
Data Placement for Multi-user Interactive DTV

Raju Rangaswami
raju@cs.ucsb.edu

Edward Chang
echang@ece.ucsb.edu

Chen Li and Milton Chen
chenli,miltchen@cs.stanford.edu

Abstract

In this paper, we propose an interactive DTV design that
converts non-interactive broadcast DTV streams into inter-
active ones for multiple simultaneous viewers. To enable
viewing interactivity, we show that it is critical to orga-
nize data intelligently for improving IO resolution, reduc-
ing disk latency and minimizing storage cost. We propose
three data placement schemes that offer different tradeoffs
between IO resolution, disk latency and storage. By em-
ploying different schemes under different workload scenar-
ios, an intelligent system can minimize memory use and
hence the system cost.

1 Introduction
To support interactive TV, we have proposed a receiver-based
architecture [2, 4]. A receiver (a digital VCR or set-top box)
in this architecture is equipped with a large disk. Using this, a
viewer can pause a live program to take a break from viewing
while the arriving broadcast stream continues to be written to
the local disk. The viewer can resume watching the program
after the pause with a delay, can replay or can fast-forward the
program to get back in “sync” with the broadcast stream.

In this paper, we extend this architecture to support multi-
ple interactive streams on one receiver. With the multi-stream
capability, students in a virtual classroom or at a library can
watch a live lecture at their own pace via one shared receiver.
A family can use one receiver as the stream server at home to
support interactivity at multiple playback devices. On the one
hand, the receiver acts as a client for broadcasters (or servers)
to enable interactivity. On the other hand, it caches streams for
servicing a number of end-devices to amortize cost. We believe
that this architecture is attractive because it is more feasible to
deploy than traditional video-on-demand architectures, and it
is more cost-effective than the single-user digital-VCR model.
We discuss this further in section 2.

Designing such a client/server dual system to support inter-
activity, however, is a non-trivial task. First, the receiver must
write broadcast signals to its disk as soon as possible to min-
imize memory use for caching streams. Second, the receiver
must read data from the disk into main memory before the de-
coder runs out of data. In addition, when simultaneous fast-
scans are requested, the reads can happen at very high rates.
The system must ensure that all IOs meet their deadlines. We
are interested in designing a system that satisfies all the above
requirements at the minumum cost.

In this study we show that designing such a receiver effi-
ciently requires consideration of at least three design parame-

ters: IO resolution, disk latency, and storage cost (both mem-
ory and disk cost). Since the improvement on one performance
factor can often lead to the degradation of the others, tradeoffs
between these design parameters must be carefully considered.
We propose and experiment with three data placement poli-
cies for supporting multiple simultaneous interactive streams.
We analyze these policies' optimization objectives and quan-
tify their memory and disk use. Our experimental results show
that all our proposed policies use much less memory than a
naive sequential placement policy.

2 Related Work
According to a recent survey by Redherring [1], both video
on demand (VOD) and single-user digital-VCR devices have
not generated much real interest. VOD suffers from bandwidth
limitations and quality of service while personal VCRs have
had limited acceptance due to high cost. However, interactive
streaming video has gained increasing interest recently [3, 11]
due to bandwidth explosion. In this study, we propose an archi-
tecture that plays a client/server dual role to enable interactivity
for multiple end-users economically.

Several schemes have been proposed for supporting interac-
tivity. These schemes can be divided into two approaches: 1)
using separate fast-scan streams [6, 11, 12, 13], and 2) skipping
frames in the regular stream [7]. The first approach may not be
used in the broadcast scenario since a program is broadcast at
one single rate. The frame-skipping approach can cause low
IO-resolution and consequently low system throughput if not
designed carefully. (We discuss this problem in detail in the
next section.) The study of [5] proposes a client-side approach
that re-encodes frames during normal playback and saves them
for replay. This approach can be CPU-intensive since most
compression schemes are encoding-side heavy and hence may
hinder a CPU from decoding more streams.

3 Data Placement
Now, we propose our data placement schemes to support fast-
scan operations for multiple streams. Without loss of general-
ity, we can assume that an MPEG1 stream consists ofm frame-
sequences; each sequence has � frames on average, and is led
by an I frame and followed by a number of P and B frames.

To support a K-times speedup fast-scan, the receiver dis-
plays one out of everyK frames. To allowK to be any positive
integer, however, the receiver can suffer from high IO, memory
and CPU overhead. This is because a frame that is to be dis-
played (e.g., a B frame) may depend on some frames that are to
be skipped (e.g., an I and a P frame). The receiver may have to
end up reading, staging in main memory, and decoding much
more frames than it displays. To avoid processing the frames

1The Advanced Television System Committee (ATSC) has adopted
MPEG2 as the encoding standard of DTV and HDTV.



that are to be skipped, we do not involve any B frame in a fast-
scan and it plays back a P frame only if the P frame's dependent
I frame also involves in the fast-scan. This restriction will not
support fast-scan of every speedup but a few, say five, selected
speeds like in a DVD player. A key assumption that we make
in designing our data organization schemes is that a fast-scan
stream needs to be displayed at a lower rate so that the viewer
can comprehend and react in time to the content. A typical
DVD player plays a fast-scan stream at 3 to 8 fps (frames per
second), instead of 24 to 30 fps, the regular playback speed.

To improve IO resolution, we do not want to read in frames
that are not involved in a fast-scan. We propose three place-
ment schemes that separate a video into groups to improve IO
resolution. However, separating frames into more than one file
incurs additional IO overhead for writes. In addition, we might
want to replicate data for improving IO resolution and reduc-
ing disk latency. We thus need to design the system carefully to
manage the tradeoffs between the following design goals:

1. Improving IO resolution,
2. Reducing disk latency, and
3. Minimizing storage (memory and disk) cost.

We now propose three data placement schemes, each of
which is designed to optimize on a subset of the design pa-
rameters.

3.1 Round-Robin (RR)
The round-robin scheme is a simple method to improve IO res-
olution. Let the I frames be numbered as I1; I2; I3; : : : ; Im.
This placement scheme stores P and B frames in a separate file
and distributes I frames among � I-files, F1; F2; : : : ; F�, in the
following round-robin manner:

Fi = fIi+n�� j n = 0; 1; 2; 3; : : : ; (m� 1)g (1)
How this scheme works depends on the requested speedup

(K) of the fast-scan. Suppose � = 9 and � = 3. A K = 3-
times speedup fast-scan reads only P frames from the PB-file
and all the I frames from the � I-files. A faster fast-scan (e.g.,
K = 54 or 81) requires reading only one I-file, but at a faster
pace by skipping some I frames, which leads to low IO res-
olution. We could increase � to improve IO resolution, but
increasing � increases disk latency for preparing I-files and for
supporting lower speedup fastscans. To maintain good IO res-
olution without aggravating disk latency, we propose the TBT
schemes next.

3.2 Truncated-Binary-Tree (TBT)
In the TBT approach, we attempt to provide good IO resolu-
tion at all fast-scan speeds while maintaining reasonable disk
latency. In this scheme, the P frames are stored in a separate
P-file and the B frames are stored in a B-file. To provide good
IO resolution, we organize I frames into a truncated binary tree
structure so that only wanted frames are read. An example
TBT tree is presented in Figure 1. A normal playback re-
quires retrieval of frames from the entire tree by performing
an inorder traversal. For fast-scans, different tree levels are
retrieved depending on the requested speed. The higher the
speed, the higher are the tree-levels that the fast-scan operation
accesses. For example, a 3�-times speedup fast-scan accesses
the I frames at levels two and three in the tree, and a 6�-times
fast-scan reads I frames at level three only.

I6                                  I12                              I18                               I24

I1    I2        I4   I5       I7    I8      I10   I11     I13  I14    I16  I17     1I9  I20     I22   I23       I25  I26      I28   I29

I3                                 I9                               I15                               I21                              I27

Level  3

Level  1

Level  2

Figure 1: The Truncated Binary Tree Formation.
Formally, the TBT scheme distributes I frames among � I-

files, F1; F2; : : : ; F�, in the following manner:

F1 = fIk j 1 � k � m \ Ik =2 fF2 [ F3 [ F4 : : : [ F�gg

Fi = fIn����i�2 j n 2 f1; 2; 3; : : :g \

In����i�2 =2 fFi+1 [ Fi+2 : : : [ F�gg; for 2 � i � �: (2)

where m is the total number of I frames in the stream, and �
and � are parameters that are tunable to provide for different
fast-scan speed requirements. For example, if we let � = 9,
� = 3 and � = 3, then the speedups available are 3; 9; 27; 81,
etc. If we increase � from three to four, then the accessible
speedups become 3; 9; 36; 144, etc. Figure 1 presents an ex-
ample, which shows how I frames are distributed when � = 3,
� = 3 and � = 2.

3.3 Replicated Truncated-Binary-Tree (RTBT)
Although the TBT scheme enjoys improved IO resolution, its
disk latency can be high due to the need to read data from
more than one file. We now introduce a replication scheme
that trades disk storage for reducing disk latency. Again, to
achieve good IO resolution, we use the same I frame distri-
bution method as the TBT scheme. In addition, we replicate
I frames at higher levels of the tree in all files at lower lev-
els. The P-file is now changed to contain all the I frames also
whereas the B-file contains all the I frames as well as the P
frames. Formally, the I frames in the I-files are changed as
follows:

F1 = fIk j 1 � k � mg

Fi = fIn����i�2 j n 2 f1; 2; 3; : : :gg; for 2 � i � �: (3)

For example, let � = 3, � = 4, and � = 2. Three I-files
contain the following I frames:

F1 = fI1; I2; I3; I4; : : :g; F2 = fI4; I8; I12; I16; : : :g

F3 = fI8; I16; I24; I32; : : :g

The advantage of this scheme is that we have one sequential
file for supporting each fast-scan speed and hence can achieve
100% IO resolution and minimum disk latency at the same
time. During normal playback, for instance, only file F1 (plus
the PB-file) is read. During fast-scans, only one I-file is read.
Improving IO resolution reduces memory use. But replicat-
ing data on disk increases disk storage cost and increases data
transfer overhead to replicate data in multiple I-files.

The three schemes have distinct advantages and disadvan-
tages. Table 1 summarizes the pros (with positive signs) and
cons (with negative signs) of the schemes discussed in this
section. In the next section, we analyse these pros and cons
quantitatively.



Scheme IO Resolution Disk Latency Disk Cost
Sequential – + +
RR + – +
TBT ++ – +
RTBT ++ + –

Table 1: Scheme Summary
4 Evaluation

Parameter Description
Nw Number of broadcast channels (write streams)
Nr Number of interactive request (read streams)
� Ratio of write requests to read requests
f Fraction of read streams that are fast-scans

T R Minimum disk data transfer rate

(d) Worst-case latency function to seek d cylinders
DR Average display rate of MPEG stream
DRf Average display rate of a fastscan stream

N Throughput of the disk (number of requests served)
� , � Adaptive Tree parameters

� Number of exclusive I-frame substreams
!w Number of files to be written to for one stream
!rn Number of files to be read for normal stream
!rf Number of files to be read for fastscan stream
� Space overhead
� IO resolution

Table 2: System Parameters.
As we have discussed, three factors affect the performance

of fast-scans: 1) IO resolution, 2) disk latency and 3) storage
overhead. In this section, we evaluate our schemes with re-
spect to these factors. The system parameters are described in
table 2. The minimum amount of memory required to support
N = Nr +Nw simultaneous streams is given by2:

Mmin =
2 � DR � Nr

2 � T R � 
(d) �X � Y

T R �
h
(�� + (1� f) +

fDRf

�DR
) � Nr � DR

i

where,

X =
h
�!w+(1�f)!rn+f!rf

i
; Y =

h
�+(1�f)+f

DRf

DR

i

Parameter Name Value
Disk Capacity 26 GBytes

Number of cylinders, CYL 50,298
Min. Transfer Rate T R 130 Mbps
Rotational Speed (RPM) 5,400

Full Rotational Latency Time 11.2 ms
Min. Seek Time 2.0 ms

Average Seek Time 8.9 ms
Max. Seek Time 18 ms

Figure 2: Quantum Fireball Lct Disk Parameters
Figure 2 lists the parameters for the Quantum Fireball disk

that we use to study and compare our data placement schemes.
In addition, we assume that the peak data consumption and in-
put rates are DR = 6:4 Mbps (the standard DTV bitrate). We
also assume that fast-scan streams are played at 5 fps (DRf )
so that the viewer can comprehend and react in time to the
content. For computing the seek overhead we follow closely
the model developed in [8, 10], which has been proven to be
asymptotically close to the real disks. Note that although a dif-
ferent set of disk parameters can lead to different absolute per-

2Please refer to the extended version [9] for a derivation of the equation.

formance values, the relative performance between schemes
remain the same.

4.1 Memory Requirement

To measure system performance and cost, we calculate the
memory requirement for the different schemes we have pro-
posed. Given a system with sufficient disk storage, the mem-
ory use determines the cost of the system. We also compute
overall cost (memory and disk storage) later in this section.

0

20

40

60

80

100

1 10 100

M
em

or
y 

R
eq

ui
re

m
en

t (
 in

 M
B

 )

Fast-scan speedup

Non-optimized
Round Robin

TBT
Replicated TBT

(a) Varying speedup

0

20

40

60

80

100

0.01 0.1 1 10 100

M
em

or
y 

R
eq

ui
re

m
en

t (
 in

 M
B

 )

Ratio of Writes to Reads

Non-optimized
Round Robin

TBT
Replicated TBT

(b) Varying �

Figure 3: System Memory Requirement.
Figure 3(a) compares the memory use of our placement

schemes with the non-optimized scheme (the scheme that
stores the video in a sequential file) against varying speeds(K)
of fast-scan. For this comparison we assume that the through-
put of the disk (N ) is 15 and the writes-to-reads ratio (�) was
set at 0:1. We vary this ratio subsequently. We also assume
� = 9,  = 3. The truncated binary tree is assumed to be de-
signed with � = � = 3. When K is large, the non-optimized
scheme simply runs out of disk bandwidth to support fast-scans
because of poor IO resolution. The round robin scheme uses
much less main memory, but even this scheme starts suffering
at high speedups. The TBT schemes maintain almost constant
memory requirement for all speedups due to their good IO res-
olution.

Figure 3(b) compares the memory requirement of the place-
ment scheme with the non-optimized scheme against varying
write-to-read ratios (�). For this experiment, we assumed that
the disk was operating at a throughput of 15 simultaneous
streams. We also assumed that 20% of the read requests were
fast-scan requests, which is reasonable for an interactive TV
system. We then calculated the worst-case memory require-
ment for each scheme (by varying the fast-scan speedup) and
obtained numbers for a range of writes-to-reads ratios, rang-
ing from 0:01 to 100. We note from figure 3(b) that it is not
clear which scheme would be the most appropriate for a sys-
tem with dynamic request distribution. Indeed, each scheme
performs optimally for a subset of the request distribution spec-
trum. An intelligent system would need to switch between dif-
ferent schemes to ensure optimal performance under changing
request ratios.

To evaluate each placement scheme with respect to all sys-
tem variables simultaneously, we performed experiments by
varying the fast-scan speedup (K) as well as the writes-to-
reads ratio (�). We do not present them here due to space con-
straint. Interested readers may refer to the extended version [9]
of the paper. We summarize these detailed experiments in the
observations section.



4.2 Storage Optimization

0

50

100

150

200

250

300

0 5 10 15 20 25

To
ta

l S
to

ra
ge

 C
os

t (
in

 d
ol

la
rs

)

Disk Throughput

Round Robin
TBT

Replicated TBT

0

50

100

150

200

250

300

0 5 10 15 20 25

To
ta

l S
to

ra
ge

 C
os

t (
in

 d
ol

la
rs

)

Disk Throughput

Round Robin
TBT

Replicated TBT

(a) 15 mins buffer (b) 30 mins buffer

Figure 4: Total Cost (disk + memory) for TBT schemes.
The replicated TBT scheme replicates data on disk (i.e., uses
more disk storage) in order to decrease memory use. In order
to quantify the trade-off between disk storage and memory use,
we estimate the total cost of a system. In our computations we
assumed disk cost as being approximately one-hundredth of
memory cost3, which is assumed to be a dollar per megabyte.
The storage cost is directly proportional to the amount of buffer
made available to the user for fast-scan operations. For exam-
ple, providing the user with 30 minutes of rewind or forward
buffer requires a storage space of 30 � 60 � 6:4 megabits for
standard DTV streams. Since we are interested in the stor-
age trade-off for the TBT scheme, which performs best un-
der dominating reads, we conducted the experiments assuming
� = 0:1 and the worst-scase fastscan speedup (K = 81). The
presence of distinct crossover points in figure 4 suggests the
cost-performance trade-off existing between the various place-
ment schemes. As the number of streams supported increases,
the memory cost as well as the disk storage cost increases.
However, disk storage cost increases at a lower rate. For 15
and 30 minutes of disk buffering (figure 4(a) and 4(b)), the
crossover points occur approximately at throughputs of 10 and
15 streams respectively. These crossover points guide design
decisions under varying load. Intuitively we can make the fol-
lowing additional observations:

� If the amount of disk buffer required increases, then the
crossover point would occur at a higher level of throughput.

� For higher �'s, the crossover point would occur at a lesser
disk throughput.

Thus, given system requirement and the cost ratios for memory
and disk, we know whether replication is beneficial.

4.3 Observations

From the experimental results we make four observations:

�A non-optimized placement scheme (SEQ) incurs huge
memory requirement and hence is not desirable.

� For low speedup (K � � � �) fast-scans, the RR scheme
performs well over a wide range of writes-to-reads ratios.

� For high speedup (K > � � �) fast-scans, the RR scheme
suffers from poor IO resolution. The TBT schemes enjoy
good IO resolution and achieve higher throughput than the
round robin scheme given the same amount of memory.

�When supporting a large number of users, at low writes-to-
reads ratios, the replicated TBT scheme performs best.

3This ratio has been more or less constant over recent years

5 Conclusion
We have studied data placement strategies for supporting inter-
active DTV. The placement schemes we proposed are attractive
alternatives to the naive sequential placement policy, which has
a high memory overhead. The Round-Robin scheme is easier
to conceive and provides good performance for low speedups
and for small number of simultaneous users. The Truncated
Binary Tree scheme scales well with fast-scan speeds and also
performs well for more users. Data replication can further im-
prove the performance of the TBT scheme by trading off some
disk storage. We believe that with efficient data organization,
the multi-user receiver that we propose in this paper is a more
practical and economical approach than the traditional VOD
and single-user digital-VCR approaches for enabling viewing
interactivity.

References

[1] http://www.redherring.com/industries/2000/0801/ind-
video080100.html, August 2000.

[2] E. Chang. Maximizing qos for interactive dtv clients. The
Computer Communications Journal (Special Issue), Elsevier,
23(3):205–218, Febeuary 2000.

[3] E. Chang and H. Garcia-Molina. Effective memory use in a
media server. Proceedings of the 23rd VLDB Conference, pages
496–505, August 1997.

[4] E. Chang and H. Garcia-Molina. Medic: Memory and disk
cache for multimedia clients. Proceedings of IEEE Inter-
national Conference on Multimedia Computing and Systems,
pages 493–499, June 1999.

[5] M. S. Chen and D. D. Kandlur. Downloading and stream con-
version: Supporting interactive playout of videos in a client sta-
tion. ICMCS, May 1995.

[6] M. S. Chen and D. D. Kandlur. Stream conversion to support
interactive video playout. IEEE Multimedia, 3(2):51–58, 1996.

[7] W. Feng, F. Jahanian, and S. Sechrest. Providing vcr function-
ality in a constant quality video-on-demand transportation ser-
vice. ICMCS, June 1996.

[8] D. Kotz, S. B. Toh, and S. Radhakrishnan. A detailed simulation
model of the hp 97560 disk drive. Dartmouth College Technical
Report PCS-TR94-220, 1994.

[9] R. Rangaswami and E. Chang. Data placement for multi-
user interactive dtv (extended version). UCSB Technical Re-
port http://www.cs.ucsb.edu/�raju/research/publications.html,
February 2001.

[10] C. Ruemmler and J. Wilkes. An introduction to disk drive mod-
eling. Computer, 2:17–28, 1994.

[11] P. Shenoy and H. Vin. Efficient support for interactive opera-
tions in multi-resolution video servers. ACM Multimedia Sys-
tems, 7(3), May 1999.

[12] P. J. Shenoy and H. M. Vin. Efficient support for scan operations
in video servers. Proceedings of the 3rd ACM International
Conference on Multimedia, pages 131–140, 1995.

[13] W. Tavanapong, K. Hua, and J. Wang. A framework for sup-
porting previewing and vcr operations in a low bandwidth envi-
ronment. Proceedings of the 5th ACM Multimedia Conference,
November 1997.


