Graphics Hardware (2005)
M. Meissner, B.- O. Schneider (Editors)

KD-Tree Acceleration Structures for a GPU Raytracer

Tim Foley and Jeremy Sugerman f

Stanford University

Abstract

Modern graphics hardware architectures excel at compute-intensive tasks such as ray-triangle intersection, mak-
ing them attractive target platforms for raytracing. To date, most GPU-based raytracers have relied upon uniform
grid acceleration structures. In contrast, the kd-tree has gained widespread use in CPU-based raytracers and is
regarded as the best general-purpose acceleration structure. We demonstrate two kd-tree traversal algorithms suit-
able for GPU implementation and integrate them into a streaming raytracer. We show that for scenes with many
objects at different scales, our kd-tree algorithms are up to 8 times faster than a uniform grid. In addition, we
identify load balancing and input data recirculation as two fundamental sources of inefficiency when raytracing

on current graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors 1.3.1

[Computer Graphics]: Raytracing

1. Introduction

The computational demands of raytracing have generated in-
terest in using specialized hardware to accelerate raytrac-
ing tasks. It has been demonstrated that raytracing can be
achieved in real time on custom hardware [HalO1, SWSO02,
SWW*04], or by using a supercomputer or cluster of
computers [PMS*99, WBS03]. Experiments that used pro-
grammable graphics for ray-triangle intersection [CHHO02,
BFH™*04] have also demonstrated that GPUs can outperform
CPU implementations.

Purcell et al. [PBMHO02] show that the entire raytracing
process — camera ray generation through shading — can be
implemented on a GPU using a stream programming model.
Their work has led to several other GPU raytracer implemen-
tations [MFMO04,Chr05, KL04] and our work is an extension
of their approach.

All of these systems used a uniform grid acceleration data
structure. Purcell et al. explain that the uniform grid enables
constant-time access to the grid cells, takes advantage of co-
herence using the blocked memory system of the GPU, and
allows for easy iterative traversal via 3D line drawing. It is,

1 {tfoley, yoel} @graphics.stanford.edu

(© The Eurographics Association 2005.

however, a suboptimal acceleration structure for scenes with
nonuniform distributions of geometry.

The relative performance of different acceleration struc-
tures has been widely studied. Havran [Hav00] compares a
large number of acceleration structures across a variety of
scenes and determines that the kd-tree is the best general-
purpose acceleration structure for CPU raytracers. It would
seem natural, therefore, to try to use a kd-tree to accelerate
GPU raytracing. As we will describe in section 2 though,
the standard algorithm for kd-tree traversal relies on a per-
ray dynamic stack. Ernst et al. [EVG04] demonstrate that
this data structure can be built on the GPU, and implement
a stack-based kd-tree traversal. However, their approach re-
quires storage proportional to the maximum stack depth
multiplied by the number of rays, which may limit the num-
ber of rays that can be traced in parallel. Also, pushing on
the stack requires additional render passes with a “scatter”
operation.

Our work instead presents kd-tree traversal algorithms
kd-restart and kd-backtrack that run without a stack. We
show that these new algorithms maintain the expected per-
formance of kd-tree traversal. We also present a GPU-based
raytracer that incorporates these algorithms and demonstrate
that, as on CPUs, they outperform uniform grid acceleration
structures with scenes of sufficient complexity. Finally, we

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

\ So S2 @

! N

m| m @ @
n \

@@@@

Figure 1: Left: A two-dimensional kd-tree. Internal nodes
are labeled next to their split planes and leaf nodes are la-
beled inside their volume. Right: A graph representation of
the same kd-tree.

discuss the major factors determining performance and dis-
cuss how future hardware improvements could affect GPU
kd-tree traversal.

2. The KD-Tree Algorithm

To better illustrate the variations to the kd-tree traversal al-
gorithm, we will utilize the simple two-dimensional kd-tree
and input ray shown in Figure 1. Each node in the tree rep-
resents an axis-aligned rectangular region of space, and each
internal node is annotated with an axis-aligned plane that
separates the regions of its two children.

2.1. The Standard Approach

A typical kd-tree traversal algorithm for raytracing, taken
from [PHO4], is shown in Figure 2. The algorithm takes as
input a tree and a ray, and searches for the first primitive in
the tree that is intersected by the ray. The tree is traversed
starting at the root, and a stack is used as a priority-ordered
list of nodes left to visit. Each node on the stack is closer
to the ray origin than all nodes below it, and the node cur-
rently being traversed is closer than all nodes on the stack. A
(tmin,tmax) range limits the part of the ray under consider-
ation to that which intersects the current node.

When an internal node is encountered during the traversal,
the (tmin,tmax) range of the ray is classified with respect
to the splitting plane of the node. If the range lies entirely
to one side of the plane, the traversal simply moves to the
appropriate child. If, instead, the range straddles the plane
then traversal will continue to the first child hit by the ray,
while the second child is pushed onto the stack along with
its appropriate (tmin,tmax) range. In this way the traversal
proceeds down the tree, occasionally pushing items onto the
stack, until a leaf node is reached.

If the ray intersects one of the primitives in the leaf within
the (tmin,tmax) range, then the closest intersection in the
leaf is guaranteed to be the first intersection along the ray,
and the traversal terminates and yields this result. If no in-
tersection is found then we pop a work item — consisting of a

kd-search(tree, ray
(global-tmin, global-tmax) = intersect(tree.bounds, ray)
search-node (tree.root, ray, global-tmin, global-tmax

search-node (node, ray, tmin, tmax)
if(node.is-leaf)
search-leaf (node, ray, tmin, tmax)
else
search-split (node, ray, tmin, tmax)

search-split (split, ray, tmin, tmax)
a = split.axis
thit = (split.value - ray.origin[a]) / ray.directionla
(first, second) = order(ray.direction[a], split.left, split.right

if(thit >= tmax or thit < 0)
search-node (first, ray, tmin, tmax
else if(thit <= tmin
search-node (second, ray, tmin, tmax)
else
stack.push(second, thit, tmax)
search-node(first, ray, tmin, thit)

search-leaf (leaf, ray, tmin, tmax)
// search for a hit in this leaf
if(found-hit and hit.t < tmax)
succeed(hit)
else
continue-search(leaf, ray, tmin, tmax

continue-search(leaf, ray, tmin, tmax)
if (stack.is-empty
fail()
else
(n, tmin, tmax) = stack.pop()
search-node(n, ray, tmin, tmax

Figure 2: Standard kd-tree traversal pseudocode. Note that

all function calls are tail calls, and the algorithm can thus
be implemented iteratively.

node and a (¢tmin,tmax) range — from the stack and continue
searching. If the stack is empty then there is no intersection
along the ray and the search terminates.

While the worst case performance of this algorithm is
O(n) in the number of leaf nodes n, its expected cost for
real scenes is O(log(n)). As illustrated in Figure 1, in the
worst case a ray may visit a number of nodes linear in the
size of the tree. In practice, however, it is expected that most
rays will find an intersection within one of the first leaf nodes
visited [Hav00], so the expected performance is proportional
to the height of the tree, which will typically be logarithmic.

2.2. The KD-Restart Algorithm

The kd-restart traversal algorithm modifies the standard kd-
tree traversal to eliminate all stack operations. If we elimi-
nate the push operation from the search-split routine in fig-
ure 2, then the resulting traversal will proceed directly to the
first leaf pierced by the ray. We can observe that so modi-
fied, the traversal will only change the value of tmax in those
cases where an item would have been pushed onto the stack.
In fact, the new value of rmax in such a case will be exactly
the value pushed onto the stack as tmin. This implies that
when we reach a leaf, the value of tmax is either the global
tmax value, or it is exactly the tmin value at which the ray
enters the next leaf. We take advantage of this fact by modi-
fying the continue-search routine:

(© The Eurographics Association 2005.

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

AN ,

N N N

N

N \\

N N

Figure 3: After failing to find an intersection in a leaf node,
kd-restart advances the (tmin,tmax) range forward. Note
that the modified range now starts in the next leaf to be tra-
versed.

<

AN

K SN

N

A

N N
N N

Figure 4: After searching a leaf node, kd-backtrack re-
sumes the search at the first ancestor that intersects the mod-
ified (tmin,tmax) range.

continue-search(leaf, ray, tmin, tmax
if(tmax == global-tmax
fail()
else
tmin = tmax
tmax = global-tmax
search-node (tree.root, ray, tmin, tmax

When the kd-restart traversal reaches a leaf node and fails
to find a hit, it simply restarts the search at the root of the
tree with the value of tmin advanced to the end of the leaf.
As illustrated in Figure 3, the first leaf intersected by the
modified range is the next leaf that needs to be traversed.
By repeating this process we will visit all the leaves along
the ray in the same order as the standard kd-tree traversal.
However, as each leaf node is reached by a traversal starting
at the root of the tree, the cost of a traversal that visits m
leaf nodes is O(m - h) where h is the height of the tree. In a
balanced tree this yields a worst-case cost of O(n-log(n)). If
we assume, however, that the average number of leaf nodes
visited is bounded by a small constant in practice, then our
expected cost will still be O(log(n)).

2.3. The KD-Backtrack Algorithm

The kd-backtrack algorithm modifies kd-restart to maintain
linear worst-case bounds at the cost of additional per-node
storage. We first observe that the nodes that are pushed on
the stack in the traditional algorithm are always the “other”
(that is, second) child of one of the current node’s ancestors.
Thus it should be possible to reach the parent of the node
atop the stack by following a chain of parent links (which
we can store in the nodes of the tree) from the current node.

If we again employ the tactic of advancing tmin to the

(© The Eurographics Association 2005.

end of the last leaf visited, then we will be able to rec-
ognize the appropriate parent as the closest ancestor that
has a nonempty intersection with the remaining (¢tmin, tmax)
range. Figure 4 demonstrates this effect. We can perform this
intersection test using an axis-aligned bounding box stored
along with every internal node. We implement this approach
with a modified continue-search routine:

continue-search(leaf, ray, tmin, tmax)
if(tmax == global-tmax
fail()
else
tmin = tmax
tmax = global-tmax
backtrack(leaf.parent, ray, tmin, tmax

backtrack(split, ray, tmin, tmax)
(t0,tl) = intersect(split.bounds, ray, tmin, tmax)
if (no-intersection)
backtrack(split.parent, ray, tmin, tmax
else
search(split, ray, t0, tl

The kd-backtrack algorithm increases per-node storage
costs — it requires bounding boxes to be stored with inter-
nal nodes, as well as parent links in all nodes. However, un-
like kd-restart, it preserves the worst-case asymptotic time
complexity of the standard traversal algorithm. To see this,
we observe that the backtracking step will not visit any node
that was not previously visited by the downward search. Fur-
thermore, a given node will be visited at most two times by
the backtracking step; once coming from the left child, and
once coming from the right. Thus kd-backtrack is at most a
factor of three slower than the standard algorithm.

3. Implementation

We have implemented our kd-tree traversal algorithms in-
side of a streaming GPU raytracer modeled after [PBMHO02].
Our raytracer is built on the Brook for GPUs [BFH*04] en-
vironment for stream processing on graphics hardware, and
includes support for four acceleration structures:

e Brute Force — The simplest intersection scheme, similar
in approach to that of [CHHO2]. It intersects an entire
stream of rays with a single triangle at a time, passed
in using constant arguments. On an ATI Radeon X800
XT PE [ATIO4] we have measured this kernel to achieve
nearly 350 million ray-triangle intersection tests per sec-
ond.

e Uniform Grid — A uniform grid intersection algorithm
similar to that presented in [PBMHO02] Because the Brook
system does not support storing streams as 3D textures
we pack the voxel data into a large 2D texture and use a
small number of instructions to index it. Because of lim-
ited arithmetic precision on the ATI hardware we used
for testing, this effectively limits our scenes to 217 vox-
els maximum.

o KD-Restart — A GPU implementation of the kd-restart
algorithm.

e KD-Backtrack — A GPU implementation of the kd-
backtrack algorithm.

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

struct Leaf { // a leaf node in the kd-tree
float triangleCount;
short2 firstTriangle;
short2 parentPointer;

}

struct Split { // an internal node in the kd-tree

float splitvValue;

short2 leftChildPointer;

short2 rightChildPointer;

// sign bits store child type (leaf/split) and split axis
4

struct ExtendedSplit { // further data for kd-backtrack
float3 boundingBoxMin;
float3 boundingBoxMax;
float2 parentPointer;

}

Figure 5: Data types used to store the kd-tree in GPU mem-
ory.

struct TraversalState {
float2 nodePointer;
float tmin;
float tmax;
// sign bits store node type (leaf, split)
// and ray state (traverse, intersect, done)

}

struct IntersectState {
float2 triangleIndex;
float triangleCount;
float tmax;

}

struct HitState {
float2 bestTriangleIndex;
float thit;
float global-tmax;

}

Figure 6: Data types used to store per-ray traversal state.

3.1. KD-Tree Memory Use

In order to make the most efficient possible use of the lim-
ited GPU memory, and to minimize the bandwidth cost of
our kernels, our kd-tree algorithms store the tree and per-ray
state using several packed data structures, as listed in Fig-
ures 5 and 6. As implemented, the base kd-tree structures
use 96 bits of storage per node, while typical CPU imple-
mentations require only 64 bits per node [PH04]. The parent
pointer in the Leaf structure, however, is only needed for
kd-backtrack and could be eliminated in a restart-only im-
plementation. In addition, by using the standard technique
of storing each left child at a known offset from its parent
node, we could eliminate one pointer from the Split struc-
ture. In this way, a kd-restart implementation could store
the tree as efficiently as most CPU kd-tree implementations.
The ExtendedSplit structure required by the kd-backtrack
algorithm, however, incurs an additional 256 bits of storage
costs per internal node.

3.2. KD-Tree Construction

Both our uniform grid and kd-tree data structures are built
offline on the CPU. Our kd-tree construction algorithm is
based on [PHO4]. This algorithm uses a surface-area heuris-

v
Initialize
v
Down :I
!
Leaf
O v I
Intersect :I
!
Continue
v

Figure 7: Dataflow between kernels used in the kd-
backtrack implementation. The kd-restart implementation
eliminates the U p kernel.

tic along with approximate cost information as introduced
by [MB90] and improved by [HB02]. Even though intersec-
tion is more costly than traversal in our implementation, we
have found that using a cost model which regards traversal as
being 8 times more costly than intersection generates good
trees for our system. This has the effect of keeping our trees
relatively shallow and increasing the number of primitives
in each leaf node. These effects serve to increase coherence
between rays and may be responsible for improving perfor-
mance.

3.3. KD-Tree Kernels

The two kd-tree implementations are based on a set of six
Brook kernels. Figure 7 illustrates how these kernels are se-
quenced for the kd-backtrack algorithm. The kernels used
are:

e Initialize — Corresponds to the routine kd-search. This
kernel finds the global (tmin,tmax) range for the ray and
initializes its traversal.

e Down — Corresponds to the routine search-split. This ker-
nel find the first child (left or right) of the current node
pierced by the ray and traverses to it.

e [eaf — Corresponds to a call to routine search-leaf. This
kernel is used to take a ray that has been traversing and
prepare it to intersect triangles.

e Intersect — Corresponds to the body of routine search-
leaf. This kernel iteratively processes the triangles within
the current leaf node.

e Continue — Corresponds to the body of routine continue-
search. This kernel determines whether a hit has been suc-
cessfully found and either terminates the query or contin-
ues it (by restarting or initiating backtrack, as appropri-
ate).

e Up — Corresponds to the backtrack routine. This kernel
advances aray query up the tree until the new (¢min, tmax)
range intersects some node’s bounding box.

(© The Eurographics Association 2005.

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

3.4. Kernel Masking and Scheduling

As mentioned in [PBMHO2], achieving high performance
without branching requires careful scheduling of kernels and
masking of inactive elements. Similar to their approach,
we run our kernels in multiple rendering passes and use
the hardware z-buffer and early-z culling to avoid spending
computation on inactive rays. We select the kernel to run in
each pass using the load balancing strategy from [Del88].
‘We maintain an estimated count of rays in each state and run
a kernel until the estimate for the next kernel is more than
twice the estimate for the current one. This heuristic is meant
to reduce the overhead of switching states (which requires
refilling the entire z-buffer, switching kernels, and switching
inputs) while still operating on large batches of rays. We use
hardware occlusion queries to gather our estimates of rays in
each state.

Recent GPUs have started to offer data-dependent per-
fragment branching and looping instructions [NVIO4],
which reduce the need for multiple passes and sophisticated
scheduling. However, their effect on our kd-tree algorithms
would be minimal. Each of our kernels corresponds roughly
to the body of a loop in a branching kernel. As a result, the
steps run on a given ray are the same in our implementation
as they would be in a branching version. Additionally, Wen-
zel [WenO5] reports that the performance of current branch-
ing implementations is not high and Buck [Buc05] discusses
stability problems and the need for high locality between
branches taken by nearby fragments. We performed prelim-
inary studies on a branching version of our code and had
similar experiences. Therefore, we restricted our implemen-
tation to a kernel-level masking and scheduling approach.

4. Results

We tested our raytracer on a 256MB ATI X800 XT PE
[ATIO4] running the Catalyst 4.10 drivers. We evaluated
our raytracer’s behavior while producing 512x512 images
of four scenes:

e Cornell Box - 32 triangles, 2x2x2 uniform grid. An ex-
tremely simple scene.

e Stanford Bunny - 69451 triangles, 50x50x50 uniform
grid. A scene with a single object and a fairly regular dis-
tribution of triangles.

e Robots - 71708 triangles, 50x50x50 uniform grid. A scene
from the BART [LAMOO] suite that exhibits the "teapot in
a stadium" scenario. There are many detailed robots in a
larger, less detailed, city.

e Kitchen - 110561 triangles, 50x50x50 uniform grid. An-
other scene from BART that models a kitchen scene with
a variety of objects of different sizes and complexities.

The views rendered for each of our test scenes are pre-
sented in Figure 8.

(© The Eurographics Association 2005.

Brute Grid Restart Backtrack
Cornell Box 23 63 80 84
Bunny 4620 357 701 690
Robots 4770 8344 968 946
Kitchen 7350 2687 992 857

Table 1: Elapsed time (milliseconds) for the primary ray
casting of the scenes in Figure 8 with the different algo-
rithms.

Down/Up Intersect Trans.
Robots/Restart 31.68M/0M 6.84M 2.48M
Robots/Backtrack 13.49M/9.80M 6.84M 2.48M
Kitchen/Restart 21.80M/0M 591IM 2.13M
Kitchen/Backtrack 10.86M/7.78M 59IM 2.13M

Table 2: The total number of times primary rays were in
each state of the two kd-tree algorithms for different scenes.
Because of masking, these counts do not correspond to the
number of kernel calls. The Transition counts reflect both the
Leaf and Continue kernels.

4.1. Rendering Performance Tests

Table 1 shows the time spent in the scene-intersection por-
tion of rendering the test scenes at a resolution of 512x512.
As expected, the brute force approach is linear in the number
of triangles. The uniform grid and two kd-tree approaches
behave as expected. The uniform grid handles the regularity
of the Stanford Bunny extremely efficiently (an effective rate
of over 700 thousand rays per second), but its performance
on the Robots scene is more than 20 times slower, despite the
similar triangle counts of these scenes. These results confirm
the findings of similar studies on the CPU. Grids work better
for scenes with uniform distributions of similarly-sized ob-
jects, while kd-trees work better when the scene contains a
non-uniform distribution of objects of different sizes. Note
that the absolute performance of our kd-tree algorithms is
roughly 250-300 thousand rays per second for the complex
Robots and Kitchen scenes.

For these scenes, the performance of the kd-restart and
kd-backtrack algorithms was very similar. In order to under-
stand the differences in behavior, we use occlusion queries
to count how often rays were in each state of the two algo-
rithms for the Robots and Kitchen scenes. These results are
summarized in Table 2. As expected, both algorithms visited
the same number of leaves and intersected the same number
of triangles. The kd-backtrack algorithm merely optimizes
how it reaches leaves by backtracking only as far up the tree
as necessary.

These measurements also allow us to estimate how a

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

g |

Figure 8: Four scenes used to test our GPU raytracer. From left to right: The Cornell Box, The Stanford Bunny, BART Robots,

and BART Kitchen.
Floats Dependent

Instr. In/Out Fetches GB/s
Brute Intersect 37 12/4 0 20.7
Grid Traverse 57 26/16 2 10.8
Grid Intersect 83 36/8 16 16.6
KD Down(*) 66 15/4 3 15.7
KD Up 36 20/4 8 24.5
KD Intersect 72 33/8 13 18.5

Table 3: Characteristics of the key kernels. The KD Down
kernel is compute-bound. Despite attaining different band-
widths, the other kernels all turn out to be at or nearly
bandwidth-bound.

stack-based algorithm would compare to our stackless im-
plementations. The kd-backtrack’s Down count in Table 2
is exactly the number of search steps that the stack-based
approach would have required. The Up steps represent the
extra work required by our backtracking algorithm. Even
with this work, there is less than a two-fold increase in the
total traversal work. Similarly, we find that the extra work
performed by kd-restart is within a factor of three of the
traversal work performed by a stack-based kd-tree traversal
algorithm. This resonates with the belief that in the average
case, each kd-tree ray traversal terminates after visiting only
a small number of leaf nodes (and thus only incurs only a
small number of restarts or backtracks).

4.2. Kernel Performance Tests

We also evaluated the raw performance of the key kernels
used by our acceleration structures. In general, a kernel’s
performance is limited by one of two factors: the rate at
which the hardware can execute math instructions (compute)
or the rate at which the hardware can fetch the required tex-
ture data (bandwidth). In the first case we say the kernel is
compute-bound; in the second, we say that it is bandwidth-
limited. Current GPUs require significant computation to

cover the cost of texture fetches [FSHO04] so we expected
and found that bandwidth is the critical resource.

We took the rays and triangles from the Kitchen scene and
measured the elapsed time to run 500 invocations of each
kernel (without any z-buffer culling or load balancing). Us-
ing the number of floats fetched from textures and written to
outputs we computed the effective bandwidth. Table 3 shows
the results.

We determined which kernels were bandwidth-limited
by timing fetch-only versions. These kernels were stripped
down to perform the same number of fetches and writes, but
only enough math to prevent the driver from eliminating the
fetches. Where the fetch-only versions exhibited the same
performance as the full versions, we concluded that the full
versions were bandwidth-bound or near the crossover point.
Only the kd-tree Down kernel proved to be compute-bound.

There are two reasons that our bandwidth-bound kernels
all reach different effective bandwidths. The first is that the
ATI drivers / hardware penalize the use of multiple outputs
(each output is a float4 vector). There is a small falloff in
achievable output bandwidth with a second output which af-
fects the grid and kd-tree Intersect kernels. There is a much
larger falloff with four outputs which impacts the uniform
grid Traverse kernel.

The second determining factor is the method and pattern
of accesses to input textures. [FSHO4] reports that fetching
texture data already in the texture cache is nearly twice as
fast as sequential streaming accesses. The brute force Inter-
sect kernel is a purely streaming kernel and its input band-
width (three quarters of its total bandwidth) is in sync with
the reported 15.6 GB/s rate for sequential cache accesses.

Additionally, most of our kernels have data-dependent
fetches — values read from one input texture are used to com-
pute the addresses of values fetched from others. Dependent
fetches allow completely arbitrary access patterns and their
performance is determined heavily by their coherence. Pat-
terns where nearby fragments load from the same or over-
lapping addresses perform well, even better than sequential

(© The Eurographics Association 2005.

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

accesses. Texture units in hardware are heavily optimized for
this sampling pattern. On the other hand, random accesses
perform very poorly.

The kd-tree Up kernel reaches the highest effective band-
width because it produces exponentially increasing coher-
ence as it iterates. Each step of the Up kernel moves rays
closer to the root of the kd-tree and each level has roughly
half as many nodes as the one beneath it. That means that
even a random distribution of rays will be focused into more
and more coherence as it progresses. The kd-tree Up ker-
nel and both the kd-tree and uniform grid Intersect kernels
also receive coherence as a result of nearby rays tracing sim-
ilar paths through the scene and being tested against similar
triangles. This latter form of coherence, however, would be
reduced tracing secondary rays like shadow rays while the
focusing coherence would remain.

The kd-tree Down kernel is the one compute-bound ker-
nel. On the CPU the traversal algorithm has been heavily
optimized and needs much less computation than our equiv-
alent kernel. In contrast, the Down kernel cannot be opti-
mized further due to existing GPU limitations. The data it
fetches is heavily packed (to conserve memory and band-
width) and unpacking requires computation. Current GPUs
lack integer and bitwise operations which exacerbates the
cost of unpacking. Additionally, predication is the only con-
ditional primitive available on our hardware. This causes us
to incur the cost of all paths through the branches in the al-
gorithm. Finally, the current ATT hardware’s poor numerical
precision (only 16 bits of mantissa) forced us to add an extra
conditional to eliminate numerical instability when tmin is
very close to a splitting plane — a situation that our modified
kd-tree traversal algorithms make common.

5. Conclusions and Future Work

We have described a modified kd-tree traversal algorithm
that eliminates the per-ray stack. While the removal of the
stack was motivated by the limitations of current GPUs,
it also reduces the working set size needed to trace rays
through a kd-tree. This change allows for more rays to be
traced in parallel, which we believe could benefit a number
of architectures. We compare our streaming kd-tree imple-
mentation with a streaming uniform grid and see the same
relative strengths as their CPU counterparts: the grid is effi-
cient at uniformly populated scenes but is not as fast as the
kd-tree in complex scenes with varying levels of detail.

Despite the improvements we have introduced to our ray-
tracer, our performance is only a few hundred thousand rays
per second while the fastest CPU implementations report
rates up to a few million rays per second [BWS03]. Our im-
plementation is not as heavily optimized as the best CPU
systems, but this still seems a surprising disparity given our
GPU’s many-fold advantage in both peak computational rate
and memory bandwidth. We see two fundamental issues lim-
iting the performance of our raytracer — the inefficiency of

(© The Eurographics Association 2005.

load balancing and the costs of data recirculation. We believe
these issues are central for any highly parallel raytracer.

We depend on compute masking and careful schedul-
ing of kernels to run our algorithms on the extremely wide
SIMD architecture of current fragment processors. Our cur-
rent load balancing techniques get very low utilization of
the hardware, and we believe that this incurs more than a
factor of five slowdown. Performance is lost both to the
cost of switching kernels, and to the low efficiency of the
hardware when shading small numbers of fragments. Con-
ditional branching support could allow for better masking
and scheduling of fragments, and it will be instructive to
retry branching versions of our kernels as hardware offer-
ings mature. Unfortunately, this approach puts the burden of
efficiency on the branching hardware, and that poses a chal-
lenge to the SIMD organization of current architectures.

The pure streaming approach to GPU raytracing devotes
a large portion of the available bandwidth to recirculating
per-ray data between passes. Each kernel reloads e.g. the ray
origin and direction and fetches the ray state written by the
previous pass. This data competes with dependent fetches
in kernels that are largely bandwidth bound. In a conven-
tional threaded raytracer, this per-ray data would be loaded
into registers or local cache and would stay there throughout
traversal. Per-fragment branching would allow the same ap-
proach to be applied on GPUs. Alternatively, if peak perfor-
mance could be reached with a smaller number of fragments,
a local memory to cache reused input data and iteration state
across kernel invocations could have the same effect.

Though streaming raytracers have not yet tapped the full
performance of GPUs, kd-trees bring increased scalability
and demonstrate that the potential for improvement still ex-
ists. We are hopeful that our kd-tree traversal algorithms will
encourage further exploration of data structures and algo-
rithms for streaming raytracing, and that future generations
of hardware will allow for more efficient implementation of
our algorithms.

6. Acknowledgments

We would like to thank Tim Purcell for providing access to
his GPU raytracer and Matt Pharr and Greg Humphreys for
the pbrt raytracer. Mike Houston provided a wealth of assis-
tance with our performance analysis, and Pat Hanrahan gave
invaluable feedback during the writing process.

Support for this research was provided by the Ram-
bus Stanford Graduate Fellowship, DARPA Polymorphous
Computing Architectures Project (contract F29601-03-
0117-P00004), and the DARPA Smart Memories Project
(contract MDA904-98-R-S855).

References

[ATIO4] ATI: Radeon X800 product site, 2004.

http://www.ati.com/products/radeonx800. 3,5

Tim Foley & Jeremy Sugerman / KD-Tree Acceleration Structures for a GPU Raytracer

[BFH*04] BUCK I., FOLEY T., HORN D., SUGERMAN
J., FATAHALIAN K., HOUSTON M., HANRAHAN P.:
Brook for GPUs: Stream computing on graphics hard-
ware. In Proceedings of ACM SIGGRAPH 2004 (2004).
1,3

[Buc05] BuUCK 1.: Stream Computing on Graphics Hard-
ware. Ph.D. thesis, Stanford University, Mar. 2005. 5

[BWS03] BENTHIN C., WALD I., SLUSALLEK P.: A
scalable approach to interactive global illumination. In
Proceedings of Eurographics (2003), vol. 22, pp. 621-
630. 7

[CHHO2] CARRN. A, HALLJ.D., HARTJ. C.: The Ray
Engine. Tech. Rep. UIUCDCS-R-2002-2269, Department
of Computer Science, University of Illinois, 2002. 1, 3

[Chr05] CHRISTEN M.: Ray Tracing on GPU. Diploma
thesis, University of Applied Sciences Basel, Switzerland,
2005. 1

[Del88] DELANY H. C.: Ray tracing on a connection ma-
chine. In Proceedings of the 1988 International Confer-
ence on Supercomputing (1988), pp. 659-667. 5

[EVG04] ERNST M., VOGELGSANG C., GREINER G.:
Stack implementation on programmable graphics hard-
ware. In Vision Modeling and Visualization 2004 (2004),
pp- 255-262. 1

[FSHO4] FATAHALIAN K., SUGERMAN J., HANRAHAN
P.: Understanding the efficiency of GPU algorithms
for matrix-matrix multiplication. In Graphics Hardware
2004 (Aug. 2004), p. page range goes here. 6

[Hal0O1] HALL D.: The AR350: Today’s ray trace
rendering processor. 2001 SIGGRAPH / Eurograph-
ics Workshop On Graphics Hardware - Hot 3D Ses-
sion 1, 2001. http://graphicshardware.org/previous/www_2001/presentations/
Hot3D_Daniel_Hallpdf. 1

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms.
Ph.D. thesis, Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Techni-
cal University in Prague, November 2000. 1, 2

[HBO2] HAVRAN V., BITTNER J.: On improving kd-trees
for ray shooting. In Proceedings of WSCG’2002 confer-
ence (2002), pp. 209-217. 4

[KLO4] KARLSSON F., LIUNGSTEDT C. J.: Ray Trac-
ing Fully Implemented on Programmable Graphics Hard-
ware. M.S. thesis, Chalmers University of Technology
Goteborg, Sweden, 2004. 1

[LAMOO] LEXT J., ASSARSSON U., MOELLER T.:
BART: A Benchmark for Animated Ray Tracing. Tech.
rep., Chalmers University of Technology, Goeteborg,
Sweden, May 2000. hp://www.ce.chalmers.se/BART/. 5

[MB90] MAcDONALD D. J., BooTH K. S.: Heuristics
for ray tracing using space subdivision. Vis. Comput. 6, 3
(1990), 153-166. 4

[MFM04] MORENO-FORTUNY G., McCooL M.: Uni-
fied stream processing raytracer. Poster at GP~2: The
ACM Workshop on General Purpose Computing on
Graphics Processors, and SIGGRAPH 2004 poster, 2004.

http://www.cgl.uwaterloo.ca/ gmoreno/streamray.html. 1

[NVIO4] NVIDIA: Geforce 6 series technical specifica-
tions, 2004.

http://www.nvidia.com/object/geforce6_techspecs.html. 5

[PBMHO02] PuURCELL T. J., Buck I., MARK W. R,
HANRAHAN P.: Ray tracing on programmable graphics
hardware. ACM Trans. Graph. (2002), 703-712. 1,3,5

[PHO4] PHARR M., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann, 2004. 2,4

[PMS*99] PARKER S., MARTIN W., SLOAN P.-P. J.,
SHIRLEY P., SMITS B., HANSEN C.: Interactive ray trac-
ing. In SI3D °99: Proceedings of the 1999 symposium
on Interactive 3D graphics (New York, NY, USA, 1999),
ACM Press, pp. 119-126. 1

[SWS02] SCHMITTLER J., WALD I., SLUSALLEK P.:
SaarCOR - a hardware architecture for realtime ray-
tracing. In Proceedings of EUROGRAPHICS Work-
shop on Graphics Hardware (2002). available at
http://graphics.cs.uni-sb.de/Publications. 1

[SWW*04] SCHMITTLER J., WOOP S., WAGNER D.,
PAUL W. J., SLUSALLEK P.: Realtime ray tracing of dy-
namic scenes on an FPGA chip. In Proceedings of Graph-
ics Hardware (2004), pp. 95-106. 1

[WBS03] WALD I., BENTHIN C., SLUSALLEK P.: Dis-
tributed interactive ray tracing of dynamic scenes. In Pro-

ceedings of the IEEE Symposium on Parallel and Large-
Data Visualization and Graphics (PVG) (2003). 1

[Wen05] WENZEL C.: Far Cry and DirectX. Game De-
velopers Conference, 2005.
http://download.nvidia.com/developer/presentations/2005/GDC/Direct3D_Day/
D3DTutorial08_FarCryAndDX9.pdf. 5

(© The Eurographics Association 2005.

