Graphics, Vol.12, No.3, July 1993.

[11] Napel, Sandy, Dunne, Shane, and Rutt, Brian, “Fast Fourier
Projection for MR Angiography”, Magnetic Resonance in
Medicine, Vol.19, pp.393-405, 1991.

[12] Nishita, Tomoyuki and Nakamae, Eihachiro, “Continuous
Tone Representation of Three-Dimensional Objects”, Com-
puter Graphics, Vol.20, No.4, pp.125-132, 1986.

[13] Pentland, Alex, “Linear Shape from Shading”, International
Journal of Computer Vision, Vol.4, pp.l53-162, 1990.

[14] Subramanian, K.R. and Fussel, Donald, “Applying space
subdivision techniques to volume rendering”, Proceedings
of the First IEEE Conference on Visualization. (Visualization
’90), IEEE Computer Society Press, pp.150-159, 1990.

[15] Westover, Lee, “Footprint Evaluation for Volume Render-
ing”, Computer Graphics, Vol.24, No.4, pp.367-376, 1990.

[16] Zuiderveld, Karel, Koning, Anton, and Viergever, Max, “Ac-
celeration of ray-casting using 3D distance transforms”, Pro-
ceedings of the SPIE – Visualization in Biomedical Comput-
ing 1992, Vol.1808, pp.324-335, 1992.

278

