
A STREAM PROCESSING APPROACH TO INTERACTIVE GRAPHICS
ON CLUSTERS OF WORKSTATIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Greg Humphreys

July 2002

c� Copyright by Greg Humphreys 2002

All Rights Reserved

��

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Patrick Hanrahan
(Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

William J. Dally

I certify that I have read this dissertation and that in my opinion it is
fully adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.

Samuel P. Uselton

Approved for the University Committee on Graduate Studies:

���

��������

Recent advances in VLSI technology have made it possible to implement the entire

graphics pipeline on a single chip. This departure from monolithic multi-chip graphics

systems has made high performance 3D graphics inexpensive and commonplace. Despite

the very high performance achievable on a modern graphics accelerator, these systems have

serious scalability limitations. Typically their performance or utility is limited by the serial

interface between the host processor and the graphics subsystem, or the limited output

resolution they provide. In this thesis, we examine the potential for constructing scalable

graphics systems from multiple such graphics accelerators housed in nodes of a cluster of

off-the-shelf workstations.

The system we present, called Chromium, uses the notion of stream processingto

achieve scalability while retaining maximal flexibility. Using Chromium’s building blocks,

parallel graphics systems can be build that scale in both output resolution and input rate. In

��

�������� �

addition, because the graphics commands being manipulated conform to industry-standard

3D graphics API, Chromium can use unmodified programs as stream sources, allowing ex-

isting applications to be retargeted to new display environments transparently. By using a

standard API, existing serial applications can often be parallelized with very little effort.

Chromium provides extensions to this API to allow parallel applications to constrain the

order of execution of their commands with respect to those of their peers.

����	
��
�������

I would like to thank my advisor, Pat Hanrahan, for his guidance, support, my under-

graduate dorm couch, not throwing me out of the Princeton Graphics Lab for loitering, and

especially for trusting me to head a risky new research project even before I had arrived

at Stanford. I could not have hoped for a better mentor. The other members of my read-

ing committee, Bill Dally and Samuel P. Uselton (SPU), gave generously of their already

overcommited time to help me produce this thesis, for which I am very grateful.

Being at Stanford has been an even better experience than I had initially hoped for. The

Stanford Graphics Lab is an amazing (possibly unparalleled) place, and the people I have

worked with over the years have made being a graduate student truly enjoyable, especially

Maneesh Agrawala, Ian Buck, Milton Chen, James Davis, Matthew Eldridge, Matt Everett,

François Guimbretière, Mike Houston, Homan Igehy, Brad Johanson, Tamara Munzner,

Ren Ng, Chris Niederauer, John Owens, Matt Pharr, Kekoa Proudfoot, Tim Purcell, Ravi

��

��	
��
������
�� ���

Rammamorthi, Jeff Solomon, Gordon Stoll, Maureen Stone, and Diane Tang.

I would also like to thank the members of the Stanford community who have helped me

indulge my unhealthy obsession with duplicate bridge, especially Adam Meyerson, who

taught me that “recursive” can be a dirty word. Also, without Adam, I never would have

produced this textbook auction: 2�� 3�� 3�� 4�� 5�� 6�. Losing 8 IMPS to Billy

Miller for getting +760 in 2� redoubled making with an overtrick was one of the highlights

of my last five years, so I guess I must also thank Ted Hwa and Qi Sun, the perpetrators at

the other table. Way to go guys.

Kelly Shaw, Liadan O’Callaghan, and Aarati Parmar have been exceptional friends,

always making sure I didn’t take my schoolwork too seriously (which I suppose was not

such a monumental task). Without Paul Martino, I wouldn’t have participated in nearly as

many boondoggles as I have, wouldn’t know anything about game shows from the 70’s, and

wouldn’t know nearly as much as I do about cheating the IRS. He is the perfect partner in

crime, although I can’t help feeling that not quitting school to create bridal registry kiosks

for Sears was the big missed opportunity of my career. I suppose only time will tell.

Several people from outside Stanford have contributed to Chromium, making it ironi-

cally more robust and fragile at the same time. The main culprits were Randy Frank and

Sean Ahern from Livermore, Peter Kirchner and Jim Klosowski from IBM T.J. Watson,

and Brian Paul and Alan Hourihane from RedHat. I am also grateful to Nick Triantos and

Gareth Hughes from NVIDIA for their support and access to inside information.

No one is more deserving of my thanks than Jessica Humphreys. Her love and support

have been the most important factors in my success at Princeton and Stanford, and I suspect

that will continue to be true wherever I am in the future. I’m the luckiest guy around.

For Jessica

�	������

Abstract iv

Acknowledgements vi

1 Introduction 1

2 Related Work 4

2.1 Networked Graphics . 4

2.2 Parallel Graphics . 6

2.3 Cluster Graphics . 7

2.4 State Management and Context Switching 9

2.5 Image Composition . 10

��

��
��
�� �

2.6 Large Displays . 12

2.7 Graphics Interfaces . 14

2.8 Stream Processing . 16

3 The Chromium Architecture 18

3.1 Cluster Nodes . 19

3.2 OpenGL Stream Processing . 21

3.3 SPU Chains .22

3.4 SPU Inheritance . 23

3.5 Stream Serialization . 23

3.6 Network Abstraction. .26

3.7 State Tracking . 28

3.8 Server Implementation . 30

3.9 Provided SPUs . 32

4 Scaling Display Resolution 34

4.1 Geometry Bucketing . 37

4.2 Lazy State Update . 40

4.3 Computing Context Differences .42

4.4 API Performance . 44

4.5 Scalability Results . 48

5 Scaling Rendering Rate I:Sort-First 51

5.1 Overview . 52

5.2 Soft Context Switching . 55

��
��
�� ��

5.3 Parallel OpenGL Extensions . 59

5.4 Display Management . 61

5.5 Display Reassembly in Hardware . 62

5.6 Display Reassembly in Software . 64

5.7 Performance and Scalability . 66

5.8 Network Characteristics . 74

6 Scaling Rendering Rate II:Sort-Last 76

6.1 Parallel Volume Rendering . 78

6.2 Performance and Scalability . 79

7 Other Chromium Applications 83

7.1 Integration With an Existing User Interface 83

7.2 Stylized Drawing . 88

8 Discussion and Future Work 94

8.1 Sort-First Scalability Limits . 96

8.2 Texture Management . 96

8.3 tilesort Latency . 97

8.4 Sort-First Consistency Model . 98

8.5 Future Directions . 99

Bibliography 100

���� 	� ������

3.1 SPUs provided by Chromium . 33

4.1 Geometry rates for tilesort . 47

5.1 Context switching rates for various OpenGL implementations 58

6.1 Shaders used in our volume rendering experiments 82

���

���� 	� �������

3.1 A simple Chromium configuration . 21

3.2 A packed network buffer . 24

3.3 Inside a Chromium server . 31

4.1 Typical tilesort usage . 35

4.2 Pseudo-code for tilesort’s buffer flush algorithm 41

4.3 Pseudocode for glBlendFunc . 42

4.4 Updating a server’s fragment state . 43

4.5 Packing and state tracking in tilesort 45

4.6 A snapshot of tilesort’s buffer management scheme 46

4.7 Frame rate comparisons between tilesort and broadcast 49

5.1 Parallel marching cubes . 53

5.2 Pseudocode for soft context switching . 57

����

���� �� ������� ���

5.3 A minimal parallel display routine . 60

5.4 A sample Lightning-2 configuration . 64

5.5 Allocating multiple tiles to a single server with Lightning-2 65

5.6 Configuration for software tile reassembly 66

5.7 Speedup for sort-first parallel rendering 68

5.8 Scaling interface-limited applications . 69

5.9 Scaling a single compute-limited application 70

5.10 Maximum framerate achievable using Lightning-2 or the visualization server 72

5.11 Overlap factor and load imbalance . 74

5.12 Transmit and receive bandwidth for Myrinet 75

6.1 A sort-last Chromium configuration . 77

6.2 A binary-swap compositing Chromium configuration 79

6.3 Performance of our parallel volume renderer 81

7.1 Configuration used to drive IBM’s T221 display using Chromium 84

7.2 Performance of the integration SPU driving the IBM T221 display . . . 86

7.3 Renormalized performance data for the T221 87

7.4 End-of-frame logic for a simple hidden-line style SPU 90

7.5 Drawing style enabled by the hiddenline SPU 91

7.6 Achieving a hidden-line style with bounded memory 92

7.7 Performance of Quake III and the hiddenline SPU 93

�� ����	
����	�

The performance of consumer graphics hardware is increasing at such a fast pace that

a large class of applications can no longer utilize the full computational potential of the

graphics processor. This is largely due to the serial interface between the host and the

graphics subsystem. Recently, clusters of workstations have emerged as a viable option

to alleviate this bottleneck. However, cluster rendering systems have been mostly focused

on providing specific algorithms, rather than a general mechanism for enabling interactive

graphics on clusters. The goal of our work is to allow applications to more easily utilize

the aggregate rendering power of a collection of commodity graphics accelerators housed

in a cluster of workstations, without imposing a specific scalability algorithm that may not

meet an application’s needs.

To achieve this goal, we have designed and built a system that provides a generic mecha-

nism for manipulating streams of graphics API commands. This system, called Chromium,

�

������� �� �
���������
 �

provides an industry-standard graphics API called OpenGL that virtualizes the disjoint ren-

dering resources present in a cluster. Chromium can be used as the underlying mechanism

for any existing cluster-graphics algorithm by having the algorithm use the OpenGL API to

move geometry and imagery across a network as required. In addition, existing OpenGL-

based applications can use a cluster with very few modifications; in some cases, the appli-

cation does not even need to be recompiled. Compatibility with existing applications will

accelerate the adoption of rendering clusters and high resolution displays, encouraging the

development of new applications that exploit resolution and parallelism.

Chromium’s stream processors are implemented as modules that can be interchanged

and combined in an almost completely arbitrary way. By modifying the configuration of

these stream processors, we have built sort-first and sort-last parallel graphics architectures

that can, in many cases, support the same applications without recompilation. Unlike pre-

vious work, our approach does not necessarily require that any geometry be moved across a

network (although this may be desirable for load-balancing reasons). Instead, applications

can issue commands directly to locally housed graphics hardware, thereby achieving the

node’s full advertised rendering performance. Because our focus is on clusters of commod-

ity components, we only consider architectures that do not require communication between

stages in the pipeline that are not normally exposed to an application. For example, a sort-

middle architecture, which requires communication between the geometry and rasterization

stages, is not a good match for our system.

Chromium’s stream processors can be extended programmatically. This added flexi-

bility allows Chromium users to solve more general problems than just scalability, such

as integration with an existing user interface, stylized drawing, or application debugging.

������� �� �
���������
 �

This extensibility is one of Chromium’s key strengths. Because we simply provide a pro-

grammable filter mechanism for graphics API calls, Chromium can implement many dif-

ferent underlying algorithms. This model can be thought of as an extension of Voorhies’s

virtual graphics pipeline, which insulates applications from the details of the underlying

implementations of a common API [Voorhies et al., 1988].

Portions of the work presented in this thesis were described in previous publications.

The design of the tilesort SPU (described in chapter 4) was originally published at IEEE

Supercomputing [Humphreys et al., 2000]. The state tracking system used in Chromium

is based in large part on joint work between Ian Buck and myself, which was presented

at the SIGGRAPH/Eurographics Graphics Hardware Workshop [Buck et al., 2000]. The

parallel interface to our sort-first architecture (described in chapter 5) was presented at

SIGGRAPH [Humphreys et al., 2001]. Finally, the flexible stream processing mechanism

underlying all this technology, along with some of the results in chapter 6 will appear at

SIGGRAPH [Humphreys et al., 2002].

�� ������
 �	��

��� ������	�
 ���
����

In the area of remote rendering, GLX and X windows stand out as the two most widely

used solutions. GLX is a wire protocol for OpenGL that allows an application to trans-

mit a simple packed representation of the OpenGL command parameters to a server to be

executed on behalf of the client [Segal and Akeley, 1999; Kilgard, 1996]. GLX performs

the minimum amount of state tracking required for correctness; it tracks pixel formats for

packing and unpacking pixel data, as well as vertex array state. All other state commands

are sent directly to the server. The design of GLX was motivated by a desire to interface

with the X protocol, not by a need for high-speed remote rendering.

X-Windows provides remote 2D graphics capabilities. Earlier versions of X were state-

less (every drawing command carried with it all necessary state information), which was

very inefficient for remote drawing. The latest version (R11) keeps all state information on

�

������� �� �
���� !��	 "

the server. A single protocol request is used to change a subset of the state at once [Nye,

1995]. X-Windows has the same model of network packet generation as GLX; each state

command (e.g., XSetForeground) causes a state changing packet to be generated. Note

that if multiple state changing commands are made in a row, the X client libraries can

sometimes collapse these commands into a single protocol packet.

Solutions for remote desktop access also fall into this category. The VNC system from

AT&T Research provides remote access to a Microsoft Windows desktop or an X-Windows

session by transmitting compressed image rectangles. Network traffic is kept to a minimum

by only transmitting portions of the framebuffer that are changing, and by combining mul-

tiple such changed regions into a single packet. This design has the nice property that the

client is extremely portable; it only needs to refresh a bitmap and transmit input events.

Microsoft NetMeeting also provides remote access to a Windows desktop. In contrast to

VNC, Netmeeting works by transmitting the Generic Device Interface (GDI) calls from the

desktop to the remote client. This has the advantage of transmitting much less informa-

tion than VNC, since the GDI command stream is typically much more compact than the

framebuffer itself1, but it makes the client highly non-portable.

One advantage of an image based approach to remote graphics is that the client need

not have any rendering capabilities. In fact, remote framebuffer access is a convenient

way to access high-performance or high-quality rendering capabilities from a lower power

desktop. This approach was used by SGI’s GLR and “VizServer” products [SGI Vizserver,

1999], which each allowed users to submit rendering commands to a high-performance

graphics workstations and receive the resulting images as streaming video.

1This will depend on the total size of the image being rendered, as well as any compression strategy being
employed on the image or command stream. In fact, it is an interesting problem to consider the situations
when remote rendering becomes more efficient by sending the final rendered image instead of the high-level
commands required to produce that image.

������� �� �
���� !��	 #

��� �������� ���
����

There have been a number of efforts to improve the performance of a graphics system

by leveraging multiple graphics engines and processors. IRIS Performer provides a scene-

graph library that can parallelize scene graph traversal and also take advantage of multiple

graphics accelerators in a single SMP workstation [Rohlf and Helman, 1994]. Performer

requires the application to use a retained-mode interface to achieve speedups. Performer

also exposes the number of graphics pipes to the application and requires the programmer

to manage that parallelism explicitly.

Another approach to scalable rendering is to build standalone accelerators that have

internal parallelism. The SGI RealityEngine is an example of such an accelerator [Ake-

ley, 1993]. The RealityEngine uses a number of geometry units and rasterization units to

transform and rasterize geometry in parallel. Because it uses bus-based communication

to distribute work and provide strict ordering semantics, its internal scalability is limited

by the difficulty of building faster and wider busses. In addition, the RealityEngine and

its successor, the InfiniteReality, suffer from a problem common to modern PC graphics

accelerators: the interface bottleneck. Today’s accelerators are so fast that it is difficult or

impossible to drive them at full rate through an immediate-mode interface.

Pomegranate is a fully scalable graphics system based on point-to-point communica-

tion [Eldridge et al., 2000; Eldridge, 2001]. Pomegranate provides scalability at all points

in the graphics pipeline, most notably the input interface. This is one of the first modern

graphics architectures to address the problem of interface limitation by allowing multiple

concurrent processes to submit graphics commands to the hardware simultaneously. Al-

though the individual building blocks of Pomegranate are all found in current graphics

accelerators, the very high bandwidths needed for communication in later stages of the

������� �� �
���� !��	 $

pipeline make it impractical to separate multiple pipelines across nodes in a cluster.

PixelFlow is an image-composition architecture designed to support multiple inputs

from a parallel host [Molnar et al., 1992]. PixelFlow provided an OpenGL interface with a

few mandatory extensions [Eyles et al., 1997], but could not provide any guarantees about

order of execution, making it difficult to write scalable applications that required ordering

(e.g., back-to-front transparency).

Most parallel hardware architectures are standalone accelerators with internal paral-

lelism. These architectures provide good scalability up to some predetermined limit and

for a certain class of applications. Each architecture can be classified according to the point

in the graphics pipeline at which it redistributes data [Molnar et al., 1994].

��� ������� ���
����

Clusters have long been used for parallelizing traditionally non-interactive graphics

tasks such as ray-tracing, radiosity (e.g., [Funkhouser, 1996; Recker et al., 1990]), and

volume rendering (e.g., [Ma et al., 1994; Giertsen and Peterson, 1993]). Other cluster-

parallel rendering efforts have largely concentrated on exploiting inter-frame parallelism

rather than trying to make each individual frame run faster [Pixar, 1998]. We are interested

in enabling fast, interactive rendering on clusters, so these techniques tend to be at most

loosely applicable to our domain.

In the last few years, there has been growing interest in using clusters for interac-

tive rendering tasks. Initially, the goal of these systems was to drive large tiled displays.

Humphreys and Hanrahan described an early system designed for 3D graphics [Humphreys

and Hanrahan, 1999]. Although the system described in that paper ran on an SGI Infinite-

Reality, it was later ported to a cluster of workstations. At first, their cluster-based sys-

tem, called WireGL, only allowed a single serial application to drive a tiled display over

������� �� �
���� !��	 %

a network [Humphreys et al., 2000]. WireGL used traditional sort-first parallel rendering

techniques to achieve scalable display size with minimal impact on the application’s perfor-

mance. The main drawback of this system was its poor utilization of the graphics resources

available in a cluster. Because it only focused on display resolution, applications would

rarely run faster on a cluster than they would locally.

Other approaches focused on scalable rendering rates. Samanta et al. described a cost-

based model for load-balancing rendering tasks among nodes in a cluster, eventually redis-

tributing the resulting non-overlapping pixel-tiles to drive a tiled display [Samanta et al.,

2000a; Samanta et al., 1999]. They then extended this technique to allow for tile overlap,

creating a hybrid sort-first and sort-last algorithm that could effectively drive a single dis-

play [Samanta et al., 2000b]. All of these algorithms required the full replication of the

scene database on each node in the cluster, so further work was done to only require par-

tial replication, trading off memory usage for efficiency [Samanta et al., 2001]. Although

these papers present an excellent study of differing data-management strategies in a clus-

tered environment, they all provide algorithmsrather than mechanisms. Applying one of

these techniques to a big-data visualization problem would require significant reworking of

existing software.

A different approach to dataset scalability was taken by Humphreys et al. when they

integrated a parallel interface into WireGL [Humphreys et al., 2001]. By posing as the sys-

tem’s OpenGL driver, WireGL intercepts OpenGL commands made by an application (or

multiple applications), and generates multiple new command sequences, each represented

in a compact wire protocol. Each sequence is then transmitted over a network to a differ-

ent server. Those servers manage image tiles, and execute the commands encoded in the

streams on behalf of the client. Finally, the resulting framebuffer tiles are extracted and

������� �� �
���� !��	 &

transmitted to a compositing server for display. Ordering between streams resulting from

a parallel application is controlled using the parallel immediate mode graphics extensions

proposed by Igehy et al [Igehy et al., 1998]. WireGL can use either software-based image

reassembly or custom hardware such as Lightning-2 [Stoll et al., 2001] to reassemble the

resulting image tiles and form the final output. This approach to cluster rendering allows

existing applications to be parallelized easily, since it is built upon a popular, industry-

standard API. However, by imposing a sort-first architecture on the resulting application,

it can be difficult to load-balance the graphics work. Load-balancing is usually attempted

by using smaller tiles, but this will tend to cause primitives to overlap more tiles, resulting

in additional load on the network and reduced scalability. More fundamentally, WireGL

requires that all geometry be moved over a network every frame, but today’s networks are

not fast enough to keep remote graphics cards busy.

��� ����� ���������� ��
 ������� ���������

State management is another critical feature of parallel rendering systems. Torborg de-

scribes a parallel graphics system in which graphics state is broadcast to each geometry pro-

cessor [Torborg, 1987]. This was practical because the architecture being described used a

shared bus to connect the geometry processors, so broadcasts were inexpensive. The Re-

alityEngine system broadcasts predetermined “infrequent” state commands, but maintains

a copy of frequently changed commands (e.g. color, normal, texture coordinates) near

the host interface. Those commands are attached to issued geometry, preventing needless

broadcast of rapidly changing state.

Michael Cox outlines a near optimal algorithm in his Ph.D. thesis for state management

in a parallel implementation of Pixar’s PhotoRealistic RenderMan [Cox, 1995]. His ap-

proach is conservative (i.e., it may send more data than absolutely necessary) because of the

������� �� �
���� !��	 �'

undecidability of computing state element equality in RenderMan. David Ellsworth et al.

describe a system which only sends relevant state elements to rendering nodes [Ellsworth

et al., 1990]. Cox points out that Ellsworth’s system is restricted to supporting retained

mode applications. In addition, Ellsworth’s algorithm still requires the broadcast of certain

state elements (e.g., matrix transformations).

Finally, context switching is addressed by many papers on graphics hardware. The

Apollo DN10000 supported multiple graphics contexts in hardware and could perform

a context switch in 16 microseconds if the target graphics context was in its 6-context

cache [Voorhies et al., 1988]. Akeley and Jermoluk identified the need for fast context

switching in their paper on high performance polygon rendering [Akeley and Jermoluk,

1988]. Despite apparent agreement in the hardware community on the need for fast context

switching, most hardware implementations can switch contexts only a few thousand times

per second. In many cases, these systems are limited by the design of the window system in

which they must operate. WireGL’s efficient context differencing operation provides very

fast context switching performance without the need for hardware support [Buck et al.,

2000]. This allows multiple applications to share a remote display with very little context

switching penalty, a crucial feature for supporting parallel remote rendering.

��� ����� ���
�������

In the area of hardware for image composition from multiple traditional graphics ac-

celerators, Stanford’s Lightning project provided a distributed framebuffer for use in a

multiprocessor workstation. Compaq Research has developed a system called Sepia for

performing image composition using the Servernet-II networking technology [Heirich and

Moll, 1999; Moll et al., 1999]. Both of these systems use an image composition network

connected to multiple rendering nodes via a PCI interface card. While these systems avoid

������� �� �
���� !��	 ��

some of the data transfers required by a pure software approach, it is still necessary for

pixel data to be read from the framebuffer using the graphics I/O port and transferred to the

image composition system by PCI. Bandwidth on these paths is often a critical resource for

parallel visualization applications.

Blanke et al. describe the Metabuffer, a system for performing sort-last parallel render-

ing on a cluster using DVI to extract color and depth [Blanke et al., 2000]. Unlike Sepia,

the Metabuffer does not require pixel data to be transferred to the image composition net-

work over the internal system bus, where bandwidth is often a critical resource for parallel

visualization applications.

The Metabuffer is similar to Lightning-2 [Stoll et al., 2001], a DVI-based pixel routing

network. A Lightning-2 system is comprised of one or more pixel routing boards, which

are tiled in a two-dimensional array. Each row of this tiling provides four DVI inputs and

each column provides eight DVI outputs. Each input pixel is interpreted by programmable

processors on the Lightning-2 boards. These processors are controlled by 48-bit wide “strip

headers”, which are drawn directly into the framebuffer by an Lightning-2-aware applica-

tion. Typical uses of Lightning-2 are tile reassembly and depth compositing. Unlike Sepia,

Lightning-2 and the Metabuffer do not require pixel data to be transferred to the image

composition network over the internal system bus, where bandwidth is often a critical re-

source for parallel visualization applications.

The Hewlett-Packard Visualize fx architecture uses a custom network to composite the

results of multiple graphics accelerators [Cunniff, 2000]. Sony’s GSCube, demonstrated at

SIGGRAPH 2000, combines the outputs of multiple Playstation2 graphics systems using a

custom network, and supports both sort-first and image composition modes of operation.

������� �� �
���� !��	 ��

�� !���� "��
��#�

The Interactive Mural was a graphics system for virtualizing tiled displays, with a fo-

cus on enabling research on interaction with large displays driven by large multiproces-

sors [Humphreys and Hanrahan, 1999]. This system provided an OpenGL interface to the

display, but it required modifications to existing applications. Mural-aware applications

used a custom API to create transparent “layers”, which could be stacked and positioned

similarly to windows. The Mural API also provided an event queue for interaction.

There are many ways to virtualize a tiled display system in software. MacOS and,

more recently, Microsoft Windows have support for extending the desktop onto multiple

monitors connected to a single computer system. In these cases, the device driver takes

care of managing the screen real estate and the potentially distributed framebuffer memory.

Similarly, the latest release of the X Window system contains the XINERAMA extension,

which allows multiple displays to be combined into one large virtual desktop. The Sili-

con Graphics InfiniteReality system allows a single framebuffer to drive multiple displays

through one large logical X server [Montrym et al., 1997].

A more general approach is taken by DEXON Systems’ DXVirtualWall, which pro-

vides tiled displays that support either X Windows or Microsoft Windows. Clients connect

to a display proxy that broadcasts the display protocol to multiple display servers, each of

which offsets the coordinates to display its own small portion of the larger desktop. An-

other use for protocol proxies of this nature is to duplicate a single display across several

remote displays, as in Brown University’s XmX project. These proxy-based systems do

not currently support any high performance 3D graphics API such as OpenGL or Direct3D,

and do not handle overlapping displays. Additionally, as the number of displays gets very

large, the number of concurrent redraws exerts increasing pressure on the network, causing

������� �� �
���� !��	 ��

performance to suffer.

IRIS Performer provides an API for managing multiple graphics pipes within a single

application [Rohlf and Helman, 1994]. However, Performer is designed for a single ap-

plication driving the entire display, and most compelling Performer demos are full screen,

immersive walkthrough applications. Running multiple Performer applications simultane-

ously incurs great context switching overhead, resulting in pronounced performance degra-

dation. In addition, Performer is designed around hierarchically defined “scene graphs”;

arbitrary OpenGL applications do not receive much of the benefit of Performer. Finally,

Performer makes little attempt to virtualize the configuration of a multiple-pipe system;

applications need to be aware of the number of available pipelines and use them explicitly.

The University of Minnesota’s PowerWall uses the output of multiple graphics super-

computers to drive multiple outputs, creating a large tiled display for high resolution video

playback and immersive applications [PowerWall, 1994]. The University of Illinois at

Chicago extended this system to support stereo display and user tracking in the InfinityWall

system [Czernuszenko et al., 1997]. Unlike our system, neither of these displays overlaps

its projectors. These systems are designed to facilitate a single full-screen application,

which is often an immersive virtual reality system. More expensive custom hardware solu-

tions are available as well. Panoram Technologies has a suite of hardware devices designed

to create large tiled displays. Their “Integrator”, a special analog feathering box, blends

the outputs of individual projectors. Because of the increasing performance of graphics

systems, it is now practical to perform this blending step in software.

������� �� �
���� !��	 ��

��$ ���
���� �����%����

To provide ordering constraints, Pomegranate used the parallel OpenGL API proposed

by Igehy, Stoll, and Hanrahan [Igehy et al., 1998]. This API (hereinafter referred to as the

“Parallel API”) extends OpenGL with traditional synchronization primitives (barriers and

semaphores). These primitives allow multiple simultaneous processes to express the order-

ing required between their graphics streams to produce a single image. The key advantage

of the Parallel API’s synchronization primitives is that they do not require the issuing ap-

plication to block. Instead, the synchronization primitives are encoded into the graphics

stream, and their implied ordering is obeyed by the graphics system when a context switch

occurs. This ability is critical for supporting parallel visualization applications that may

have either partial or strict ordering requirements, particularly those that require the use of

alpha-blending to render partially transparent geometry. Graphics barriers and semaphores

are implicitly created in a global namespace, similarly to the way OpenGL allows texture

objects and display lists to be shared between contexts. A graphics context may enter a

barrier at any time by calling glBarrierExec(name). Semaphores can be acquired and

released with glSemaphoreP(name) and glSemaphoreV(name), respectively. Chromium

provides this same API, and is the first implementation of the Parallel API in a hardware-

accelerated architecture.

Graphics APIs can provide a low-level resource abstraction such as OpenGL, or a high-

level abstraction such as a scene graph library. Scene graphs and other high-level interfaces

are attractive because global information can be used to automatically parallelize rendering

or perform fast culling. IRIS Performer provides parallel traversal of a retained-mode scene

graph, and can also take advantage of multiple graphics pipelines in a single SMP [Rohlf

and Helman, 1994]. Samanta et al. describe a novel screen subdivision algorithm for

������� �� �
���� !��	 �"

load-balanced rendering of a scene graph that has been replicated across the nodes of a

cluster [Samanta et al., 2000a; Samanta et al., 1999]. However, not all visualization tools

can conveniently use a scene graph, because their data may be unstructured and time-

varying. Another significant drawback of scene graphs is the lack of a standardized scene

graph API.

Chromium provides the OpenGL API to each node in a cluster. The decision to use

OpenGL for specifying graphics data has several advantages over using a custom API.

First, we can run an unmodified application on a single node in our cluster without re-

compiling it. Also, if we have access to a large display wall, we can easily interact with

resolution-limited datasets that can take advantage of the larger display area. SGI also

provides a library called “Multipipe” that intercepts OpenGL commands and allows un-

modified applications to render across multiple graphics accelerators, providing increased

output resolution [SGI Multipipe, 2000].

Many applications are must be parallelized to achieve speedup. Using Chromium, many

existing serial OpenGL applications can be parallelized with minor changes to the inner

drawing routines. In particular, applications that render large geometric datasets using the

depth buffer to resolve visibility can simply partition their dataset across the nodes of the

cluster, and have each node render its portion as before. Because such an application has

almost no intra-frame ordering requirements, achieving parallelism is straightforward.

������� �� �
���� !��	 �#

��& ������ ����������

Continual growth in typical dataset size and network bandwidth has made stream-based

analysis a hot topic for many different disciplines, such as telephone record analysis [Cortes

et al., 2000], multimedia, rendering of remotely stored 3D models [Rusinkiewicz and

Levoy, 2001], database queries [Babu and Widom, 2001], and theoretical computer sci-

ence [O’Callaghan et al., 2002]. In these domains, streams are an appropriate computa-

tional primitive because large amounts of data arrive continuously, and it is impractical or

unnecessary to retain the entire data set. In the broadest sense, a stream is an ordered se-

quence of records. Applications designed to operate on streams only access the elements of

the sequence in order, although it is possible to buffer a portion of a stream for more global

analysis. Any stream processing algorithm must operate on a potentially infinite input set

using only finite resources.

Many of the traditional techniques used to solve problems in computer graphics can

be thought of as stream processing algorithms. Immediate-mode rendering is a classic

example. In this graphics model, an unbounded sequence of primitives is sent one at a

time through a narrow API. The graphics system processes each primitive in turn, using

only a finite framebuffer (and possibly texture memory) to store any necessary interme-

diate results. Because such a graphics system does not have memory of past primitives,

its computational expressiveness is limited2. Owens et al. implemented an OpenGL-based

polygon renderer on Imagine, a programmable stream processor [Owens et al., 2000]. Us-

ing Imagine, they achieved performance that is competitive with custom hardware while

2Because most graphics APIs have some mechanism to force data to flow back towards the host (i.e.,
glReadPixels), graphics hardware is actually not a purely feed-forward stream processor. This fact has been
exploited to perform more general computation using graphics hardware [Peercy et al., 2000; Proudfoot et
al., 2001], and extensions to the graphics pipeline have been proposed to further generalize its computational
expressiveness [Mark and Proudfoot, 2001].

������� �� �
���� !��	 �$

enabling greater programmability at each stage in the pipeline.

Mohr and Gleicher demonstrated that a variety of stylized drawing techniques could be

applied to an unmodified OpenGL application by only analyzing and modifying the stream

of commands [Mohr and Gleicher, 2001]. They intercept the application’s API commands

by posing as the system’s OpenGL driver, in exactly the same way Chromium obtains

its command source. Although some of their techniques require potentially unbounded

memory, some similar effects can be achieved using Chromium and multiple nodes in a

cluster.

�� ��� ���	���� ������������

Chromium is a software system for enabling scalable interactive graphics on clusters

of workstations. Its design centers around the ability to efficiently manipulate streams of

graphics API commands. We have chosen to make Chromium as non-invasive as possible;

that is, we intercept calls made to an existing graphics API (OpenGL) rather than providing

a custom API of our own. This choice has the immediate consequence that any existing

application that uses OpenGL can run on top of Chromium without modification. This

allows us to run an application in a new display environment such as a tiled display wall.

Chromium also provides some extensions to the OpenGL API to facilitate the develop-

ment of parallel applications. In particular, Chromium supports the Parallel API proposed

by Igehy, Stoll and Hanrahan. [Igehy et al., 1998]. These extensions provide a parallel inter-

face to the system, eliminating the traditional bottleneck at the command processing stage

of the graphics pipeline. Because the Parallel API is a simple extension to the OpenGL

�%

������� �� (�� �������� ������������ �&

specification, existing serial OpenGL applications can be parallelized with a minimum of

effort. Typically applications need only partition the model to be rendered and provide a

minimal amount of synchronization (if any) through the Parallel API.

In this chapter, we describe the architecture of Chromium, and how command stream

transformations are expressed and implemented. In the chapters that follow, we present a

few important configurations of Chromium, including one for achieving scalable display

resolution, and two for scaling rendering performance.

��� ������� ��
��

Chromium users begin by deciding which nodes in their cluster will be involved in a

given parallel rendering run, and what communication will be necessary. This is speci-

fied to a centralized configuration system as a directed acyclic graph. Nodes in this graph

represent computers in a cluster, while edges represent network traffic. Each node is con-

ceptually divided into two parts: a transformationportion and a serializationportion.

The transformation portion of a node takes a single stream of OpenGL commands as

input, and produces zero or more streams of OpenGL commands as output. The mapping

from input to output is completely arbitrary. The output streams (if any) are sent over

a network to another node in the cluster to be serialized and transformed again. Stream

transformations are described in greater detail in section 3.2.

The serialization portion of a node consumes one or more OpenGL streams, each with

its own associated graphics context, and produces a single OpenGL stream as output.

This task is analogous to the scheduler in a multitasking operating system; the serializer

chooses a stream to “execute”, and copies that stream to its output until the stream becomes

“blocked”. It then selects another input stream, performs a context switch, and continues

copying. Streams block and unblock via the Parallel API. Recall that these synchronization

������� �� (�� �������� ������������ �'

primitives do not block the issuing process, but rather encode ordering constraints that will

be enforced by the serializer. Because the serializer may have to switch between contexts

very frequently, we use a hierarchical OpenGL state tracker, described in section 3.7. In

brief, our state representation permits the efficient computation of the difference between

two graphics contexts, allowing for fine-grained sharing of rendering resources.

A node’s serializer can be implemented in one of two ways. Graph nodes that have

one or more incoming edges are realized by Chromium’s network server, and are referred

to as server nodes1. Servers manage multiple incoming network connections, interpreting

messages on those connections as packed representations of OpenGL streams.

On the other hand, nodes that have no incoming edges must generate their (already

serial) OpenGL streams programmatically. These nodes are called client nodes. Clients

obtain their streams from standalone applications that use the OpenGL API. Chromium’s

application launcher causes these programs to load our OpenGL shared library on startup.

Chromium’s OpenGL library injects the application’s commands into the node’s stream

transformer, so the application does not have to be modified to initialize or load Chromium.

If there is only one client in the graph, it will typically be an unmodified off-the-shelf

OpenGL application. For graphs with multiple clients, the applications will have to specify

the ordering constraints on their respective streams.

1The use of “client” and “server” in networked graphics systems such as X-Windows is often a source
of confusion. For our purposes, we consider a server to be an entity that provides a service, and a client
to be an entity that connects to a server to take advantage of that service. In Chromium, servers provide
an implementation of the OpenGL API, and clients connect to those servers to remotely make calls to that
API. Note that because Chromium supports an arbitrary DAG of cluster nodes, servers can be clients of other
servers.

������� �� (�� �������� ������������ ��

Application
Tilesort

...

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Figure 3.1: A simple Chromium configuration. In this example, a serial ap-
plication is made to run on a tiled display using a sort-first stream processor
called tilesort.

��� '
���! ������ ����������

Stream transformations are performed by “Stream Processing Units”, or SPUs. SPUs

are implemented as dynamically loadable libraries that provide the OpenGL interface, so

each node’s serializer will load the required libraries at run time and build an OpenGL

dispatch table. SPUs are normally designed as generically as possible so they can be used

anywhere in a graph.

A simple example configuration is shown in figure 3.1. The client loads the tilesort

SPU, which incorporates all of the sort-first stream processing logic from the WireGL

system [Humphreys et al., 2000]. The tilesort SPU is described in detail in chapter 4.

The servers use the render SPU, which dispatches the incoming streams directly to their

local graphics accelerators. This configuration has the effect of running the unmodified

client application on a tiled display using sort-first stream processing. Notice that the graph

edges originate from the tilesort SPU, not the application itself. This convention is used

because the SPU manages its own network resources and originates server connections.

������� �� (�� �������� ������������ ��

��� ��(������

A node’s stream transformation need not be performed by only a single SPU; serializers

can load a linear chain of SPUs at run time. During initialization, each SPU receives an

OpenGL dispatch table for the next SPU in its local chain, meaning simple SPUs can

be chained together to achieve more complex results. Using this feature, a SPU might

intercept and modify (or discard) calls to one particular OpenGL function and pass the rest

untouched to its downstream SPU. This allows a SPU, for example, to adjust the graphics

state slightly to achieve a different rendering style.

One example of such a SPU is a “wireframe” filter. This SPU issues a glPolygonMode

call to its downstream SPU at startup to set the drawing mode to wireframe. It then passes

all OpenGL calls directly through except glPolygonMode, which it discards, preventing

the application from resetting the drawing mode. Note that Chromium does not require a

stream to be rendered on a different node from where it originated; the client can load the

render SPU as part of its chain. In this way, an application’s drawing style can be modified

while it runs directly on the node’s graphics hardware, without any network traffic.

SPU chains are always initialized in back-to-front order, starting with the final SPU in

the chain. At initialization, a SPU must return a list of all the functions that it implements.

A SPU that wants to pass a function call through to the SPU immediately downstream can

return the downstream SPU’s function pointer as its own. Because there is no indirection

in this model, passing OpenGL calls through multiple SPUs does not incur any perfor-

mance overhead. Such function pointer copying is common in Chromium; as long as SPUs

copy and change OpenGL function tables using only our provided APIs, they can change

their own exported interface on the fly and we will automatically propagate those changes

throughout the node.

������� �� (�� �������� ������������ ��

��� ��(�����������

A SPU need not export a complete OpenGL interface. Instead, SPUs benefit from a

single-inheritance model in which any functions not implemented by a SPU can be ob-

tained from a “parent”, or “super” SPU. The SPU most commonly inherited from is the

passthrough SPU, which passes all of its calls to the next SPU in its node’s chain. The

wireframe drawing SPU mentioned in the previous section would likely be implemented

this way—it would implement only glPolygonMode, and rely on the passthrough SPU

to handle all other OpenGL functions. At initialization, each SPU is given a dispatch

table for its parent. For example, when the wireframe SPU wishes to set the drawing

mode to wireframe during initialization, it calls the passthrough SPU’s implementation

of glPolygonMode.

Another common use of SPU inheritance is per-frame computation. It is often useful to

take an action exactly once per frame, and this can be accomplished by overriding a parent

SPU’s implementation of SwapBuffers. Simple SPUs can use this ability to track perfor-

mance or statistics, but more complex SPUs can extract the rendered frame and manipulate

the resulting image. One such SPU is described in detail in section 6.1.

��� ������ �������)�����

Because inter-node communcation is implemented as remote invocations of OpenGL

commands, Chromium provides a library for efficiently encoding and decoding graphics

API commands. This library takes a sequence of commands and produces a serialized en-

coding of the commands and their arguments. Although this library is normally used to

prepare commands for network transmission, it can also be used to buffer a group of com-

mands for later analysis or playback. Chromium’s stream packing library can also reverse

the byte order of the encoded stream, allowing for communication between computers of

������� �� (�� �������� ������������ ��

glColor3b (R, G, B)

C
olor3b

V
ertex3f

G B X Y Z

opcodes data

glVertex3f(X, Y, Z)

R

(pad)
Figure 3.2: A packed network buffer. Each thin rectangle is one byte. The
data are packed in ascending order and the opcodes in reverse order. A header
applied to the network buffer before transmission encodes the location of the
split between opcodes and data. Only the shaded area is actually transmitted.

differing endianness.

In an immediate-mode graphics API like OpenGL, each vertex is specified by an indi-

vidual function call. In scenes with significant geometric complexity, an application can

perform many millions of such calls per frame and will be limited by the available network

bandwidth. Therefore, the amount of data required to represent the function calls, as well

as the amount of time required to construct the network stream, will determine the overall

throughput of the system. Likewise, the time required to unpack the network commands

also directly affects our overall performance, although to a lesser extent.

Our network stream representation keeps function arguments naturally aligned. For ex-

ample, float arguments are aligned on 4-byte boundaries and short arguments are aligned

on 2-byte boundaries. This is important on the Intel architecture because misaligned reads

cost 4 to 12 times as much as aligned reads [Intel, 1999]. On other architectures, where

misaligned reads are not allowed at all, reading unaligned data would require manual shift

and mask operations.

������� �� (�� �������� ������������ �"

In order to make the network protocol as efficient as possible, we first eliminate redun-

dant OpenGL commands, such as glVertex3f and glVertex3fv. This greatly reduces

the number of OpenGL commands that the wire protocol needs to encode2. Even with

this reduction, however, there are still more than 256 OpenGL functions to encode, so we

manually identify enough infrequent commands (e.g., certain OpenGL extensions) to be

grouped together into a single “extend” call. This design also allows us to easily grow the

wire protocol without worrying about adding too many functions.

Because we now have fewer than 256 functions to encode, the wire protocol can use

a single byte opcode. In most cases, the type and number of arguments is implicit. For

example, a glVertex3f call will generate a 1 byte opcode and 12 bytes of data for the three

floating-point vertex coordinates. For functions which require a variable length data field

such as glTexImage2D, the representation explicitly encodes the size of the arguments.

The “extend” opcode places a secondary opcode in the data payload to disambiguate the

exact call to be made.

Using a single byte opcode introduces a wrinkle into the protocol design, however.

Because we wish to maintain the natural alignment of each argument, interleaving the

opcodes and data would introduce up to 3 wasted padding bytes per function call. By

packing opcodes and data separately, we can avoid these wasted bytes. For example, a

glVertex3f call can be encoded in 13 bytes instead of 16 bytes when opcodes and data

are packed separately. Rather than send two separate buffers, however, we pack the opcodes

backwardsin the same network buffer as the data, as shown in figure 3.2. This way, the

data remain aligned and the buffer remains contiguous so it can be sent with only one

call to the networking library. Allocated network buffers are split 1
5 of the way from their

2We are deliberately vague about the exact number of OpenGL commands representable by our wire
protocol because the number changes frequently. Each time a new extension is added to Chromium or the
OpenGL specification changes, we add new functionality to the wire protocol.

������� �� (�� �������� ������������ �#

beginning to provide 20% space for opcodes and 80% space for data. The transition from

a dual-buffer scheme to this backwards-packing design resulted in a 20% increase in peak

network transmission rate for vertices over a 100 megabit ethernet network.

In order to be cautious about buffer overflow, OpenGL functions that take no arguments

(e.g., glEnd or glPopMatrix) use 32 bits of padding to guard against the pathological case

when the buffer is filled entirely with such functions. This way, we only have to check for

overflow at one end of the buffer. When the buffer fills, a user-specified function is called.

Typically this function will cause the buffer to be sent over a network, although the buffer

can also be analyzed immediately or stored on a chain of buffers if, for example, an entire

frame worth of commands needs to be analyzed.

This simple command representation allows for very fast packing and unpacking of

graphics commands. In most cases, packing simply requires copying the function argu-

ments to the data buffer and writing the opcode. Using Linux on an 800 MhZ Pentium

III with 256 MB of RDRAM, Chromium can pack over 21.5 million vertices per second.

To unpack the commands on the server, the opcode is used as an offset into a jump table.

Each unpacking function reads its arguments from the data buffer and calls its correspond-

ing OpenGL function. In many cases, the explicit reading of arguments can be avoided by

using the function’s vector equivalent. For example, a glVertex3f call on the client can

be decoded as a glVertex3fv call on the server, requiring no data copies to be made.

�� ������	 *+���������

Chromium provides a connection-based network abstraction to support multiple net-

work types such as TCP/IP and Myrinet. We also provide specialized network interfaces

such as an ideal network model that discards all traffic, allowing application load balance to

be easily measured, and also a file-trace network model that allows streams to be recorded

������� �� (�� �������� ������������ �$

to disk for later playback. In addition to enabling inter-node communcation as specified

in the configuration DAG, this network layer can be used by applications or by the SPUs

themselves for out-of-band communication. An example of such an out-of-band applica-

tion is binary-swap compositing for sort-last parallel rendering, described in section 6.1.

In this abstraction, each server/client pair is joined by a connection. By making buffer

allocation the responsibility of the network layer, we allow a zero-copy send. For example,

the client packs OpenGL commands directly into network buffers, and the Myrinet network

layer sends them over the network using DMA. In order for this to work, these buffers must

be pinned (locked and unpageable), which is done by the implementation of our network

abstraction for Myrinet. Receiving data on our network operates in a similar manner: the

network layer allocates (possibly pinned) buffers, allowing a zero-copy receive.

The connection is completely symmetric, which means that the servers can return data

(e.g., the results of glReadPixels) to the clients. To enable these semantics, we provide

a synchronization mechanism between clients and servers: The client can insert a “write-

back” opcode into the graphics stream at any time. When the writeback opcode is decoded

by a server, a message is sent back to the client indicating that the server has received and

decoded all commands up to and including the writeback. When using the tilesort SPU,

the glFinish call will wait for writeback notification from all servers before proceeding.

This functionality is important so that applications that need to synchronize their output

with some external input source can make sure the graphics system’s internal buffering is

not causing their output to lag behind the input. The user can optionally enable an implicit

glFinish-like synchronization on each SwapBuffers call, which ensures that no client

will ever get more than one frame ahead of the servers.

Our network abstraction includes an internal flow control mechanism that ensures that

������� �� (�� �������� ������������ �%

an endpoint is not overrun with data. For example, although client applications do not stall

when they issue Parallel API commands, they do restrict the order of execution possible at

the servers. Thus, a server can receive graphics commands that it is not currently allowed

to execute. The network layer uses a credit-based flow control scheme to prevent each

client from consuming more than a fixed amount of memory on each server3. Each client

has a number of send credits per server, which is initialized to the maximum number of

outstanding bytes per server. These credits are decremented each time a send is performed,

and a send blocks when the client has no more credits. When the server processes a buffer

and returns the buffer to the network layer, the appropriate client is credited, allowing it

to send more data. In order to avoid sending a message to a client node each time work

is received, credits are aggregated by the server and returned to client nodes periodically.

Flow control is particularly important when the Parallel API causes a context is blocked,

since additional commands may come in from the client at any time even though the server

cannot drain a blocked context’s command queue.

��$ ����� ,���	���

Graphics APIs like OpenGL are typically stateful. Each state element controls the

manner in which future geometric primitives will be interpreted and rendered. The state

contains attributes such as the current transformation matrix, the current color, and so on.

On a workstation with hardware graphics acceleration, the graphics hardware keeps track

of most or all of the current state. However, in order to properly implement a remote

protocol for such an API, it is necessary for the client to keep track of some of the state in

software. For instance, OpenGL allows the programmer to specify certain alignment and

3A previous scheme used on-off flow control. Network congestion could result in an “off” message being
substantially delayed, with the disadvantage that a great deal of additional data might arrive in the meantime.
This means that on-off flow control cannot make any guarantees about the amount of resources that a message
source could potentially consume at the message sink, which is unacceptable.

������� �� (�� �������� ������������ �&

offset properties for pixel arrays that are to be used as textures. The client library must

unpack these textures in order to send the correct data to the server. Therefore, the client

library must track these offsets and alignments as the application is running.

Chromium includes a complete OpenGL state tracker, based on the one described by

Buck, Humphreys and Hanrahan [Buck et al., 2000]. The ability to maintain the graphics

state greatly improves the performance and flexibility of our networked rendering system.

Our original Interactive Mural graphics system [Humphreys and Hanrahan, 1999] was a

straightforward RPC-style network protocol for OpenGL, similar to the GLX protocol [Se-

gal and Akeley, 1999]. Although this approach met our functionality goals, extending it

to support high performance remote rendering proved difficult. Because each command

simply created a packet representation of its parameters, we could not gain any semantic

knowledge of the application’s graphics state or the primitives it was drawing in order to

use the network more efficiently.

In OpenGL, almost all commands that do not generate fragments are commands to

manipulate the graphics state. glRotatef, glPixelStorei, and glFogf are examples of

these commands. Our state tracker allows the effects of these functions to be recorded into

a “graphics context.” A graphics context is a complete encapsulation of the configuration

of the graphics pipeline, along with all the texture memory currently in use. The context

is made up of individual state elements, such as the current blending mode, the current

transformation matrix, or the enable/disable state of lighting.

Our graphics contexts are arranged in a hierarchy. At the top level, we have broken the

state into 19 categories: transformation, pixel, current, viewport, fog, texture, lists, client,

buffer, hint, lighting, line, polygon, scissor, stencil, evaluators, imaging, selection, and ex-

tensions. These categories closely follow the ones laid out in table 6.5 of the OpenGL 1.2.1

������� �� (�� �������� ������������ �'

specification [Segal and Akeley, 1999], although we have collapsed some of the more sim-

ilar categories (e.g., color buffers and depth buffers are collapsed into “buffer” state). Fur-

ther levels of the hierarchy are present where appropriate; for example, each of OpenGL’s

lights has a complete set of lighting parameters associated with it. The benefit of arrang-

ing the state hierarchically will become apparent when we discuss lazy state updates in

section 4.2, and also soft context switching in section 5.2.

��& ���-�� ��
�����������

A Chromium server maintains a queue of pending commands for each connected client.

When commands arrive over the network, they are placed on the end of their client’s

queue. These queues are stored in a circular “run queue” of contexts. Each server exe-

cutes a client’s commands until it runs out of work or the context “blocks” on a barrier

or semaphore operation. Blocked contexts are placed on wait queues associated with the

blocking semaphore or barrier. The server’s queue structures are shown in figure 3.3.

Because each client has an associated graphics context, a context switch must be per-

formed each time a client’s stream blocks. Although all modern graphics accelerators

can switch contexts fast enough to support several concurrent windows, hardware context

switching is still slow enough to discourage fine-grained sharing of the graphics hardware.

When programmatically forced to switch contexts, the fastest modern accelerators achieve

a rate of approximately 12,000 times per second [Buck et al., 2000], which is slow enough

that it would limit the amount of intra-frame parallelism achievable in Chromium. See

section 5.2 for more details about this soft context switching mechanism.

In practice, when a context blocks, the servers often have a choice of many potentially

runnable contexts. Because a parallel application will almost always enter a barrier im-

mediately before the end of the frame, it is unlikely that one context will become starved.

������� �� (�� �������� ������������ ��

Context
0

Context
1

Context
2

SemaP(19)
Context

0

Context
1

Context
2

Sema 19

Context
0

Context
1

Context
2

Sema 19
Context

0

Context
1

Context
2

Context
0

Context
1

Context
2

Context
0

Context
1

Context
2

A B

C ED F

SemaV(19) SemaV(19)

SemaV(19)

Figure 3.3: Inside a Chromium server. Runnable contexts will be serviced in
a round-robin fashion. Graphics commands being issued by a context’s appli-
cation can be appended to the end of a work queue at any time, until the client
consumes its allotted server-side buffer space. Blocks A-F show sequential
timesteps as the server decodes command blocks; the currently executing con-
text is shown with a heavy outline. In timestep A, the server encounters the
SemaP operation in context 0, which blocks the context and removes it from the
run queue. In timestep C, context 1’s SemaV command will unblock context 0
and place it back on the run queue.

Therefore, in choosing a scheduling algorithm, the main concerns are the expense of the

context switch itself as well as the amount of useful work that can be done before the next

context switch.

In practice, we have found that a simple round-robin scheduler works well, for two

reasons. First, clients participating in the visualization of a large dataset are likely to have

similar contexts, making the expense of context switching low and uniform. Also, since

we cannot know when a stream is going to block, we can only estimate the time to the next

context switch by using the amount of work queued for a particular context. Moreover,

any large disparity in the amount of work queued for a particular context is most likely the

������� �� (�� �������� ������������ ��

result of an application-level load imbalance. This load imbalance, not context switching

overhead, will certainly be the main performance limitation of the application. In general,

because of the low cost of context switching, and because we need to complete execution

of all contexts before the end of the frame, we have not found the server’s scheduling

algorithm to be a significant factor in an application’s performance. Note that if more than

one context is unblocked by a Parallel API command, the servers may not make the same

choices about which context to run next. This is not a problem, however, because any

more strict ordering could be explicitly expressed through the use of additional Parallel

API synchronization commands.

��. ���-�
�
 ��(�

Chromium provides a number of SPUs that can be used or extended to realize the

desired stream transformation. Eleven of Chromium’s most useful SPUs are shown in

table 3.1, and new specialized SPUs are frequently added to the repository. Some of these

SPUs will be described in detail in the following chapters.

������� �� (�� �������� ������������ ��

SPU Description
error Prints a fatal error when any OpenGL function is called. This SPU is

implicitly the parent of any SPU that does not specify otherwise. This
way, SPUs that accidentally fail to implement a necessary function
will emit a meaningful error message rather than crashing or failing
in other ways that can be difficult to debug.

framerate Measures the frame rate of the stream as it passes by. This is useful
for measuring the performance at various places in a communication
graph without instrumenting each SPU separately.

nop Silently discards all OpenGL calls, which can be a used to re-
place the render SPU to factor out rendering time when measuring
performance.

passthrough Passes all functions to the next SPU in a node’s local chain. Many
SPUs will inherit from the passthrough SPU, allowing them to mod-
ify only a small subset of the entire OpenGL API.

print Dumps a human-readable log of all OpenGL calls and their arguments
to a file. SPU debugging often involves liberal application of the
print SPU and some post-processing of the resulting logs.

readback Transforms a stream of commands into a single image. The readback
SPU can be configured to extract color and/or depth, and also to in-
clude commands that position the resulting image at an arbitrary offset
using glRasterPos.

render Passes all OpenGL calls directly to the graphics hardware, producing
an image in a window. Typically the render SPU is used at every
node that does not generate any new streams.

saveframe Renders a stream and saves an image file for each frame. This can be
used to make frame-by-frame movies of any OpenGL application.

send Transmits a serialized representation of the entire stream to a server.
Functions that query the OpenGL state or have a non-void return type
will require a round-trip message using this SPU.

tilesort Sorts a single stream into tiles, and sends specialized streams to mul-
tiple servers managing those tiles.

vertexarray Removes uses of OpenGL vertex arrays by converting those calls into
sequences of standard OpenGL functions. This can be useful for SPUs
that need to guarantee that the data provided to their functions will
persist over time.

Table 3.1: SPUs provided by Chromium. These SPUs can be used by any node
in a cluster, and can be extended and combined to perform different stream
transformations.

�� ������ !��"��# ���	����	�

Modern supercomputers have allowed the scientific community to generate simulation

datasets at sizes which were not feasible in previous years. The ability to efficiently vi-

sualize such large, dynamic datasets on a high-resolution display is a desirable capability

for researchers. However, the display resolution offered by today’s graphics hardware is

typically not sufficient to visualize these large datasets. Large format displays such as the

PowerWall [PowerWall, 1994], CAVE [Cruz-Neira et al., 1993], and Stanford’s Interac-

tive Mural [Humphreys and Hanrahan, 1999] support resolutions well beyond the common

desktop. This chapter describes a Chromium configuration that decouples output resolution

from rendering performance. Because large datasets are typically very intricate, the abil-

ity to interactively render them on such a display can provide additional insight into their

structure because the viewer can achieve an overall view of the data while still examining

their finest detail.

��

������� ��)��
�
� *���
�+ ���
����
 �"

Application
Tilesort

...

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Chromium Server
Render

Figure 4.1: Diagram of the system architecture. The tilesort SPU intercepts
the application’s calls to the graphics hardware. It then distributes the render-
ing to multiple rendering servers. These servers are connected to projectors
which display the final output.

Previous attempts to solve the resolution challenge have faced a number of limitations.

One method is to provide a parallel computer (e.g., SGI Origin) with extremely high-end

graphics capabilities (e.g., SGI InfiniteReality). This approach is limited by the number

of graphics accelerators that can fit in one computer, and is often prohibitively expensive,

potentially costing many millions of dollars. At the other end of the spectrum are clusters

of workstations, each with a fast graphics accelerator. Most previous efforts to allow fast

rendering on clusters have dealt with static data and could not handle dynamic scenes or

time-varying visualizations. Other systems require the use of a custom graphics API to

achieve scalable rendering, meaning that existing applications must be ported to the API in

order to use the system.

In short, our Chromium configuration meets the following goals:

� Provide a scalable display solution. For most graphics applications, we can scale the

resolution of the output display without affecting the performance of the application.

������� ��)��
�
� *���
�+ ���
����
 �#

� Each node within the system should be inexpensive. We use commodity PC graphics

cards, each of which costs a few hundred dollars and offers performance comparable

to or faster than high-end workstation graphics.

� Support an immediate-mode API rather than requiring a static scene description. By

not requiring the application to describe its scene a priori, we enable more dynamic,

interactive visualizations.

� Finally, support existing, unmodified applications on a variety of host systems. This

relieves the programmer from having to learn a new graphics API or system archi-

tecture to take advantage of scalable displays. This also allows non-programmers to

use new display technology with their existing applications.

Some of these goals are partially or wholly met by the design of Chromium itself.

For example, Chromium provides support for the OpenGL API, which meets the third

goal, and it is designed specifically to support a networked cluster of workstations, which

enables the second goal. The main challenge in enabling scalable display resolution is

understanding exactly how to manipulate streams of OpenGL to achieve the goal of scalable

display resolution.

The stream processor we will use to achieve scalable resolution is called tilesort. A

diagram of a typical Chromium configuration when using the tilesort SPU is shown in

figure 4.1. Each server has its own graphics accelerator, and the output of that accelera-

tor is connected to a display (typically a projector). Those displays are then abutted in a

rectangular array to form a common screen.

Referring back to Molnar’s sorting classification [Molnar et al., 1994], described in sec-

tion 2.2, and recalling that sort-middle architectures are impractical to realize with clusters

������� ��)��
�
� *���
�+ ���
����
 �$

of commodity components, it is clear that the architecture realized by the configuration in

figure 4.1 is a sort-first parallel rendering architecture. The screen has been divided into

tiles, and each tile has its own full graphics pipeline associated with it. Primitives (or groups

of primitives) from the application are sorted to the appropriate pipeline for transformation

and rasterization.

In many internally parallel standalone graphics accelerators, geometric primitives are

sorted using broadcast communication. This way, primitives are assigned to pipelines ac-

cording to some distribution algorithm, and the pipelines merely snoop a shared bus to

receive work. However, in a cluster, high-speed interconnects are point-to-point switched

networks, and do not support an efficient hardware supported broadcast. Therefore, we

must manage the total amount of data sent to each server. To avoid unnecessarily retrans-

mitting data to multiple servers, we use a combination of geometry bucketing and lazy state

update. These tools allow us to send to each server a subset of the application’s commands

necessary for it to render its portion of the display.

��� �������# /��	�����

In order to render a single graphics stream on multiple servers, the OpenGL commands

need to be transmitted to each server. One simple solution would be to broadcast the com-

mands to each server. However, high-speed switched networks like Myrinet generally do

not support efficient broadcast communication. To build a system which scales effectively,

we must limit the data that is transmitted to each server1.
1Another attractive approach might be to forward network traffic from one server to the next, creating a

virtual ring network. This adds latency to the overall system, but that latency should be well hidden by the
streaming nature of our application. In fact, we did construct a ring-network based version of WireGL, and
experimentally verified that it worked quite well, although its advantage over the one-to-many approach taken
by tilesort was minimal. Although the ring-based software design is much simpler, we chose to keep the
stream specialization approach because it was straightforward to add a parallel interface to the architecture,
as described in chapter 5.

������� ��)��
�
� *���
�+ ���
����
 �%

Because the tilesort SPU (hereinafter referred to simply as tilesort) manages the

stream of OpenGL calls as they are made, it can exploit properties of that stream to more

efficiently use the network. Ideally, we would like to send the minimal number of com-

mands to each server for it to properly render its portion of the output. tilesort achieves

this by sorting the geometry specified by the application and sending each server only the

geometry which overlaps its portion of the output display space. Unlike solutions that

require a retained-mode scene-graph, tilesort has no advance knowledge of the scene

being rendered.

The OpenGL API explicitly maintains three different coordinate systems: object, cam-

era, and screen2. Transformations between these coordinate systems are represented as

two separate 4� 4 matrices, allowing any linear transformation. Vertices specified by an

application are assumed to be in object coordinates, and are transformed first to camera

coordinates, and then to screen coordinates, where they are rasterized.

As the application makes OpenGL calls, tilesort packs the commands into a geome-

try buffer using the packing library described in section 3.5, and tracks their 3D bounding

box. The bounding box represents the extent of the primitives in their local (object) co-

ordinate system. The cost of maintaining the object space bounding box is low; only 6

conditional assignments are needed for each vertex. When the network buffer is flushed,

tilesort transforms that bounding box to screen coordinates to compute the extent of the

buffer’s geometry on the eventual display (note that in order to perform this transformation,

we must maintain the two transformation matrices mentioned in the previous paragraph.

2Although the names of these coordinate systems tend to imply their relationship to each other, OpenGL
does not enforce this interpretation. Geometry specified in object coordinates is transformed first to camera
coordinates and then to screen coordinates, but no geometric computation is performed in camera space.
Because our application is only concerned with the object to screen transformation, no semantic interpretation
of the three coordinate systems is necessary. In fact, many OpenGL implementations maintain the product of
the two transformation matrices explicitly, bypassing the intermediate camera coordinate system entirely.

������� ��)��
�
� *���
�+ ���
����
 �&

This is accomplished using Chromium’s state tracking system.). For each server whose

output area is overlapped by the transformed bounding box, tilesort copies the packed

geometry opcodes and data into that server’s outgoing network buffer. Since geometry

commands typically make up most of the OpenGL commands made per frame, this method

provides a significant improvement in total network traffic over simply broadcasting.

Ideally, tilesort should transmit each primitive to only those servers whose man-

aged area it overlaps, and only those primitives that span multiple managed areas would

be transmitted more than once. However, performing bucketing on a per-primitive granu-

larity would be very costly, since bucketing requires more than one matrix multiplication.

Instead, we transform the bounding box only when the packed geometry buffer is flushed,

which amortizes the transformation cost over many primitives. The geometry buffer is

flushed either when it is completely filled, or when the state tracking system indicates that

a flush is necessary, as explained in the next section.

The success of this algorithm relies in part on the spatial locality of successive primi-

tives. Many large scale visualization applications (e.g. volume rendering) exhibit excellent

spatial locality. These applications tend to issue many small, spatially coherent primi-

tives. Because of the small primitive size, the resulting transformed bounding box is much

smaller than the screen extent of a tile to which it will be sent. As a result, most bucketed

geometry is only sent to a single projector, as demonstrated in the results shown later.

Although bucketing is critical to achieving output scalability, it is important to note that

it does not allow us to scale the size of the display forever. As the display gets bigger (that

is, as we add more projectors), the screen extent of a particular bounding box increases

relative to the area managed by each rendering server. As a result, more primitives will be

multiply transmitted, limiting the overall scalability of the system.

������� ��)��
�
� *���
�+ ���
����
 �'

��� !�)# ����� (

���

A common technique for improving the performance of any system is to alter the order

of the commands executed while maintaining the semantics mandated by the programming

interface. One straightforward example of this is instruction re-ordering in processor de-

sign: the processor is free to execute instructions in whatever order it determines would be

most efficient as long as the program’s behavior does not change. A similar technique is

one we call lazy state update, or just lazy update, where each state command is postponed

until the last possible moment in the hope that the system can determine that the operation

is unnecessary.

State commands cannot be packed and bucketed immediately, because they do not have

any geometric extent and they may affect future geometry which is destined for a different

server. One solution would be to simply broadcast state commands to all rendering servers,

as proposed by Torborg [Torborg, 1987]. Broadcasting state would be less costly than

broadcasting geometry since the state data usually comprise a much smaller portion of the

total frame data. For example, the OpenGL Atlantis demo issues 3,020 bytes of state

commands and 375,223 bytes of geometry data per frame. Despite this difference of two

orders of magnitude, broadcasted state traffic could quickly overtake bucketed geometry

traffic as the display gets larger. Ideally, we would like a technique similar to bucketing for

state commands.

tilesort solves this problem by tracking not only the entire OpenGL state of the

application, but also the complete state of each of the servers. When a state-changing call

is made by the application, tilesort merely updates the data structure containing the

application’s graphics state instead of packing the call into its network representation, as

shown in figure 4.5. Whenever such a command is called, tilesort must first determine if

������� ��)��
�
� *���
�+ ���
����
 ��

send_geometry(server) {
compute difference between application’s context
and server’s context

send state commands to update server’s context
update client’s copy of server’s context
clear server’s dirty bits
send geometry commands

}

Figure 4.2: Pseudo-code for tilesort’s buffer flush algorithm. By not en-
coding state until geometry has an effect on the output image, tilesort saves
unnecessary network traffic.

any geometry has been packed but not yet sent. If this is the case, it must update the servers’

states and flush the geometry command buffer before recording the state change. Pseudo-

code for the server update algorithm is shown in figure 4.2. For each server managing an

overlapped tile, tilesort computes the differences between the application’s state and that

server’s state, and sends the minimal set of updates to the server to synchronize it with the

application. Once these differences are sent, the packed geometry can follow. The buffer

management scheme used to achieve this behavior is shown in figure 4.6.

This algorithm has the advantage that state is only sent when the geometry it affects is

also sent. Therefore, if a block of geometry falls outside the viewing frustum, its associated

state will never consume network resources. Lazy update is particularly advantageous when

using many large texture maps. Certain applications like Quake III: Arenamake numerous

calls to glTexSubImage2D in order to update small details on surfaces in the scene. This

usage pattern is especially expensive when rendering remotely, and updating textures lazily

can provide a substantial performance gain.

������� ��)��
�
� *���
�+ ���
����
 ��

glBlendFunc(src,dst) {
if (arguments generate error) return
update application context with src,dst
set all blend function dirty bits
set all fragment state dirty bits

}

Figure 4.3: Pseudocode for the glBlendFunc function. Notice the use of
multiple dirty bits in accordance with our hierarchical state change tracking
scheme.

��� ���
����� ������� "�0�������

We associate n “dirty” bits with each state element, where n is the number of rendering

servers. When tilesort tracks a state command, all bits are set to 1, indicating that the

application’s context is possibly out of sync with the remote context on all servers. Note

that we do not check whether or not the user has set the state element to its current value.

This does not mean that calling a state command repeatedly will cause multiple packets to

be transmitted; instead we simply track the latest value for that element of the state.

Most applications change only a very small subset of the entire OpenGL state between

geometry blocks. We therefore maintain a hierarchyof these dirty-bit vectors. This way,

we can quickly find the elements of the state that have changed without re-examining the

entire graphics state. For example, we have a bit-vector for the diffuse color of OpenGL’s

LIGHT0, a bit-vector for all state pertaining to LIGHT0, and a bit-vector for all OpenGL

lighting state. Because context differences are computed very frequently when using the

tilesort SPU, it is crucial that these differences be located quickly.

As an example, pseudocode for the state-altering glBlendFunc function is shown in

figure 4.3. Pseudocode for the hierarchical bit tests to update the fragment state is shown

in figure 4.4.

The dirty bits provide a fast mechanism for detecting which elements of the OpenGL

������� ��)��
�
� *���
�+ ���
����
 ��

update_fragment_state() {
if (fragment bit set) {
if (alphafunc bit set && ...)

...
if (blendfunc bit set &&

application blendfunc != server blendfunc) {
generate glBlendFunc packet
server blendfunc = application blendfunc

}
clear blendfunc bit
if (clearaccum bit set && ...)

...
}
clear fragment bit

}

Figure 4.4: A portion of the code to update a server’s fragment state. If no
fragment state changes had been made, we would not check any of the frag-
ment state elements, including glBlendFunc.

state need to be updated. Furthermore, the update routine performs a comparison of the

application and server values before generating a state command. This prevents redundant

state commands from being transmitted on the network (for instance, if a user sets up the

entire OpenGL state every frame).

As a further optimization, some care is taken to only send “relevant” state updates.

Although not shown in figure 4.4, the user may have changed the glBlendFunc parameters

since the last time tilesort updated a particular server’s blend function settings, but if

blending is now disabled, those settings do not need to be sent to the server. Instead,

the blend function’s dirty bit is left marked, but the bit for the entire fragment state is

cleared. This way, the parameters will be sent if blending is enabled in the future, but in the

meantime the fragment state will be skipped entirely when computing context differences.

Some state commands are cumulative. For example, when glRotatef is called by

������� ��)��
�
� *���
�+ ���
����
 ��

the programmer, the top of the current matrix stack is multiplied by the implied rotation

matrix. When tracking the transformation state, we perform these matrix multiplications

in software. Since we always have the current transformation matrix available, we can

collapse a series of transformation calls into a single glLoadMatrix packet. This is in

contrast to more straightforward state commands like glBlendFunc, where the state is

updated by sending the original parameters across the network.

Note that our context differencing implementation uses SPU dispatch tables to han-

dle each discovered difference. In figure 4.4, the statement “generate glBlendFunc

packet” is performed by simply calling the glBlendFunc pointer of a supplied SPU dis-

patch table. In tilesort, this function pointer points to the code that packs the command

arguments into our network buffers. Because the state differencing system simply calls

a supplied function for any difference found, it can be used for other tasks, such as soft

context switching, described in section 5.2.

��� *�� ���%�������

The overall performance of the tilesort SPU is directly related to the speed at which

it can process OpenGL commands. To evaluate the speed of our implementation, we tested

a simple application which draws a finely tessellated cube. This application was tested

against three different network models: “Ideal”, which assumes an infinite bandwidth net-

work; “Myrinet Synchronous”, which performs a synchronous send using the Myrinet GM

library; and “Myrinet Asynchronous”, which performs asynchronous overlapped sends. In

order to evaluate the overhead of computing the object-space bounding box, vertex rates

were measured with and without bounding box calculation. All experiments were per-

formed with a 1x1 tiled display configuration.

Table 4.1 shows the results of these tests. On the ideal network, tilesort is capable

������� ��)��
�
� *���
�+ ���
����
 �"

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(30, 0, 0, 1);
glTranslatef(x, y, z);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glBegin(GL_TRIANGLES);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glEnd();

Application Source Code

Vertex3f (1)
Vertex3f (2)

Begin

Vertex3f (3)
End

O
pcodes

D
at

a

Geometry Buffer

Tracked Application State

Current Matrix Mode

Current Projection Matrix

Current Modelview Matrix

Blending

Blend Function

Depth Test

Inside Begin/End

Geometry Bounding Box

GL_MODELVIEW

IDENTITY

R(30,0,0,1)*T(x,y,z)

ENABLED

GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA

ENABLED

NO

[x1,y2,z1 x3,y3,z2]

X1

Y1

Z1

X2

Y2

Z2

X3

Y3

Z3

GL_TRIANGLES

Figure 4.5: Packing and state tracking. The “tracked application state” boxes
contain the complete OpenGL state of the running application. Note that the
OpenGL state is actually quite large; state elements not shown in this figure are
assumed to be the OpenGL default. Once the source code shown in the upper
left has executed, the geometry buffer contains just the opcodes and data that
appeared between the glBegin/glEnd pair, while all other calls have recorded
their effects into the state structure. When the geometry buffer is transmitted,
it will be preceded by the necessary commands to bring the rendering server’s
state up to date with the tracked application state.

������� ��)��
�
� *���
�+ ���
����
 �#

ChangeState(1)
DrawStuff(1);
ChangeState(2);
DrawStuff(2);
ChangeState(3);
DrawStuff(3);
ChangeState(4);
DrawStuff(4);
ChangeState(5);
DrawStuff(5);
ChangeState(6);
DrawStuff(6);

Application
Source Code

Geometry
Buffer

State 4

Tracked
Application State OPS (4)

DATA (4)

Server 1
Buffer

STATE(0,3)

STATE(0,3)

GEOM (3)

GEOM (3)

Server 2
Buffer

STATE(0,1)

STATE(0,1)

GEOM (1)

GEOM(1)

STATE(1,2)

STATE(1,2)

GEOM(2)

GEOM (2)

Server 3
Buffer

State 3

Server 1
State

State 2

Server 2
State

DEFAULT

Server 3
State

Figure 4.6: A snapshot of WireGL’s buffer management scheme. Geometry
commands are packed immediately into the geometry buffer. State commands
record their effect into the client’s tracked state structure. When the geometry
buffer is flushed, the bounding box of the geometry buffer is used to determine
which servers will need to receive the geometry data. Note that when the
application changes state, the geometry buffer must be flushed because that
state change will only apply to subsequent geometry, not to already packed
geometry. The ordering semantics of OpenGL dictate that each such server
must first have its state brought up to date before the geometry commands
can legally be executed. In the figure, geometry blocks 1 and 2 have fallen
completely on server 2, so those data and the associated state changes only
appear in its associated buffer. Geometry block 3 falls completely on server
1. Note that server 3 has not had any geometry fall on its managed area, so
no data have been sent to it, and its state is falling further and further behind
the application. If a geometry block were to fall on more than one server,
the geometry would be copied to multiple outgoing buffers. The STATE(A,B)
blocks represent the opcodes and data necessary to transition from state A to
state B.

������� ��)��
�
� *���
�+ ���
����
 �$

Network No Bounding Box Bounding Box
Ideal 22.6 MVerts/sec 12.0 MVerts/sec

293.5 MB/sec 156.0 MB/sec
Myrinet 4.73 MVerts/sec 4.10 MVerts/sec
Synchronous 61.5 MB/sec 53.3 MB/sec
Myrinet 7.70 MVerts/sec 7.68 MVerts/sec
Asynchronous 100.1 MB/sec 99.8 MB/sec

Table 4.1: Geometry rates for tilesort. glVertex3f packing was tested
with an ideal network (infinite bandwidth) and Myrinet with synchronous and
asynchronous overlapped sends. The rates were calculated with and without
bounding box calculation.

of packing 22.6 million vertices, or 293.5MB per second (recall that each vertex occupies

13 bytes). This rate is halved when bounding boxes are computed, due to the extra com-

putation which is performed at each glVertex3f call. These packing rates are at or above

the observed peak bandwidths of high-speed networks available today.

Using Myrinet, it is clear that we are limited by the bandwidth of the network. The

synchronous send model uses blocking sends which wait until the packet is placed on the

physical network before returning. As a result, the packing and bounding box calcula-

tion costs are not overlapped with the network send time. This can be seen in the drop in

packing rate when we maintain a bounding box. With asynchronous sends, the packing

of glVertex3f calls, including the bounding box calculation, is overlapped with the net-

work transmission. The results show that the bounding box calculation does not impact

performance since we are limited by the bandwidth of the network, not by the tilesort

implementation.

������� ��)��
�
� *���
�+ ���
����
 �%

��� �����+����# 1������

To demonstrate scalability, we tested tilesort with three different applications:

� March extracts and renders an isosurface from a volumetric data set, a typical scien-

tific visualization task. Our dataset is a 4003 volume, and the corresponding isosur-

face consists of 1,525,008 triangles.

� Nurbs tessellates a set of patches into triangle strips. This application is typical of

higher level surface description applications used in animation. Our dataset consists

of 102 patches, with 1,800 triangles per patch, for a total of a 183,600 triangles.

� Quake is the first person action game Quake III: Arenaby Id Software. Quake is

essentially an architectural walk-through with aggressive visibility culling, and its

extensive use of OpenGL’s feature set stresses our implementation.

Each application was run in six different tiled display configurations: 1x1, 2x1, 2x2,

4x2, 4x4, and 8x4, shown in figure 4.7. To quantify the cost of state tracking and bucket-

ing, we repeated our experiments in “broadcast mode”, which disables state tracking and

bucketing and broadcasts the application’s command stream to all of the rendering servers.

March and Nurbs, shown in figure 4.7(a,b), clearly demonstrate tilesort’s scalability.

As we increase the output size of the display, tilesort achieves a nearly constant frame

rate regardless of the number of rendering servers. In comparison, the frame rate of the

broadcast method drops with every server added to the configuration, as expected. All

of the geometry rendered by both March and Nurbs is visible, so there is no benefit to

bucketing when only rendering to a single display. In fact, broadcast mode has slightly

better performance than tilesort when rendering to a 1x1 tiled display because it does

not incur the overhead of state tracking and maintaining the bounding box. However, as

������� ��)��
�
� *���
�+ ���
����
 �&

(a) March (b) Nurbs (c) Quake

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

1x1 2x1 2x2 4x2 4x4 8x4

Tile Configuration

0.0

0.5

1.0

R
el

at
iv

e
F

ra
m

er
at

e

Broadcast WireGL

Figure 4.7: Frame rate comparisons between tilesort and broadcast. The
broadcast frame rate falls off quickly as expected, while tilesort’s frame
rate falls much more slowly. The more rapid falloff of Quake is due to larger
primitive sizes, which need to be transmitted to many servers. The actual
frame rates for each application in the 1x1 broadcast configuration are 0.25,
4.93, and 48.1 frames per second, respectively. The 8x4 configuration forms a
25 megapixel display.

soon as we add a second display tilesort quickly overtakes the broadcast method due to

its more efficient network usage.

Broadcasting commands to twice the number of servers halves the rendering speed, as

expected. For March, tilesort’s rate for 32 rendering servers only decreases by 13%

from the single server configuration, compared to broadcast, which runs 25 times slower.

tilesort’s performance decrease is due to a small number of geometry primitives crossing

multiple server outputs, resulting in additional transmissions of the geometry buffer. As

������� ��)��
�
� *���
�+ ���
����
 "'

with any scene that covers the entire output area, a certain number of primitives will need

to be sent to multiple servers. In general, the slowdown for broadcast will be proportional

to the number of rendering servers, while the slowdown for tilesort is proportional to

the multiply transmitted geometry for each application.

Quake, shown in figure 4.7(c) does not scale as well as the other two examples, but

tilesort still has a large advantage over broadcast. Quake makes use of complex textures

rather than incorporating additional geometry to represent detail, and therefore issues many

large polygons. These polygons reduce the network efficiency of Quake because they must

be sent to more than one server. This effect can be seen in the larger configurations.

Furthermore, Quake has been optimized to minimize the number of OpenGL state

changes by rendering all of the elements in the scene with similar state configuration at

the same time. While this can improve performance when using graphics hardware, it can

be detrimental to tilesort’s bucketing scheme, since geometry which has similar state

does not necessarily exhibit good spatial locality. We address this problem by bucketing

more frequently. Despite these limitations, figure 4.7(c) clearly demonstrates that our sys-

tem can still efficiently manage Quake rendering and is superior to basic broadcasting.

$� ������ ���
����� ���� �%

 	��&�����

Although the techniques presented in the previous chapter provide scalable display res-

olution, there is a bottleneck at the client node1. Because the network interface is typically

slower than the local interface between a CPU and the graphics subsystem, tilesort ex-

acerbates the existing interface-limited nature of high performance graphics applications.

To overcome this interface limitation, it is necessary to extend the system to support a

parallel interface. That is, multiple processes, each with its own graphics context, should

be able to submit commands to the graphics system in parallel. In this chapter, we present

1In some cases, inefficiently written serial applications can run faster using tilesort than they can run
locally. This surprising result is due to tilesort’s parsimonious attitude towards sending state commands.
Repeatedly setting state elements to their current value can, in some cases, be more expensive than trans-
mitting the command over a network. By removing these redundant commands, the application can run
faster over a network than it can locally. Such an effect was demonstrated by NCSA using the WireGL
system [Humphreys et al., 2000] at SuperComputing 2000.

"�

������� "�)��
�
� �
����
� ��� ��)���,����� "�

a Chromium configuration that uses multiple tilesort SPUs to create a sort-first archi-

tecture with such a parallel interface. This configuration is semantically very similar to

the complete WireGL system, and the results in this chapter were originally presented in

SIGGRAPH 2001 [Humphreys et al., 2001]. Because they are so similar, we will refer to

a Chromium configuration involving multiple tilesort SPUs and one or more rendering

servers as “WireGL”, pointing out differences as they occur.

A WireGL based rendering system consists of one or more Chromium clients, each

using the tilesort SPU to submit OpenGL commands simultaneously to one or more

Chromium servers. Recall that each tilesort SPU provides a sort-first tiled architecture;

together they provide a parallel interface to that architecture, allowing nodes in a parallel

application to collaborate to render a single output image. Each server typically has its

own graphics accelerator and a high-speed network connecting it to all clients. The output

image is divided into tiles, which are partitioned over the servers, each server potentially

managing multiple tiles. The assembly of the final output display from the tiles is described

in section 5.4. A high-level view of the system is shown in figure 5.1.

��� '-��-���

Despite recent advances in accelerator technology, many real-time graphics applica-

tions still cannot run at acceptable rates. As processing and memory capabilities continue

to increase, so do the sizes of data being visualized. Today we can construct laser range

scans comprised of billions of polygons [Levoy et al., 2000] and solutions to fluid dy-

namics problems with several hundred million data points per frame over thousands of

frames [Heermann, 1998; Reynolds and Fatica, April 2000]. Because of memory con-

straints and lack of graphics power, visualizations of this magnitude are difficult or impos-

sible to perform on even the most powerful workstations. Therefore, the need for a scalable

������� "�)��
�
� �
����
� ��� ��)���,����� "�

Application0 Net

Application1 Net

Application2 Net

Application3 Net

Render0Net Gfx

Render1Net Gfx

Render2Net Gfx

Render3Net Gfx

MonitorPixelsOpenGL

Gigabit
Network

Image
Reassembly

OpenGL

Figure 5.1: In this example, each application node is performing isosurface
extraction in parallel and rendering its data using the OpenGL API. Each
application node is responsible for the correspondingly colored portions of the
object. In the configuration shown, the display is divided into 16 tiles, each of
which is managed by the correspondingly shaded rendering node. These tiles
are reassembled to a single monitor after they are scanned out of the graphics
accelerators.

graphics system is clear.

The necessary components for scalable graphics on clusters of PC’s have matured suffi-

ciently to allow exploration of clusters as a reasonable alternative to multiprocessor servers

for high-end visualization. In addition to graphics accelerators and processor power, mem-

ory and I/O controllers have reached a level of sophistication that permits high-speed mem-

ory, network, disk, and graphics I/O to all occur simultaneously, and high-speed general

purpose networks are now fast enough to handle the demanding task of routing streams of

graphics primitives.

To take advantage of these opportunities, we have created a Chromium configuration

called WireGL to unify the rendering power of a collection of graphics accelerators in

cluster nodes, treating each separate framebuffer as part of a single tiled display. A high-

level diagram of WireGL is shown in figure 5.1.

In addition to supporting tiled displays, WireGL provides a parallel interface to the

������� "�)��
�
� �
����
� ��� ��)���,����� "�

virtualized graphics system, so each node in a parallel application can issue graphics com-

mands directly. This helps applications overcome one of the most common performance-

limiting factors in modern graphics systems: the interface bottleneck. We extend the

OpenGL API to allow the simultaneous streams of graphics commands to obey ordering

constraints imposed by the programmer.

Another recent development is the introduction of the Digital Visual Interface (DVI)

standard for digital scan-out of the framebuffer [DVI Specification, 1998]. We allow a flex-

ible assignment of tiles to graphics accelerators, recombining these tiles using experimental

DVI-based tile reassembly hardware called Lightning-2 [Stoll et al., 2001]. In the absence

of image composition hardware, WireGL can also perform the final image reassembly in

software, using the general purpose cluster interconnect. Because of this flexible assign-

ment of tiles to accelerators, we can deliver the combined rendering power of a cluster to

any display, be it a multi-projector wall-sized display or a single monitor. By decoupling

the number of graphics accelerators from the number of displays and allowing a flexible

partitioning of the output image among the accelerators, image reassembly gives applica-

tions control over their graphics load balancing needs.

By providing a common virtualized interface for high performance rendering and screen

space tiling, WireGL can provide a reasonable rendering load balance for many applica-

tions assuming a good distribution of geometric primitives over the entire output space.

The burden of ensuring a fair distribution of computational work among cluster nodes still

lies with the application designer. In addition, WireGL can expose the details of the screen

tiling to a more savvy application to allow the application to make higher-level decisions

about work distribution. Application nodes may perform their own fast culling, or provide

bounding information through the use of OpenGL hints to further accelerate WireGL. In

������� "�)��
�
� �
����
� ��� ��)���,����� ""

general, however, the tiling of the screen and the number of remote rendering engines is

hidden from the application.

The strengths of WireGL can be summarized as follows:

� Handle large, time-varying data sets through an immediate-mode API

� Virtualize the existence of multiple disjoint accelerators to provide flexible output

configurations

� Provide fast software context switching to support multiple simultaneous rendering

clients

� Provide ordering for multiple simultaneous contexts without forcing the client nodes

to block

� Provide scalability in output resolution and overall input rendering rate

��� ��%� ������� ���������

Before we describe the details of this architecture, it is important to understand how

Chromium’s network servers handle the multiple incoming graphics streams that result

from any architecture with a parallel interface. As was described in section 3.1, Chromium

servers act as serializers for multiple graphics streams. Because each incoming stream

of graphics commands has its own associated graphics context, it is necessary to insert

the proper commands into the serialized stream to ensure that when we switch from one

stream to another, the graphics state has been restored. Because stream serialization makes

no assumptions about the nature of the stream transformation to follow, we must perform

this context switch in software. In this section, we describe the mechanism by which these

context switches are accomplished. Note that it is frequently the case that the serialized

������� "�)��
�
� �
����
� ��� ��)���,����� "#

stream is about to be rendered by locally attached graphics hardware, which itself supports

multiple contexts. This section also shows that soft context switching is still a good idea

even when there is underlying hardware support.

Traditional graphics accelerators are optimized to move data in one direction: from the

host to the screen. Therefore, any operation that requires a reversal of the pipeline is typi-

cally very expensive. In particular, allowing multiple applications to share a single display

requires the accelerator to switch graphics contexts rapidly; a process usually handled by

the operating system and graphics driver. Unless the graphics card supports multiple con-

texts in hardware, this operation will require that the entire pipeline be flushed and the state

registers be read back over the system bus. In fact, even cards that support multiple hard-

ware contexts, such as the NVIDIA GeForce, are forced to read back state from the card

when an application thread explicitly changes contexts due to constraints of the window

system in which they operate.

Performing OpenGL state tracking in software alleviates the need for reading back from

the graphics card. We can use the same efficient context differencing operation described

in section 4.2 to perform a software, or “soft”, context switch. By performing this switch in

software, the graphics card needs only to maintain a single hardware context which never

needs to be interrupted.

The model for soft context switching is only slightly different from the virtual graphics

contexts used by the tilesort SPU for remote rendering. Each dirty bit now represents

an input stream’s context’s relationship to the state of the serialized output stream. If a

bit is set, the output context may not have the same value as the indicated input context.

When we perform a soft context switch, we examine the bits hierarchically as before. If a

particular state element is out of date, we insert a command to update the output context,

������� "�)��
�
� �
����
� ��� ��)���,����� "$

and set all the other contexts’ bits to one. Pseudocode for a portion of this algorithm is

shown in figure 5.2.

switch_fragment_state(context) {
if (fragment bit set) {
if (alphafunc bit_set && ...)

...
if (blendfunc bit set &&

input blendfunc != output blendfunc) {
call system glBlendFunc
set all other blendfunc bits
set all other fragment bits

}
clear blendfunc bit
if (clearaccum bit set && ...)

...
}
clear fragment bit

}

Figure 5.2: A portion of the code to switch contexts in software using our
hierarchical bit-vector representation. If no streams are changing the blend
function, no glBlendFunc calls will be issued. Also, if no streams change any
of the fragment state, many tests can be skipped.

Once the soft context switch is completed, the output stream’s context will exactly

match the context of the current input stream. In generating a glBlendFunc command, the

system may have overwritten the blend function with respect to the context of any or all

other streams. We therefore must re-evaluate the validity of the blend function when we

switch again. Also, the value equality test plays an important role in soft context switch-

ing. By checking the actual values, we prevent unnecessary state commands from being

generated when multiple input contexts have the same values. This optimization is impor-

tant because the input streams are usually collaborating to produce a single image, and will

therefore tend to have very similar graphics contexts at all times.

������� "�)��
�
� �
����
� ��� ��)���,����� "%

An added benefit of performing this soft context switching is the ability to insert a

level of indirection between each stream’s texture object and display list identifiers and the

identifiers used in the serialized stream. This allows multiple streams to load textures and

display lists without worrying about conflicts.

The speed of soft context switching is proportional to the differences between the cur-

rently active context and the context to which we are switching. If they are exactly identical,

the operations require 18 bit tests and one assignment. To measure the performance of soft

context switching, we wrote a simple application that created one window and many con-

texts, and manually switched the window’s rendering context as quickly as possible. To

evaluate the quality of our implementation, we modified our OpenGL implementation to

simply track state and pass all commands directly to the hardware. The results for this

experiment are shown in table 5.1.

Graphics card Processor Identical Varying
SGI InfiniteReality 195 MHz 719 697
SGI Cobalt 500 MHz 2,239 2,101
NVIDIA GeForce 733 MHz 11,919 5,968
Chromium 733 MHz 5,817,152 191,699

Table 5.1: Context switching rates for various OpenGL implementations. For
the “Identical” column, we are context switching between contexts with no
differences. For the “Varying” column, we change the matrix stack and cur-
rent color for each context before switching. The InfiniteReality is hosted in
an 8 processor MIPS R10000 based Silicon Graphics Onyx2; all other hosts
use a single Intel Pentium III processor. The lower performance of the Infinite-
Reality is largely due to the expense of flushing its deep command buffers, a
problem faced by more complex graphics accelerators.

Clearly, Chromium will run more slowly when the contexts are varying; the varying

context column in table 5.1 requires a software matrix multiplication as well as calls to

glLoadMatrix and glColor3f, plus drawing a triangle. Still, this application runs 38

������� "�)��
�
� �
����
� ��� ��)���,����� "&

times faster with Chromium than without it, on the same hardware.

��� �������� '
���! 2���������

When running a parallel application with WireGL, each client node behaves in the

manner described in chapter 4, performing a sort-first distribution of geometry and state to

all servers. OpenGL guarantees that commands from a serial context will appear to execute

in the order they are issued. When multiple OpenGL contexts render to a single image, this

restriction must be relaxed because the graphics commands are being issued in parallel. To

provide ordering control for parallel rendering, Chromium adds barriers and semaphores to

the OpenGL API, as proposed by Igehy et al. [1998].

The key advantage of these synchronization primitives is that they do not block the ap-

plication. Instead, the primitives are encoded into the graphics stream, and their implied

ordering is obeyed by the graphics system when a context switch occurs. A graphics con-

text may enter a barrier at any time by calling glBarrierExec(name). Semaphores can

be acquired and released with glSemaphoreP(name) and glSemaphoreV(name), respec-

tively. Note that these ordering commands must be broadcast by tilesort, as the same

ordering restrictions must be observed by all servers, and we wish to avoid a central oracle

making global scheduling decisions.

tilesort can change the semantics of commands with global effects. For example,

SwapBuffers marks the end of the frame and causes a buffer swap to be executed by

all servers. This is different from the original implementation of WireGL; there, it was

important that only one client execute SwapBuffers per frame [Humphreys et al., 2001].

Also, a parallel application with no intra-frame ordering dependencies needed two barriers

per frame: To ensure that the framebuffer clear happens before any drawing, a barrier

must follow the call to glClear; and all nodes must have completely submitted their data

������� "�)��
�
� �
����
� ��� ��)���,����� #'

Display() {
if (my_thread_id == 0) // I am the master

glClear(...);
glBarrierExec(global_barrier);
DrawFrame();
glBarrierExec(global_barrier);
if (my_thread_id == 0) // I am the master

glSwapBuffers();
}

Figure 5.3: A minimal parallel display routine from the original WireGL de-
sign [Humphreys et al., 2001]. Although the geometry itself has no intra-frame
ordering dependencies, the imposition of frame semantics requires barriers fol-
lowing the framebuffer clear and preceding the buffer swap to ensure that the
entire frame is visible.

for the current frame before swapping buffers, so another barrier must precede the call to

SwapBuffers. Pseudocode for this minimal usage is shown in figure 5.3. More complex

usage examples can be found in Igehy’s original paper [1998].

In Chromium, however, the requirement of extra barriers and selective issuing of glClear

and SwapBuffers is removed. Instead, we allow the user to optionally alter the semantics

of glClear and SwapBuffers so that the barriers are implicit. In addition, the user can

configure the servers to only execute glClear or SwapBuffers from a single client. At

first glance, this ability may not seem very useful, but we will see that it is crucial to

achieving a truly virtualized parallel graphics architecture.

Note that we must be careful when selectively executing commands from clients. In

effect, we are assuming that each client application has the same basic OpenGL usage

pattern as the one shown in figure 5.3. In particular, we are assuming that applications

tend not to call glClear in the middle of a frame. This assumption is not always valid;

for example, each instance of the readback SPU (described in section 5.6) needs to clear

������� "�)��
�
� �
����
� ��� ��)���,����� #�

the remote OpenGL stencil buffer to achieve proper depth compositing. In an attempt to

accommodate such usage, we only ignore extra calls to glClear for the color and depth

buffer. However, it is easy to write applications for which this assumption is not valid. For

those applications, modifications similar to those shown in figure 5.3 are still possible.

��� "��
��# ����������

Since each server may manage more than one tile, it may be necessary for a server to

render a block of geometry more than once. The arrangement of tiles in the local frame-

buffer is described in section 5.5. tilesort inserts the screen-space bounding box for

each block of geometry between the geometry itself and its preceding state commands.

Each server compares this bounding box against the extents of the tiles managed by that

server. For each intersection found, a translate and scale matrix is prepended to the current

transformation matrix, positioning the resulting geometry with respect to the intersected

tile’s portion of the final output. Because of the semantics of OpenGL rasterization, this

technique can lead to seaming artifacts for anti-aliased or wide lines and points. Unfor-

tunately, not all OpenGL implementations adhere to the same rules regarding clipping of

wide lines and fat points, so this problem is difficult to address in general.

Calls to glViewport and glScissor are then issued to restrict the drawing to the tile’s

extent in the server’s local framebuffer, and finally the geometry opcodes are decoded and

executed. Because the geometry block also includes vertex attribute state, the graphics

state may have changed by the end of the geometry block. However, the client will insert

commands to restore the vertex attribute state at the beginning of the geometry buffer.

Therefore, if the geometry overlaps more than one tile, the vertex attribute state will always

be properly restored before the geometry is re-executed.

To form a seamless output image, tiles must be extracted from the framebuffers of the

������� "�)��
�
� �
����
� ��� ��)���,����� #�

servers and reassembled to drive a display device. We provide two ways to perform this

reassembly. For highest performance, the images may be reassembled after being scanned

out of the graphics accelerator. If this is not possible, the tiles can be extracted from the

framebuffer over the host bus interface and distributed over a general purpose network,

often the same one used for distributing geometry commands.

Of course, the easiest way to reassemble the image is to allow each server to drive a

single locally-attached display. These displays can then be abutted to form a large logical

output space. This arrangement constrains each server to manage exactly one tile that is

precisely the size of its local framebuffer. This limits WireGL’s ability to provide an appli-

cation with flexible load balancing support, but makes the final display simple to manage.

��� "��
��# 1������+�# �� 3��
����

For our experiments with hardware display assembly, we use the Lightning-2 sys-

tem [Stoll et al., 2001]. A high-level view of a Lightning-2 system is shown in figure

5.4. Each Lightning-2 board accepts 4 DVI inputs from graphics accelerators and emits up

to 8 DVI outputs to displays. Multiple Lightning-2 boards can be connected in a column

via a “pixel bus” to provide more total inputs. Multiple columns can also be chained by

repeating the DVI inputs, providing more DVI outputs. An arbitrary number of accelera-

tors and displays may be connected in such a two-dimensional mesh, and pixel data from

any accelerator may be redirected to any location on any output display. Routing informa-

tion is drawn into the framebuffer in the form of two-pixel-wide (48 bit) “strip headers”.

Each header specifies the destination of a one-pixel-high, arbitrarily wide strip of pixels

following the packet header in the frame buffer. Lightning-2 can drive a variable number

of displays, including a single monitor.

������� "�)��
�
� �
����
� ��� ��)���,����� #�

Each input to Lightning-2 usually contributes to multiple output displays, so Lightning-

2 must observe a full output frame from eachinput before it may swap, introducing exactly

one frame of latency. However, almost no currently available graphics accelerators have ex-

ternal synchronization capabilities. For this reason, Lightning-2 provides a per-host back-

channel using the host’s serial port. When Lightning-2 has accepted an entire frame from

all inputs, it then notifies all input hosts simultaneously that it is ready for the next frame.

WireGL’s servers wait for this notification before executing the client’s SwapBuffers com-

mand. Because the framebuffer scan-out happens in parallel with the next frame’s render-

ing, Lightning-2 will usually be ready to accept the new frame before the host is done

rendering it, unless the application runs at a faster rate than the eventual monitor’s refresh

rate. In this case, the application will be limited to the display’s refresh rate, which is

often a desirable property anyway. Lightning-2 can also lock groups of outputs to swap

together. Having synchronized outputs allows Lightning-2 to drive tiled display devices

such as IBM’s T221 or a multi-projector display wall without tearing artifacts. This in turn

enables stereo rendering on tiled displays.

Each of WireGL’s servers reserves space for its assigned tiles in its local framebuffer in

a left-to-right, top-to-bottom pattern, leaving two-pixel-wide gaps between tiles, as shown

in figure 5.5. A fixed pattern of strip headers is drawn into the gaps to route the tiles to their

correct destination in the display space. Because Lightning-2 routes portions of a single

horizontal scanline, non-uniform decompositions of the screen such as octrees or KD-trees

could easily be accomplished using WireGL and Lightning-2. In general, each application

will have different tiling needs which should be determined experimentally. In the future,

we would like to use a heuristic to adjust the screen tiling on the fly to try to meet the

application’s needs automatically.

������� "�)��
�
� �
����
� ��� ��)���,����� #�

PC GFX
PC GFX
PC GFX
PC GFX

Lightning-2
Board

PC GFX
PC GFX
PC GFX
PC GFX

Lightning-2
Board

DVI

DVI

Compositing
Chain

Monitor

Figure 5.4: A sample Lighning-2 configuration. Each Lightning-2 board takes
four DVI inputs and produces eight DVI outputs. Boards can be chained in one
dimension to provide more inputs, and in the other dimension to provide more
outputs. In this example, eight graphics accelerators are driving a single mon-
itor. By decoupling the number of graphics accelerators from the total number
of displays, and allowing each accelerator to manage tiles much smaller than
the actual size of each individual display, we greatly improve load balancing.

�� "��
��# 1������+�# �� ��%�����

Without special hardware to support image reassembly, the final rendered image must

be read out of each local framebuffer and redistributed over a network. This network can

be the same one used to distribute graphics commands, or it could be a separate dedicated

network for image reassembly.

To provide this functionality, we introduce the readback SPU. This SPU derives from

the render SPU using the inheritance model described in section 3.4. The readback SPU

renders all commands to the local graphics hardware as before, but at the end of the frame

it reads back each tile and passes that tile to a downstream SPU using glDrawPixels. The

readback SPU either behaves in tile reassembly mode (as described in this section), or in

image-compositing mode, described in chapter 6. In tile reassembly mode, the readback

SPU uses glRasterPos to position the rectangular tiles on the eventual output device.

������� "�)��
�
� �
����
� ��� ��)���,����� #"

Framebuffer 1

Framebuffer 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 3 6

8 9 11

14 16

2 4 5

7 10 12

13 15

3 6

Reconstructed
Image

Strip
Headers

Figure 5.5: Allocating multiple tiles to a single accelerator with Lightning-2.
In the zoomed-in region, the two-pixel wide strip headers are clearly visible.

Typically, these images will be sent over a network to a single server to be displayed by

a render SPU. In effect, each of WireGL’s servers becomes a client in a parallel image-

drawing application. A diagram of this architecture is shown in figure 5.6.

The primary drawback of this approach is its potential impact on performance. Pixel

data must be read out of the local framebuffer, transferred over the internal network of

the cluster, and written back to a framebuffer for display. Even with the limited bandwidth

available on modern cluster networks, image drawing bandwidth will tend to be the limiting

factor for applications that can update at high framerates. As networks and graphics cards

improve and can carry more pixel data along with the geometry data, this technique may

become more attractive, but it cannot currently sustain high frame rates, as we will show in

������� "�)��
�
� �
����
� ��� ��)���,����� ##

Application
Tilesort

Application
Tilesort

Application
Tilesort

... ...

Chromium Server

Readback

Chromium Server

Chromium Server

Chromium Server

Send

Readback Send

Readback Send

Readback Send

Chromium Server

Render

Figure 5.6: A complete WireGL system with software tile reassembly. A par-
allel application drives a tiled display using the sort-first logic in the tilesort
SPU. Imagery is then read back from the servers managing those tiles and sent
to a final compositing server for display.

section 5.7.

��$ ���%������� ��
 �����+����#

The cluster used for our experiments consists of 32 Compaq SP750 workstations. Each

node has two 800 MHz Intel Pentium III Xeon processors, 256 megabytes of RDRAM, and

an NVIDIA Quadro2 Pro graphics adapter. The SP750 uses the Intel 840 chipset to control

its I/O and memory channels, including a 64-bit, 66 MHz PCI bus, an AGP4x slot, and

dual-channel RDRAM. Each SP750 is running RedHat Linux 7.0 with NVIDIA’s 0.9-769

OpenGL drivers.

Each node has a Myricom high-speed network adapter [Boden et al., 1995] connected

to its PCI bus. Each network card has 2MB of local memory and a 66 MHz LANai 7 RISC

processor. The cluster is fully connected using two cascaded 16-port Myricom switches.

Using the 1.4pre37 version of the Myricom Linux drivers, we are able to achieve a band-

width of 101 MB/sec when communicating between two different hosts.

������� "�)��
�
� �
����
� ��� ��)���,����� #$

For our experiments with parallel applications, we partition the cluster into 16 computa-

tion nodes and 16 visualization nodes. This is done because our network does not perform

well when senders and receivers are running on the same host, as shown in section 5.7.

Applications

We have analyzed WireGL’s performance and scalability with three applications:

� March is a parallel implementation of the marching cubes volume rendering algo-

rithm [Lorensen and Cline, 1987]. A 200� 200� 200 volume is divided into sub-

volumes of size 4� 4� 4 which are processed in parallel by a number of isosurface

extraction and rendering processes. March draws independent triangles (three ver-

tices per triangle) with per-vertex normal information. March extracts and renders

385,492 lit triangles per frame at a rate of 374,000 tris/sec on a single node. Our

graphics accelerators can render 2.9 million lit, independent triangles with vertex

normals per second.

� Nurbs is a parallel patch evaluator that uses multiple processors to subdivide curved

surfaces and tessellate them for submission to the graphics hardware. For our tests,

Nurbs tessellates and renders 413,100 lit, stripped triangles per frame with vertex

normals, at a rate of 467,000 tris/sec on a single node.

� Hundy is a parallel application that renders a set of unorganized triangle strips. Each

strip is assigned a color, but no lighting is used. Hundy is representative of many

scientific visualization applications where the data are computed off-line and the

visualization can be decomposed almost arbitrarily. Each processor is responsible

for its own portion of the scene database. Each frame of Hundy renders 4 million

triangles, at a rate of 7.45 million tris/sec. On a single node, Hundy is completely

������� "�)��
�
� �
����
� ��� ��)���,����� #%

0 4 8 12 16
Clients=Servers

0

4

8

12

16

Sp
ee

du
p

Ideal
March
Nurbs
Hundy

Figure 5.7: Speedup for March, Nurbs, and Hundy using up to 16 servers. With
16 clients and 16 servers, Hundy achieves 83% efficiency, Nurbs achieves 81%
efficiency, and March achieves 64% efficiency.

limited by the interface to the graphics system; it cannot submit its data fast enough

to keep the graphics system busy.

Scaling March, Nurbs, and Hundy using a single system is a challenging problem. Al-

though other useful applications could be written that pose less of a challenge for WireGL,

the applications we have chosen stress our implementation. Each application has very dif-

ferent load balancing behavior, requires immediate mode semantics, and generates a large

amount of network traffic per frame. The speedup for these applications using 16 servers

is shown in figure 5.7.

������� "�)��
�
� �
����
� ��� ��)���,����� #&

Hundy

0 4 8 12 16
Clients

0

20

40

60

80

M
T

ri
s/

se
c

March

0 4 8 12 16
Clients

0

2

4

6
Nurbs

0 4 8 12 16
Clients

0

2

4

6

Ideal
pipes=1
pipes=2
pipes=4
pipes=6
pipes=8
pipes=12
pipes=16

Figure 5.8: Scaling interface-limited applications. For each application, the
number of clients and servers is varied. Hundy uses a tile size of 100� 100,
and achieves a peak rendering performance of 71 million tris/sec at a rate of
17�7 fps. Nurbs uses a tile size of 100� 100, and achieves a peak rendering
performance of 6.1 million tris/sec at a rate of 14�9 fps. March uses a tile size
of 200�200, and achieves a peak rendering performance of 4 million tris/sec
at a rate of 10�6 fps. For each run, the display is a single 1600�1200 monitor.
As the number of clients surpasses the number of servers, the performance of
the application once again becomes limited by the interface.

Parallel Interface

To scale any interface-limited application, it is necessary to allow parallel submission

of graphics primitives. To demonstrate this, we have run our applications in a number

of different configurations, shown in figure 5.8. In these graphs, the tile size is chosen

empirically, and Lightning-2 reconstructs a final 1600� 1200 output image.2 Each curve

represents a different number of servers, from 1 to 16. As the number of clients grows

greater than the number of servers, the performance flattens out, demonstrating that such a

configuration is once again limited by the interface.

Some of Hundy’s performance measurements show a super-linear speedup; this is be-

cause Hundy generates a large amount of network traffic per second. This traffic is spread

2Currently, Lightning-2 supports input resolutions up to 1280� 1024, so for one server we bypass
Lightning-2 and drive the display directly.

������� "�)��
�
� �
����
� ��� ��)���,����� $'

0 8 16 24 32
Clients

0

2

4

6
M

T
ri

s/
se

c

rate=50k rate=200k
rate=500k rate=1.6M

Figure 5.9: Scaling a compute-limited application with a single server. For
each curve, Hundy’s issue rate has been restricted. We achieve excellent scala-
bility up to either the server interface limit, or the full 32 nodes of our cluster.

uniformly over all the servers, and when the number of servers is greater than the number of

clients, each path in the network is less fully utilized. Essentially, this shows that Hundy’s

performance is very sensitive to the behavior of our network under high load.

WireGL’s approach provides scalable rendering to applications with a variety of graph-

ics performance needs. To measure scalability with a compute-limited application, we have

artificially limited Hundy’s geometry issue rate. The number of submitting clients is then

varied while only using one server. The results of this experiment are shown in figure 5.9.

For each test, the application scales well until it reaches the interface limit of the single

server or the size of the cluster.

The results shown in figures 5.8 and 5.9 demonstrate WireGL’s flexibility. Interface-

limited applications can be scaled by adding servers and clients, while compute-limited

applications can be scaled by adding clients only.

������� "�)��
�
� �
����
� ��� ��)���,����� $�

Hardware vs. Software Image Reassembly

The overhead of performing software image reassembly can quickly dominate the per-

formance of an application as the output image size grows. Each node in our cluster has

a pixel read performance of 28 million pixels/sec, and a pixel write performance of 64

million pixels/sec. If we can transmit 100 MB/sec of image data into a display node, this

implies a maximum performance of 33 million pixels/sec for the visualization server. In

practice, we achieve approximately half this rate in all-to-one communication, yielding a

maximum frame rate of approximately 8 Hz at a resolution of 1600�1200.

To measure the overhead of the visualization server versus Lightning-2, we wrote a

simple serial application that calls SwapBuffers repeatedly. The performance of this ap-

plication represents an upper bound on the achievable framerate of any application. A serial

application is a fair test because, as described in section 5.3, only one node in a parallel

application calls SwapBuffers for each frame. In each experiment, 12 servers are used.

The results are shown in figure 5.10. The “displays=4” curves are representative of a tiled

display wall or a multi-input display such as IBM’s T221.

This graph demonstrates that hardware supported image reassembly is necessary to

maintain high framerates for most output image sizes. Lightning-2 is able to maintain a

constant refresh rate of 90 Hz for any image size ranging from 320� 240 to 3200� 2400.

The visualization server provides a maximum refresh rate of 8 Hz for a 1600�1200 image,

which is approximately 46 MB/sec of network traffic. This is consistent with the measured

bandwidth of our network under high fan-in congestion.

������� "�)��
�
� �
����
� ��� ��)���,����� $�

320x240
1024x768

1280x1024
1600x1200

2048x1536 2560x2048 3200x2400

Output Resolution

0

20

40

60

80

M
ax

. F
ra

m
e

R
at

e

Lightning-2, displays=1
Lightning-2, displays=4
Vis. server, displays=1
Vis. server, displays=4

Figure 5.10: Maximum framerate achievable using Lightning-2 or the visual-
ization server. As the image size increases, the expense of reading and writing
blocks of pixels to the framebuffer quickly limits the visualization server to
non-interactive framerates.

Load Balance

When evaluating a scalable graphics application, there are two different kinds of load

balancing to consider. First, there is application-level load balance, or the amount of com-

putation performed by each client node. This type of load balancing cannot be addressed

by WireGL; it is the responsibility of the application writer to distribute work evenly among

the application nodes in the cluster.

To evaluate application-level load balance, we measured the speedup of our applica-

tions in a full 32-node configuration without a network (i.e., discarding packets). In this

configuration, March achieved 85% efficiency, Nurbs 98% efficiency, and Hundy 96% ef-

ficiency. From these results, we conclude that each application has a good distribution of

work across client nodes.

The other type of load balancing is graphics work. For most applications, the interface

to a single rendering server quickly becomes a bottleneck, and it is necessary to distribute

������� "�)��
�
� �
����
� ��� ��)���,����� $�

the rendering work across multiple servers. However, the rendering work required to gen-

erate an output image is typically not uniformly distributed in screen space. Thus, the tiling

of the output image introduces a potential load imbalance, which may in turn create a load

imbalance on the network as well.

Because the triangles in our test applications are uniformly small, the server-side load

balance can be reasonably measured by the total number of bytes sent to each server. For

each application, the total incoming traffic when using one server is a lower bound on the

total amount of network traffic for any number of servers, since adding servers will result in

some redundant communication. The overlap factor is the ratio of total traffic received by

all servers to this lower bound, and the load imbalance is the ratio of the maximum traffic

received by any server to the average traffic. In figure 5.11, the height of each curve shows

the overlap factor. The error bars indicate the overlap if each server received the maximum

or minimum traffic received by any server. The load imbalance is therefore the ratio of the

maximum shown to the observed overlap factor for that number of servers.

As expected, the choice of tile size affects the load balance and the overlap factor. For

smaller tiles, there is less variance in the total number of bytes received, resulting in a better

load balance, but the overall average data transmitted has increased due to overlap. As the

tiles get larger, the overlap is smaller, but longer error bars indicate a poorer load balance.

At a tile size of 100� 100, Nurbs has a load imbalance of 1.53 on 16 servers, while at 32

servers the load imbalance increases to 2.13. The load imbalance will continue to increase

as the number of servers increases. Currently, Nurbs is sufficiently compute-limited that

its load imbalance is not exposed in the speedup curve shown in figure 5.7. However, as

cluster size increases, the increasing load imbalance will eventually limit Nurbs’ scalabil-

ity. Nonetheless, WireGL provides excellent scalability up to 16 servers, which makes it a

������� "�)��
�
� �
����
� ��� ��)���,����� $�

Hundy

0 8 16 24 32
Servers

0

1

2

3

4

O
ve

rl
ap

Nurbs

0 8 16 24 32
Servers

0

1

2

3

4
March

0 8 16 24 32
Servers

0

1

2

3

4

tile=50x50
tile=100x100
tile=200x200
tile=400x400

Figure 5.11: Overlap factor and load imbalance with various tile sizes on a
1600� 1200 display. The height of each curve indicates the overlap factor,
while the size of the error bars is proportional to the load imbalance. Increasing
the tile size decreases the total amount of network traffic, but at the expense
of load balance. Note that with a 400� 400 tile size, only 12 total tiles are
needed to cover the display, so no more than 12 servers can contribute to the
final image.

useful solution for many applications on many current cluster configurations.

To verify our assumption that the server load balance can be reasonably measured by

simply counting network traffic, we ran all our measurements in a mode where the servers

discarded incoming traffic rather than decoding it. The performance measurements in this

mode were almost identical to the measurements when graphics commands were actually

executed. This demonstrates that the performance of interface-limited applications will

largely be determined by the scalability of the network under heavy all-to-all communi-

cation, and not by the execution of the graphics commands. As networks improve, this

effect will be reduced, although it is difficult to predict if future network technologies will

ever be fast enough to handle the increasing performance of remote graphics cards or the

increasing ability of CPU’s to generate geometry.

��& ������	 ���������������

To fully understand our scalability results, we have measured the achievable send and

������� "�)��
�
� �
����
� ��� ��)���,����� $"

0 8 16 24
Cluster Size

0

20

40

60

80

100

M
B

/s
ec

transmit receive

Figure 5.12: Transmit and receive bandwidth for Myrinet with all-to-all com-
munication. For each cluster size, the observed send and receive bandwidth
is plotted for all nodes. The top dataset represents a partitioned n-to-n run,
where sources and sinks are not run on the same nodes. The bottom dataset
is an unpartitioned run of all n nodes. Partitioning the cluster results in much
higher bandwidth in general, as well as less transmit bandwidth variance.

receive bandwidths of our network when performing all-to-all communication. We per-

formed this test in a partitioned configuration, in which sources and sinks run on different

cluster nodes, and an unpartitioned configuration where sources and sinks run on the same

cluster nodes. This test was performed with a WireGL-independent program in which each

source node sends fixed-size network packets to all sink nodes in a round-robin pattern.

The results are shown in figure 5.12. The partitioned dataset, shown with green crosses,

achieves much higher overall performance, and has much less transmit bandwidth vari-

ance. For example, in an unpartitioned 18-way test, the transmit bandwidth ranges from

26.02 to 60.75 to MB/sec, while a partitioned run using 9 clients and 9 servers had band-

widths ranging from 93.92 to 96.96 MB/sec. It is interesting to note that any individual

node will observe a very stable transmit bandwidth over the lifetime of its run. That is, the

node achieving 26 MB/sec will always achieve 26 MB/sec, although varying the number

of nodes will change which nodes perform poorly.

'� ������ ���
����� ���� ��%

 	��&����

The sort-first architecture described in chapter 5 has certain drawbacks and fundamental

limitations. Sort-first architectures are notoriously hard to load-balance, since it is difficult

for a particular application node to know in advance how much work it will generate for

any one given graphics pipeline. In addition, the amount of parallelism available in screen

space is limited, because as we make the tiles smaller relative to the total display size, we

aggravate the overlap factor. In addition, the sort-first architecture requires geometry to be

moved over the network each frame, which can cause underutilization of graphics resources

for applications with very high per-node performance.

A dramatically different architecture is shown in figure 6.1. In this figure, the readback

SPU is loaded directly by the applications. Recall that the readback SPU dispatches all of

$#

������� #�)��
�
� �
����
� ��� ���)���,���� $$

...

Application

Readback Send

Application

Readback Send

Application

Readback Send

Application

Readback Send

Chromium Server

Render

Figure 6.1: Chromium configured as a sort-last graphics pipeline. In this ex-
ample, nodes in a parallel application render their portion of the scene directly
to their local hardware. The color and depth buffers are then read back and
transmitted to a final compositing server, where they are combined to produce
the final image.

the OpenGL API directly to the underlying graphics hardware, so the application running

in this configuration benefits from the full performance of local 3D acceleration. In this

case, the readback SPU is configured to extract both the color and depth buffers, sending

them both to a final compositing server along with the appropriate OpenGL commands

to perform a depth composite. In contrast to WireGL, this is a sort-last architecture. In

practice, having many full framebuffers arriving at a single display server would be a severe

bottleneck, so this architecture is rarely used as shown. A more advanced (and practical)

Chromium-based sort-last architecture is presented below.

Because Chromium provides a virtual graphics pipeline with a parallel interface, the

parallel application in figure 6.1 could be run unmodified on the sort-first architecture from

chapter 5 simply by specifying a different configuration DAG. The architectures may pro-

vide slightly different semantics (e.g., the sort-last architecture cannot guarantee ordering

constraints between the clients), but the application need not be aware of the change.

������� #�)��
�
� �
����
� ��� ���)���,���� $%

 �� �������� 4����� 1��
�����

Our volume rendering application uses 3D textures to store volumes and renders them

with view-aligned slicing polygons, composited from back to front. Using Stanford’s Real-

Time Shading Language [Proudfoot et al., 2001], we can implement different classification

and shading schemes using the latest programmable graphics hardware, such as NVIDIA’s

GeForce3. Small shaders can easily exhaust these cards’ resources; for example, a shader

that implements a simple 2D transfer function and a specular shading model requires two

3D texture lookups, one 2D texture lookup (dependent on one of the 3D lookups), and all

eight register combiners.

Because we store our volumes as textures, the maximum size of the volume that can

be rendered is limited by the amount of available texture memory. In practice, on a single

GeForce3 with 64 MB of texture memory, the largest volume that can be rendered with the

shader described above is 256�256�128. In addition, the speed of volume rendering with

3D textures is limited by the fill rate of our graphics accelerator. While the advertised fill

rate of the GeForce3 is 800 Mpix/sec, complex fragment processing greatly impacts the

attainable performance. Depending on the shader being used, we achieve between 42 and

190 Mpix/sec, or roughly 5% to 24% of the GeForce3’s theoretical peak fill rate.

Both of these limitations can be mitigated by parallelizing the rendering across a cluster.

We first divide the volume among the nodes in our cluster. Each node renders its subvolume

on locally housed graphics hardware using the binaryswap SPU, which composites the re-

sulting framebuffers using the “binary swap” technique described by Ma et al [Ma et al.,

1994]. In this technique, rendering nodes are first grouped into pairs. Each node sends one

half of its image to its counterpart, and receives the other half of its counterpart’s image.

The SPUs composite the image they receive from their peers with their local framebuffer.

������� #�)��
�
� �
����
� ��� ���)���,���� $&

Volume Renderer

Binary Swap Send

Volume Renderer

Binary Swap Send

Volume Renderer
Binary Swap Send

Volume Renderer

Binary Swap Send

Chromium Server

Render

Figure 6.2: Configuration used for a four-node version of our cluster-parallel
volume rendering system. Each client renders its local portion of the vol-
ume using local graphics hardware. Next, the volumes are composited using
the binaryswap SPU. The SPUs use out-of-band communication to exchange
partial framebuffers until each SPU contains one quarter of the final image.
These partial images are then sent to a single server for display.

This newly composited sub-region of the image is then split in half, a different pairing is

chosen, and the process repeats. If there are n nodes in our cluster, after log�n� steps each

node will have completely composited 1
n of the total image. Because we are compositing

transparent images using Porter and Duff’s “over” operator [Porter and Duff, 1984], the

sequence of pairings is chosen carefully so that blending is performed in the correct order

with respect to the viewpoint. The Chromium configuration used to realize this architec-

ture is shown in figure 6.2. The communication shown in red and blue uses Chromium’s

connection-based networking abstraction, described in section 3.9.

 �� ���%������� ��
 �����+����#

Our scalability experiments were conducted on a cluster of sixteen nodes, each running

RedHat Linux 7.2. The nodes contain an 800 MHz Pentium III Xeon, a GeForce3 with 64

MB of video memory, 256 MB of main memory, and a Myrinet network with a maximum

������� #�)��
�
� �
����
� ��� ���)���,���� %'

bandwidth of approximately 100 MB/sec (bidirectional). The dataset is a 256�256�1024

magnetic resonance scan of a mouse. All of our renderings are performed in a window of

size 1024�256, ensuring that each voxel is sampled exactly once. Table 6.1 shows the four

shaders we used to vary the achievable per-node performance. Note that a minimum of

eight nodes is required to render the full mouse volume, because each node in our cluster

has only 64 MB of texture memory.

Figure 6.3 shows the performance of our volume renderer as the size of the volume is

scaled. In this experiment, we rendered a portion of the mouse dataset on each node in our

cluster. The initial drop in performance is due to the additional framebuffer reads required,

but because the binary swap algorithm keeps all the nodes busy while compositing, the

graph flattens out, and we sustain nearly constant performance as the size of the volume is

repeatedly doubled. At 16 nodes, we render two copies of the full 256�256�1024 volume

at a rate between 643 MVox/sec and 1.59 GVox/sec, depending on the shader used.

If we instead fix the size of the volume and parallelize the rendering, we quickly be-

come limited by our pixel readback and network performance. When rendering a single

256�256�128 volume split across multiple nodes, the rendering rate rapidly becomes neg-

ligible. When creating a 1024�256 image, our volume renderer’s performance converges

to approximately 22 frames per second. Because the parallel image compositing and final

transmission for display happen sequentially, we can analyze this performance as follows:

With 16 nodes, each node eventually extracts and sends 15
16 of its framebuffer, requiring

four bytes per pixel. The final transmission sends only 1
16 of a framebuffer at three bytes

per pixel, but because all of these framebuffer portions arrive at the same node, we must

consider the aggregate incoming bandwidth at that node, which is a full framebuffer at

three bytes per pixel. This adds up to 1.69 MB/frame, or 37.1 MB/sec. This measurement

������� #�)��
�
� �
����
� ��� ���)���,���� %�

0 50 100
Millions of Voxels

0

5

10

15

20

Fr
am

es
 p

er
 s

ec
on

d

Isosurface

2D Transfer Function

Lit Isosurface

Lit 2D Transfer Function

Figure 6.3: Performance of our volume renderer as larger volumes are used.
In this graph, each node renders a 256�256�128 subvolume to a 1024�256
window. The data points correspond to a cluster of 1, 2, 4, 8, and 16 nodes. At
16 nodes, we are rendering two copies of the full 256�256�1024 dataset.

is close to our measured RGBA readback performance of the GeForce3, which is clearly

the limiting factor for the binaryswap SPU, since our network can sustain 100 MB/sec.

Future improvements in pixel readback rate and network bandwidth would result in higher

framerates, as would an alpha-compositing mode for a post-scanout compositing system

such as Lightning-2.

Isosurface 2D Transfer Function

Lit Isosurface Lit 2D Transfer Function

Shader 3D textures 2D textures Combiners Per-Node Fill Rate
Isosurface 1 0 6 190 Mpix/sec

2D Transfer Function 1 1 4 98 Mpix/sec
Lit Isosurface 2 0 8 78 Mpix/sec

Lit 2D Transfer Function 2 1 8 42 Mpix/sec

Table 6.1: Shaders used in our volume rendering experiments. The lit 2D
transfer function shader exhausts the resources of a GeForce3. Mouse dataset
courtesy of the Duke Center for In Vivo Microscopy.

%�

(�)���� ���	���� �""������	��

In this chapter, we describe two other uses of Chromium. These applications are not

directly related to scalability, but demonstrate the power of non-invasive manipulation of

graphics streams.

$�� ����������� 5��� �� 2������� (��� �����%���

Normally, when Chromium intercepts an application’s graphics commands, that ap-

plication’s graphics window will be blank, with the rendering appearing in one or more

separate windows, potentially distributed across multiple remote computers. Because the

interface is now separated from the visualization, this behavior can interfere with the

productive use of some applications. To address this problem, we have implemented an

“integration” SPU that reincorporates remotely rendered tiles into the application’s user

interface. This way, users can apply a standard user interface to a parallel client.

This manipulation can also be useful for serial applications. Even though the net effect

%�

������� $� -���� �������� ���
������
� %�

CATIA

Tilesort

...

Chromium Server

Chromium Server

Chromium Server

Chromium Server

Chromium protocol

Gigabit Ethernet

DVI video cables

Integration

Integration

Integration

Integration

IBM
Scalable
Graphics

Engine

T221
Display

Figure 7.1: Configuration used to drive IBM’s 3840�2400 T221 display using
Chromium. The commercial CAD package CATIA is used to create a tiled
rendering of a jet engine nacelle (model courtesy of Goodrich Aerostructures).
The tiles are then re-integrated into the application’s original user interface,
allowing CATIA to be used as designed, despite the distribution of its graphics
workload on a cluster. Due to the capacity and range of gigabit ethernet, all of
the computational and 3D graphics hardware can be remote from the eventual
display.

is a null transformation on the application’s stream, it can aid in driving high resolution dis-

plays. For our experiments, we use the IBM T221, a 3840�2400 LCD. Few graphics cards

can drive this display directly, and those that can do not have sufficient scanout bandwidth

to do so at a high refresh rate. The T221 can be driven by up to four separate synchronized

digital video inputs, so we can achieve higher bandwidth to the display using a cluster and

special hardware such as Lightning-2 [Stoll et al., 2001], or a network-attached parallel

framebuffer such as IBM’s Scalable Graphics Engine (SGE) [Perrine and Jones, 2001].

The SGE supports up to 16 one-gigabit ethernet inputs, can double buffer up to 16 million

pixels, and can drive up to eight displays. In our tests, we used the SGE to supply four

synchronized DVI outputs that collectively drive the T221 at its highest resolution. An

X-Windows server for the SGE provides a standard user interface for this configuration.

The integration SPU is conceptually similar to the readback SPU in that it inherits

������� $� -���� �������� ���
������
� %"

almost all of its functionality from the render SPU. To extract the color information from

the framebuffer, the integration SPU implements its own SwapBuffers handler, which

uses the SGE to display those pixels on the T221. The configuration graph used to conduct

this experiment is shown in figure 7.1. The application’s graphics stream is sorted into

tiles managed by multiple Chromium servers, each of which dispatches its tile’s stream

to the integration SPU. The integration SPU places the resulting pixels into X regions

by tunneling, meaning that the pixels are transferred to the SGE’s framebuffer without the

involvement of the X server that manages the display. Because the SGE supports multiple

simultaneous writes to the framebuffer, this technique does not unnecessarily serialize tile

placement. Note that the number of tiles sent to the SGE is independent of the number of

the SGE’s outputs, so we use an 8-node cluster to drive the four outputs at interactive rates.

The integration SPU must also properly handle changes to the size of the appli-

cation’s rendering area. When an application window is resized, it will typically call

glViewport to reset its drawing area. Accordingly, the integration SPU overrides the

render SPU’s implementation of glViewport to detect these changes, and adjusts the

size of the render tiles if necessary. Because the tilesort SPU sorts based on a logical

decomposition of the screen, it does not need to be notified of this change1.

Although the integration SPU enables functionality that is not otherwise possible,

it is still important that it not impede interactivity. For our performance experiments, we

used a cluster of eight nodes running RedHat Linux 7.1, each with two 866MHz Pentium

III Xeon CPUs, 1GB of RDRAM, NVIDIA Quadro graphics, and both gigabit ethernet and

Myrinet 2000 networking. One of our cluster nodes runs the SGE’s X-windows server in

addition to the Chromium server. We successfully tested applications ranging from trivial

1Our example application uses only geometric primitives. In order for pixel-based primitives to be ren-
dered correctly, the tilesort SPU would need to be notified when the window size changes. Alternately,
the tilesort SPU could be configured to broadcast all glDrawPixels calls.

������� $� -���� �������� ���
������
� %#

0 2 4 6 8 10
Millions of pixels

0

10

20

30

40

Fr
am

es
 p

er
 s

ec
on

d

1 server

2 servers

4 servers

8 servers

Figure 7.2: Performance of the GLUT “atlantis” demo using the integration
SPU to drive the T221 display at different resolutions. Each curve shows the
relationship between performance and resolution for a given number of ren-
dering servers. For smaller windows, the SPU becomes limited by the vertical
refresh rate of the display (41 Hz). As the resolution approaches 3840�2400
(9.2 million pixels), a small 8-server configuration still achieves interactive
refresh rates.

(simple demos from the GLUT library) to a medium-complexity scientific visualization

application (OpenDX) to a closed-source, high-complexity CAD package (CATIA).

The graph shown in figure 7.2 shows the average frame rate as we scale the display res-

olution of the T221 from 800�600 to 3840�2400. Four curves are shown, corresponding

to a cluster of 1, 2, 4, and 8 nodes. Because we want to measure only the performance

impact of the integration SPU, we rendered only small amounts of geometry (approx-

imately 5000 vertices per frame) using the GLUT atlantis demo. This demo runs at a

������� $� -���� �������� ���
������
� %$

0 1 2 3
Millions of pixels per node

0

0.1

0.2
Se

co
nd

s
pe

r
fr

am
e

1 server

2 servers

4 servers

8 servers

Figure 7.3: We have replotted the data from figure 7.2 to show seconds per
frameversus pixels per node, to show per-node throughput. The coincidence
of the four curves shows that there is insignificant overhead to doubling the
number of rendering nodes, so linear speedup is achieved until the monitor
refresh rate becomes the limiting performance factor.

much greater rate than the refresh rate of the display, so its effect on performance is minimal

compared to the expense of extracting and transmitting tiles.

The maximum frame rate achieved using 4 or 8 nodes is 41 Hz, which is exactly the

vertical refresh rate of the T221. Because the SGE requires hardware synchronization to

the refresh rate, no higher frame rate can be achieved. For a given fixed resolution, the

integration SPU achieves the expected performance increase as more rendering nodes

are used, because this application is completely limited by the speed at which we can

redistribute pixels. Figure 7.3 shows this phenomenon more clearly. In this graph, the same

������� $� -���� �������� ���
������
� %%

data are plotted showing seconds per frame rather than frames per second. In addition, the

data have been normalized by the number of nodes used, so the quantity being measured

is the pixel throughput per node. The coincidence of the four curves shows that there

is no penalty associated with adding rendering nodes, so linear speedup is achieved until

the display’s refresh rate becomes the limiting factor. The rate at which each node can

read back pixels and send them to the SGE is given by the slope of the line, which is

approximately 12 MPix/second/node, or 48 MB/second/node. Extrapolating to a very small

image size, the system overhead is approximately 15 milliseconds, which indicates that the

maximum system response rate of the integration SPU is approximately 70 Hz (in the

absence of monitor refresh rate limitations).

The measurements presented here give a worst-case scenario for the integration

SPU, in which it is responsible for almost 100% of the overhead in the system. We are

able to demonstrate frame rates exceeding 40Hz using only 8 nodes, and achieve an inter-

active 10 Hz even with each node supplying over one million pixels per frame. In addition,

if measured independently, pixel readback rate and the SGE transfer rate can both pro-

vide bandwidths exceeding 23 Mpix/sec, nearly twice what they achieve when measured

together. This leads us to believe that the system I/O bus or memory subsystem is under-

performing when these two tasks are being performed simultaneously, an effect that will

likely be eliminated with the introduction of new I/O subsystems designed specifically for

high-end servers. This is a similar contention effect to that observed in section 5.8.

$�� ��#��)�
 "������

For a long time, research on non-photorealistic, or “stylized”, rendering focused on non-

interactive, batch-mode techniques. In recent years, however, there has been considerable

interest in real-time stylized rendering. Early interactive NPR systems required a priori

������� $� -���� �������� ���
������
� %&

knowledge of the model and its connectivity [Markosian et al., 1997; Rossignac and van

Emmerik, 1992]. More recently, Raskar has shown that non-trivial NPR styles can be

achieved with no model analysis using either standard graphics pipeline tricks [Raskar and

Cohen, 1999] or slight extensions to modern programmable graphics hardware [Raskar,

2001].

We have developed a simple stylized rendering filter that creates a flat-shaded hidden-

line drawing style. Our approach is similar to that taken by Mohr and Gleicher [2001],

although we show a technique that requires only finite storage. Hidden line drawing in

OpenGL is a straightforward multi-pass technique, accomplished by first rasterizing all

polygons to the depth buffer, and then re-rasterizing the polygon edges. The polygon depth

values are offset using glPolygonOffset to reduce aliasing artifacts [SIGGRAPH Course

Notes, 1998].

Achieving this effect in Chromium can be accomplished with a single SPU. The

“hiddenline” SPU packs each graphics command into a buffer as if they were being

prepared for network transport. This has the effect of recording the entire frame into local

memory (a solution requiring only finite storage is presented below). Instead of actually

sending them to a server, we instead decode the commands twice at the end of each frame,

once as polygons and once as lines, achieving our desired style. The code required to

achieve this transformation is shown in figure 7.4, and the visual results are shown in fig-

ure 7.5. The performance impact of this SPU is shown in figure 7.7.

There are three interesting notes regarding the actual implementation of a hiddenline

SPU. First, the application may generate state queries that need to be satisfied immediately

and not recorded. In order to do this, the entire graphics state is maintained using our state

tracking library, and any function that might affect the state is passed to the state tracker

������� $� -���� �������� ���
������
� &'

void hiddenline_SwapBuffers(void)
{

/* Draw filled polygons */
super.Clear(color and depth);
super.PolygonOffset(1.5f, 0.000001f);
super.PolygonMode(GL_FRONT_AND_BACK, GL_FILL);
super.Color3f(poly_r, poly_g, poly_b);
PlaybackFrame(modified_child_dispatch);

/* Draw outlined polygons */
super.PolygonMode(GL_FRONT_AND_BACK, GL_LINE);
super.Color3f(line_r, line_g, line_b);
PlaybackFrame(modified_child_dispatch);

super.SwapBuffers();
}

Figure 7.4: End-of-frame logic for a simple hidden-line style SPU. The entire
frame is played back twice, once as depth-offset filled polygons, and once as
lines. We modify the downstream SPU’s dispatch table to discard calls that
would affect our drawing style, such as texture enabling and color changes.

before being packed. This behavior is frequently overly cautious; most state queries are

attempts to determine some fundamental limit of the graphics system (such as the maximum

size of a texture), rather than querying state that was set by the application itself. Robust

implementations of style filters like the hiddenline SPU would likely benefit from the

ability to disable full state tracking.

Second, the SPU does not play back the exact calls made in the frame. Because we want

to draw all polygons in the same color (and similarly for lines), the application must be pre-

vented from enabling texturing, changing the current color, turning on lighting, changing

the polygon draw style, enabling blending, changing the line width, disabling the depth test,

or disabling writes to the depth buffer. To accomplish this, a new OpenGL dispatch table

is built, containing mostly functions from the SPU immediately following the hiddenline

������� $� -���� �������� ���
������
� &�

Quake III

Hiddenline RenderVertexArray

Figure 7.5: Drawing style enabled by the hiddenline SPU. After uses of
vertex arrays are filtered out, the SPU records the entire frame, and plays it
back twice to achieve a hidden-line effect. No high-level knowledge of the
model is required.

SPU in its chain, but with our own versions of glEnable, glDisable, glDepthMask,

glPolygonMode, glLineWidth, and all the glColor variants, which enforce these rules.

Applications which rely on complex uses of these functions may not function properly

using this SPU.

Finally, some care must be taken to properly handle vertex arrays. Because the se-

mantics of vertex arrays allow for the data buffer to be changed (or discarded) after it is

referenced, we cannot store vertex array calls verbatim and expect them to decode prop-

erly later in the frame. Instead, we transform uses of vertex arrays back into sequences of

separate OpenGL calls. Although this could be done by the hiddenline SPU itself, we

have found this transformation to be useful in other situations, so we have implemented the

vertex array filtering in a separate “vertexarray” SPU. This SPU appears immediately

before the hiddenline SPU in figure 7.5.

The hiddenline SPU as presented requires potentially infinite storage, since it buffers

the entire frame, and therefore cannot be considered a true stream processor. One possible

solution to this problem is to perform primitive assembly in the hiddenline SPU, drawing

each stylized primitive separately. This technique is more difficult to implement, but does

������� $� -���� �������� ���
������
� &�

Application

Hiddenline2

Chromium Server

Readback

Chromium Server

Send

Readback Send

Chromium Server

Render

Figure 7.6: A different usage model for achieving a hidden-line drawing style.
In this example, the filled polygon stream and the wireframe stream are sent
to two different rendering servers and the resulting images are depth compos-
ited. This way, no single SPU needs to buffer the entire frame, and the system
requires only finite resources.

satisfy our resource constraints. It will also result in a significant performance penalty for

applications with a high frame rate, due to the overhead of software primitive assembly as

well as the frequent added state changes.

A better solution to this problem is to use more than one node in our cluster, as shown in

figure 7.6. Rather than buffering the entire frame, we could send the entire stream verbatim

to two servers, one rendering the incoming stream as depth-offset polygons, the other as

lines. Instead of writing two new (trivial) SPUs for each of these rendering styles, we would

inject the appropriate glPolygonMode and glPolygonOffset calls into the streams before

transmission. We then use the readback and send SPUs to combine the two renderings

using a depth-compositing network, as described in section 6.1. Note that we could more

economically use our resources by rendering depth-offset polygons locally and forwarding

the stream to a single line-rendering node (or vice versa), thereby requiring only three nodes

instead of four, although this would require a more complex implementation.

100 200 300 400 500 600
Frame

0

50

100

150

200

Fr
am

es
 p

er
 s

ec
on

d

Quake III

vertexarray

hiddenline

Figure 7.7: Performance of Quake III running a prerecorded demo. The first
90 frames are devoted to an introductory splash screen and are not shown here.
The red curve shows the performance achieved by the application alone. The
blue curve shows the same demo using just the vertexarray SPU, and the
green curve gives the performance of the demo rendering with a hidden-line
style. Despite more than a 2:1 reduction in speed, the demo still runs at ap-
proximately 40-50 frames per second.

&�

*� !�������	� ��
 ������ �	��

In their seminal paper on virtual graphics, Voorhies, Kirk and Lathrop note that pro-

viding a level of abstraction between an application and the graphics hardware “allows

for cleaner software design, higher performance, and effective concurrent use of the dis-

play” [Voorhies et al., 1988]. We believe that the power and implications of these observa-

tions have not yet been fully explored. Chromium provides a compelling mechanism with

which to further investigate the potential of virtual graphics. Because Chromium provides

a complete graphics API (many of the key SPUs such as tilesort, send, and render pass

almost all of the OpenGL conformance tests), it is no longer necessary to write custom ap-

plications to test new ideas in graphics API processing. Also, the barrier to entry is quite

low; for example, the hiddenline SPU described in section 7.2 adds only approximately

250 lines of code to Chromium’s SPU template.

We believe that providing increased performance or scalability within the constraints

&�

������� %� *��������
 �
� ������ !��	 &"

of a familiar operating environment or programming API is critical for adoption of a new

system. Often the benefits of moving to an unfamiliar system or API are overshadowed

by the difficult learning curve or the expensive process of porting software, resulting in

significant inertia. It follows that performance and scalability should be augmented while

remaining as backwards-compatible as possible.

Of course, it is sometimes necessary to slightly redefine semantics in order to continue

to scale. The Parallel API is a good example of this. Existing serial applications do not

parallelize automatically with Chromium, but if the application’s visualization domain is

easy to decompose, the transformation to a scalable parallel application using Chromium

is both straightforward and unimposing. As more flexibility and performance is desired,

“Chromium-aware” applications can use novel features of the graphics system directly,

usually through the use of OpenGL hints or Chromium-specific extensions to OpenGL.

The real power of Chromium derives from its flexibility. Because a Chromium-based

cluster is based on commodity parts, it is easy and inexpensive to build a parallel rendering

system. Although there can be a tradeoff between using commodity parts and parallel

efficiency, the ability to reconfigure the system to meet an application’s load balancing and

resource needs is a large advantage for commodity-based parallel rendering solutions.

Because the techniques used to provide scalability are independent of specific graphics

adapters and networking technology, any component in our system may be upgraded at any

time to obtain better performance. In particular, we believe that Chromium’s performance

on a 16 to 32 node cluster will improve dramatically with the introduction of new server-

area networking technology such as InfiniBand.

������� %� *��������
 �
� ������ !��	 &#

&�� ����67���� �����+����# !�����

We have demonstrated that tilesort’s sort-first approach to parallel rendering on clus-

ters provides excellent scalability for a variety of applications with a configuration of up

to 16-servers and 16-clients. Our experiments indicate that the system would scale well

in a 32-server, 32-client setup if the cluster were bigger, or if the network had better sup-

port for all-to-all communication. However, there is a limit to the amount of screen-space

parallelism available at any given output size. This limit will prevent a sort-first approach

from scaling to much bigger configurations, such as clusters of 128 nodes or more. For

clusters that large, the tile size becomes small enough that it is very difficult to provide a

good load balance for any non-trivial application without introducing a prohibitively high

overlap factor. One possible solution to this problem would be to provide dynamic screen

tiling, either automatically (using frame-coherent heuristics) or with application support.

We believe alternate architectures such as sort-last image composition would scale better

on larger clusters, but this will likely come at the cost of ordered semantics.

&�� ,������ ����������

tilesort’s client implementation treats texture data as state elements, and lazily up-

dates it to servers as needed. In the worst case, this will result in each texture being repli-

cated on every server node in the system. This replication is a direct consequence of our

desire to use commodity graphics accelerators in our cluster; it is not possible to introduce

a stage of communication to remotely access texture memory. tilesort’s naive approach

to parallel texture management can be a limitation for some applications. More work needs

to be done in this area. One possible approach would leverage Igehy et al’s work in parallel

texture caching [Igehy et al., 1999].

������� %� *��������
 �
� ������ !��	 &$

Textures for sort-last applications are more complex. Because Chromium does not pro-

vide any communication between application nodes, it is not possible for nodes in a parallel

application to share textures. This means that not only does the texture itself need to be

(potentially) replicated across all the nodes, but the application must manage this repli-

cation itself. Chromium would benefit from an architecture-independent parallel texture

declaration and management library, particularly for memory-intensive 3D textures used in

volume rendering.

&�� tilesort !�����#

There are two main sources of latency in tilesort: the display reassembly stage, and

the buffering of commands on the client. When using Lightning-2, display reassembly

will add exactly one frame of latency. While single-frame latency is usually acceptable

for interactive applications, it can be a problem for certain virtual reality applications. The

overhead of using software image reassembly will usually be much higher (on the order of

50-100 milliseconds), although it will vary with the image size.

The latency due to command buffering will depend on the size of the network buffers.

tilesort’s default buffer size is 128KB, which we can fill with geometry in half a mil-

lisecond, given our packing rate of 20 MTris/sec (recall that a triangle occupies 13 bytes

in our protocol). Additional latency can occur due to network transmission, although the

latency of most high-speed cluster interconnects is less than 20 µs. Finally, since the server

cannot process the buffer until it has been completely received, we incur slightly over one

millisecond of additional latency for a 128KB buffer on a network with 100 MB/sec of

bandwidth.

������� %� *��������
 �
� ������ !��	 &%

&�� ����67���� ����������# ��
��

In their paper on the Parallel API, Igehy, Stoll and Hanrahan defined the concept of

sequential consistency for parallel graphics systems [Igehy et al., 1998]. They extended

the notion of traditional sequential consistency [Lamport, 1979] by defining atomic oper-

ations in the graphics system. The graphics system presented in their paper, called Argus,

provided command-sequential consistency, which means that each OpenGL command is

considered to be an atomic operation. If two contexts each draw a triangle without any

explicit ordering or depth buffering, a command-sequentially consistent architecture will

produce one of two pictures, depending on which triangle ends up on top.

tilesort provides a weaker form of consistency called framebuffer-sequential consis-

tency. In this consistency model, only operations on the framebuffer are considered to be

atomic. The reason tilesort is only able to provide this consistency model is that there is

no guarantee that servers will make the same scheduling decisions across tiles. Providing

this guarantee across tiles would require a module in tilesort similar to Pomegranate’s

sequencer, which had global knowledge of all the ordering decisions to be made across

multiple pipelines [Eldridge et al., 2000]. Such a module would be impractical in our en-

vironment and limit the scalability of our cluster-based approach. Each tile in tilesort,

considered in isolation, is command-sequentially consistent, but the final image is not. If

two contexts draw a triangle without any explicit ordering or depth buffering, tilesort

may show one or the other on top on a per-tile basis.

The OpenGL API does not require any form of sequential consistency. However,

Igehy notes that any graphics system that supports the Parallel API should provide at least

framebuffer-sequential consistency to guarantee reasonable behavior. Parallel applications

that need to always produce the same final image (as opposed to our unordered example

������� %� *��������
 �
� ������ !��	 &&

above) can achieve this in one of two ways. First, they can use depth buffering and draw

opaque geometry. In order to properly support depth buffering for parallel programs, a

graphics system must be at least framebuffer-sequentially consistent. Otherwise, a read-

modify-write to the depth buffer would not be an atomic operation and incorrect images

could result. Second, an application may express its ordering requirements through the use

of the Parallel API. tilesort provides both of these capabilities, and we have not been

able to conceive of an application that both produces deterministic images and also relies on

the stronger command-sequential consistency model provided by Argus and Pomegranate.

&�� 7����� "���������

In the future, we would like to see Chromium applied to new application domains, es-

pecially new ideas in scalable interactive graphics on clusters. Of particular interest is the

problem of managing enormous time-varying datasets, both volumetric and polygonal. To-

day’s time-varying volumetric datasets can easily exceed 30 terabytes in size. We intend to

build a new parallel rendering application designed specifically for interactively visualiz-

ing these datasets on a cluster, using Chromium as the underlying transport, rendering, and

compositing mechanism. A key research component of this new system will be properly

balancing the allocation of I/O bandwidth between the rendering network, the compositing

network (if any), and parallel disk access.

We are particularly interested in building infrastructure to support flexible remote graph-

ics. We believe that a clean separation between a scalable graphics resource and the even-

tual display has the potential to change the way we use graphics every day. We are actively

pursuing a new direction to make scalable cluster-based graphics appear as a remote, shared

service akin to a network mounted filesystem.

We would also like to explore the possibilities afforded by non-invasive analysis of

������� %� *��������
 �
� ������ !��	 �''

graphics API streams. It has already been shown that some non-photorealistic rendering

styles can be achieved this way; we intend to apply stream transformations and analysis to

other domains. One possibility is the automatic real-time generation of cutaway and ex-

ploded views of objects. We believe that by allowing such views, we can greatly enhance

a user’s ability to understand and visualize complex 3D spatial relationships between ob-

jects. Furthermore, graphics stream manipulation need not be restricted to new drawing

styles. By visualizing the graphics state itself alongside a running program and its source

code, an extremely useful debugging tool could be created. Such a tool could attempt to

automatically answer one of the most challenging questions in computer graphics: “Why

is my window black?”. Tools that analyze the graphics stream rather than modify it could

also be used for on-the-fly performance analysis.

Most of all, we hope that Chromium will be adopted as a common low-level mecha-

nism for enabling new graphics algorithms, particularly for clusters. If this happens, re-

search results in cluster graphics can more easily be applied to existing problems outside

the original researcher’s lab. Chromium is a completely open-source project that supports

both Microsoft Windows and several variants of UNIX. It can be downloaded for free from

http://chromium.sourceforge.net.

+����	���"�#

[Akeley and Jermoluk, 1988] Kurt Akeley and Tom Jermoluk. High-Performance Poly-

gon Rendering. In Proceedings of SIGGRAPH 88, pages

239–246, August 1988.

[Akeley, 1993] Kurt Akeley. RealityEngine Graphics. In Proceedings of

SIGGRAPH 93, pages 109–116, August 1993.

[Babu and Widom, 2001] Shivnath Babu and Jennifer Widom. Continuous Queries

over Data Streams. SIGMOD Record, pages 109–120,

September 2001.

[Blanke et al., 2000] William Blanke, Chandrajit Bajaj, Donald Fussel, and Xi-

aoyu Zhang. The Metabuffer: A Scalable Multiresolution

�'�

.��
�������+ �'�

Multidisplay 3-D Graphics System Using Commodity Ren-

dering Engines. Tr2000-16, University of Texas at Austin,

February 2000.

[Boden et al., 1995] Nanette J. Boden, Danny Cohen, Robert E. Felderman,

Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and

Wen-King Su. Myrinet: A Gigabit-per-second Local Area

Network. IEEE Micro, 15(1):29–36, February 1995.

[Buck et al., 2000] Ian Buck, Greg Humphreys, and Pat Hanrahan. Tracking

Graphics State for Networked Rendering. In Proceedings

of SIGGRAPH/Eurographics Workshop on Graphics Hard-

ware, pages 87–95, August 2000.

[Cortes et al., 2000] Corrina Cortes, Kathleen Fisher, Daryl Pregibon, Anne

Rodgers, and Frederick Smith. Hancock: A Language

for Extracting Signatures from Data Streams. In Proceed-

ings of 2000 ACM SIGKDD International Conference on

Knowledge and Data Mining, pages 9–17, August 2000.

[Cox, 1995] Michael Cox. Algorithms for Parallel Rendering. PhD the-

sis, Princeton University, 1995.

[Cruz-Neira et al., 1993] Caroline Cruz-Neira, Daniel Sandin, and Thomas DeFanti.

Surround-Screen Projection Based Virtual Reality: The De-

sign and Implementation of the CAVE. In Proceedings of

SIGGRAPH 1993, pages 135–142, July 1993.

.��
�������+ �'�

[Cunniff, 2000] Ross Cunniff. Visualize fx Graphics Scalable Architecture.

In Proceedings of Eurographics Hardware/SIGGRAPH

Hot3D, pages 29–38, August 2000.

[Czernuszenko et al., 1997] Marek Czernuszenko, Dave Pape, Dan Sandin, Tom De-

Fanti, Greg Dawe, and Maxine Brown. The ImmersaDesk

and InfinityWall Projection-Based Virtual Reality Displays.

Computer Graphics, 31(2):46–49, May 1997.

[DVI Specification, 1998] Digital Video Interface Specification, 1998. http://www.

ddwg.org.

[Eldridge et al., 2000] Matthew Eldridge, Homan Igehy, and Pat Hanrahan.

Pomegranate: A Fully Scalable Graphics Architecture. In

Proceedings of SIGGRAPH 2000, pages 443–454, July

2000.

[Eldridge, 2001] Matthew Eldridge. Designing Graphics Architectures

around Scalability and Communication. PhD thesis, Stan-

ford University, 2001.

[Ellsworth et al., 1990] David Ellsworth, Howard Good, and Brice Tebbs. Dis-

tributing Display Lists on a Multicomputer. In Proceed-

ings of ACM Symposium on Interactive 3D Graphics, pages

147–154, 1990.

.��
�������+ �'�

[Eyles et al., 1997] John Eyles, Steven Molnar, John Poulton, Trey Greer,

Anselmo Lastra, Nick England, and Lee Westover. Pix-

elFlow: The Realization. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

pages 57–68, August 1997.

[Funkhouser, 1996] Thomas Funkhouser. Coarse-Grained Parallelism for Hi-

erarchical Radiosity Using Group Iterative Methods. In

Proceedings of SIGGRAPH 1996, pages 343–352, August

1996.

[Giertsen and Peterson, 1993] Christopher Giertsen and Johnny Peterson. Parallel Volume

Rendering on a Network of Workstations. IEEE Computer

Graphics and Applications, 13(6):16–23, November 1993.

[Heermann, 1998] Philip D. Heermann. Production Visualization for the ASCI

One TeraFLOPS Machine. In Proceedings of IEEE Visual-

ization 1998, pages 459–462, 1998.

[Heirich and Moll, 1999] Alan Heirich and Laurent Moll. Scalable Distributed Vi-

sualization Using Off-the-Shelf Components. In Proceed-

ings of the Parallel Visualization and Graphics Symposium

1999, October 1999.

[Humphreys and Hanrahan, 1999] Greg Humphreys and Pat Hanrahan. A Distributed

Graphics System for Large Tiled Displays. In Proceedings

of IEEE Visualization 1999, pages 215–224, October 1999.

.��
�������+ �'"

[Humphreys et al., 2000] Greg Humphreys, Ian Buck, Matthew Eldridge, and Pat

Hanrahan. Distributed Rendering for Scalable Displays. In

Proceedings of Supercomputing 2000, November 2000.

[Humphreys et al., 2001] Greg Humphreys, Matthew Eldridge, Ian Buck, Matthew

Everett, Gordon Stoll, and Pat Hanrahan. WireGL: A Scal-

able Graphics System for Clusters. In Proceedings of SIG-

GRAPH 2001, July 2001.

[Humphreys et al., 2002] Greg Humphreys, Mike Houston, Ren Ng, Sean Ahern,

Randall Frank, Peter Kirchner, and James T. Klosowski.

Chromium: A Stream Processing Framework for Interac-

tive Graphics on Clusters of Workstations. In Proceedings

of SIGGRAPH 2002, July 2002.

[Igehy et al., 1998] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The Design

of a Parallel Graphics Interface. In Proceedings of SIG-

GRAPH 1998, pages 141–150, July 1998.

[Igehy et al., 1999] Homan Igehy, Matthew Eldridge, and Pat Hanrahan.

Parallel Texture Caching. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

pages 95–106, August 1999.

[Intel, 1999] Intel Architecture Software Developer’s Manual, chap-

ter 14, pages 9–10. 1999.

.��
�������+ �'#

[Kilgard, 1996] Mark Kilgard. OpenGL Programming for the X Window

System. Addison-Wesley, 1996.

[Lamport, 1979] Leslie Lamport. How to Make a Multiprocessor Com-

puter that Correctly Executes Multiprocess Programs. IEEE

Transactions on Computers, 28(9):241–248, 1979.

[Levoy et al., 2000] Marc Levoy, Karri Pulli, Brian Curless, Szymon

Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginzton,

Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan

Shade, and Duane Fulk. The Digital Michelangelo Project:

3D Scanning of Large Statues. In Proceedings of SIG-

GRAPH 2000, pages 131–144, July 2000.

[Lorensen and Cline, 1987] William E. Lorensen and Harvey E. Cline. Marching

Cubes: A High Resolution 3D Surface Construction Algo-

rithm. In Proceedings of SIGGRAPH 1987, pages 163–169,

July 1987.

[Ma et al., 1994] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and

Michael F. Krogh. Parallel Volume Rendering Using

Binary-Swap Compositing. IEEE Computer Graphics and

Applications, 14(4):59–68, July 1994.

[Mark and Proudfoot, 2001] William Mark and Kekoa Proudfoot. The F-Buffer: A

Rasterization Order FIFO Buffer for Multi-Pass Rendering.

In Proceedings of SIGGRAPH/Eurographics Workshop on

Graphics Hardware, pages 57–64, August 2001.

.��
�������+ �'$

[Markosian et al., 1997] Lee Markosian, Michael Kowalski, Samuel Trychin,

Lubomir Bourdev, Daniel Goldstein, and John Hughes.

Real-Time Nonphotorealistic Rendering. In Proceedings

of SIGGRAPH 1997, pages 415–420, 1997.

[Mohr and Gleicher, 2001] Alex Mohr and Michael Gleicher. Non-Invasive, Interac-

tive, Stylized Rendering. In ACM Symposium on Interac-

tive 3D Graphics, pages 175–178, March 2001.

[Moll et al., 1999] Laurent Moll, Alan Heirich, and Mark Shand. Sepia: Scal-

able 3D Compositing Using PCI Pamette. In Proceedings

of the IEEE Symposium on Field Programmable Custom

Computing Machines 1999, pages 146–155, April 1999.

[Molnar et al., 1992] Steven Molnar, John Eyles, and John Poulton. PixelFlow:

High-Speed Rendering Using Image Composition. In Pro-

ceedings of SIGGRAPH 92, pages 231–240, July 1992.

[Molnar et al., 1994] Steven Molnar, Michael Cox, David Ellsworth, and Henry

Fuchs. A Sorting Classification of Parallel Rendering.

IEEE Computer Graphics and Applications, 14(4):23–32,

July 1994.

[Montrym et al., 1997] John S. Montrym, Daniel R. Baum, David L. Dignam,

and Christopher J. Migdal. InfiniteReality: A Real-Time

Graphics System. In Proceedings of SIGGRAPH 97, pages

293–302, August 1997.

.��
�������+ �'%

[Nye, 1995] Adrian Nye. X Protocol Reference Manual. O’Reilly &

Associates, 1995.

[O’Callaghan et al., 2002] Liadan O’Callaghan, Nina Mishra, Adam Meyerson,

Sudipto Guha, and Rajeev Motwani. Streaming-Data Al-

gorithms for High-Quality Clustering. In Proceedings

of IEEE International Conference on Data Engineering,

March 2002.

[Owens et al., 2000] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott

Rixner, Peter Mattson, and Ben Mowery. Polygon Ren-

dering on a Stream Architecture. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

pages 23–32, August 2000.

[Peercy et al., 2000] Mark Peercy, Marc Olano, John Airey, and Jeffrey Ungar.

Interactive Multi-Pass Programmable Shading. In Proceed-

ings of SIGGRAPH 2000, pages 425–432, August 2000.

[Perrine and Jones, 2001] Kenneth Perrine and Donald Jones. Parallel Graphics and

Interactivity with the Scaleable Graphics Engine. In Pro-

ceedings of IEEE Supercomputing 2001, November 2001.

[Pixar, 1998] Pixar Animation Studios. PhotoRealistic RenderMan

Toolkit., 1998.

.��
�������+ �'&

[Porter and Duff, 1984] Thomas Porter and Tom Duff. Compositing Digital Images.

In Proceedings of SIGGRAPH 1984, pages 253–259, July

1984.

[PowerWall, 1994] PowerWall, 1994. http://www.lcse.umn.edu/

research/powerwall/powerwall.html.

[Proudfoot et al., 2001] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and

Pat Hanrahan. A Real Time Procedural Shading System

for Programmable Graphics Hardware. In Proceedings of

SIGGRAPH 2001, pages 159–170, August 2001.

[Raskar and Cohen, 1999] Ramesh Raskar and Michael Cohen. Image Precision Sil-

houette Edges. In ACM Symposium on Interactive 3D

Graphics, pages 135–140, April 1999.

[Raskar, 2001] Ramesh Raskar. Hardware Support for Non-Photorealistic

Rendering. In Proceedings of SIGGRAPH/Eurographics

Workshop on Graphics Hardware, pages 41–46, August

2001.

[Recker et al., 1990] Rodney Recker, David George, and Donald Greenberg. Ac-

celeration Techniques for Progressive Refinement Radios-

ity. In ACM Symposium on Interactive 3D Graphics, pages

59–66, 1990.

.��
�������+ ��'

[Reynolds and Fatica, April 2000] William Reynolds and Massimiliano Fatica. Stanford

Center for Integrated Turbulence Simulations. IEEE Com-

puting in Science and Engineering, 2(2):54–63, April 2000.

[Rohlf and Helman, 1994] John Rohlf and James Helman. IRIS Performer: A High

Performance Multiprocessing Toolkit for Real-Time 3D

Graphics. In Proceedings of SIGGRAPH 94, pages 381–

394, July 1994.

[Rossignac and van Emmerik, 1992] Jareck Rossignac and Maarten van Emmerik. Hid-

den Contours on a Framebuffer. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

September 1992.

[Rusinkiewicz and Levoy, 2001] Szymon Rusinkiewicz and Marc Levoy. Streaming QS-

plat: A Viewer for Networked Visualization of Large,

Dense Models. In ACM Symposium on Interactive 3D

Graphics, pages 63–68, 2001.

[Samanta et al., 1999] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser,

Kai Li, and Jaswinder Pal Singh. Load Balancing for Multi-

Projector Rendering Systems. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

pages 107–116, August 1999.

[Samanta et al., 2000a] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and

Jaswinder Pal Singh. Sort-First Parallel Rendering with a

.��
�������+ ���

Cluster of PCs. In SIGGRAPH 2000 Technical Sketch, Au-

gust 2000.

[Samanta et al., 2000b] Rudrajit Samanta, Thomas Funkhouser, Kai Li, and

Jaswinder Pal Singh. Hybrid Sort-First and Sort-Last Paral-

lel Rendering with a Cluster of PCs. In Proceedings of SIG-

GRAPH/Eurographics Workshop on Graphics Hardware,

pages 97–108, August 2000.

[Samanta et al., 2001] Rudrajit Samanta, Thomas Funkhouser, and Kai Li. Parallel

Rendering with K-Way Replication. In IEEE Symposium on

Parallel and Large-Data Visualization and Graphics, Octo-

ber 2001.

[Segal and Akeley, 1999] Mark Segal and Kurt Akeley. The OpenGL Graphics Sys-

tem: A Specification (Version 1.2.1). 1999. ftp://ftp.

sgi.com/opengl/doc/opengl1.2/.

[SGI Multipipe, 2000] SGI Multipipe, 2000. http://www.sgi.com/software/

multipipe/.

[SGI Vizserver, 1999] SGI Vizserver, 1999. http://www.sgi.com/software/

vizserver/.

[SIGGRAPH Course Notes, 1998] Advanced Graphics Programming Techniques Using

OpenGL. SIGGRAPH 1998 Course Notes., 1998.

[Stoll et al., 2001] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art Webb,

Steven Berman, Richard Levy, Chris Caywood, Milton

.��
�������+ ���

Taveira, Stephen Hunt, and Pat Hanrahan. Lightning-2: A

High-Performance Display Subsystem for PC Clusters. In

Proceedings of SIGGRAPH 2001, July 2001.

[Torborg, 1987] Jay Torborg. A Parallel Processor Architecture for Graph-

ics Arithmetic Operations. In Proceedings of SIGGRAPH

1987, pages 197–204, July 1987.

[Voorhies et al., 1988] Douglas Voorhies, David Kirk, and Olin Lathrop. Virtual

Graphics. In Proceedings of SIGGRAPH 1988, pages 247–

253, August 1988.

