
Page 1 of 17

The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms [Version #2, 4/11/02]

Pervasive Computing Magazine Special Issue on Systems

Brad Johanson, Armando Fox, Terry Winograd

Stanford University, Stanford, CA

{bjohanso,fox,Winograd}@graphics.Stanford.edu

Introduction
The Interactive Workspaces project was started at Stanford University in mid-1999 as an
extension of a project to investigate interaction with large high resolution displays. It was
initially set up in a busy laboratory where the device proved to be no more than a curiosity, since
it could not be practically used for long periods of time and offered little integration with other
devices.

It became clear that the potential of a large display device would emerge through its embedding
in a ubiquitous computing environment that provided for sustained realistic interactive use. The
interactive workspaces project was founded to investigate the design and use of rooms
containing one or more large displays with the ability to integrate portable devices and to create
applications integrating the use of multiple devices in the space.

The idea of ubiquitous computing [18] is broad, encompassing many different kinds of settings
and devices. We chose to narrow our focus by:

• Investigating how to map a single defined physical location to an underlying systems
infrastructure, and a corresponding model of interaction [10].

• Emphasizing the use of large interactive walk-up displays, some using touch interaction.

• Collaborating with other research groups to construct “non-toy” applications in design
and engineering.

We have constructed several versions of our prototype interactive workspace, which we call the
iRoom, created a software infrastructure for this environment, called iROS, and conducted
experiments in human-computer interaction (HCI) in the space. Further, we have assisted
outside groups in using our technology to construct application suites that address problems in
their own domains, and deployed our software in production environments. This paper gives a
broad overview of these activities and the insights we have gained through the process.

Project Overview, Goals, Contributions
As we began to construct the iRoom, we developed some guiding principles:

• Practice what we preach. From the beginning we have used the iRoom as our main project
meeting room and have employed the software tools that we constructed. Much of our
continuing research has been motivated by our frustration at encountering something we
could not accomplish in the iRoom.

Page 2 of 17

• Emphasize co-location. There is a long history of research on computer supported
cooperative work for distributed access (teleconferencing support). To complement this
work, we chose to explore new kinds of support for team meetings in single spaces, taking
advantage of the shared physical space for orientation and interaction.

• Reliance on social conventions. Many projects have attempted to make an interactive
workspace “smart” (usually called an intelligent environment) [2, 5]. Rather than have the
room react to users, we have chosen to focus on providing the affordances necessary for a
group to adjust the environment as they proceed with their task. In other words, we have set
our semantic Rubicon [10] such that users and social conventions take responsibility for
actions, and the system infrastructure is responsible for providing a fluid means to execute
those actions.

• Wide applicability. Rather than investigating systems and applications just in our specific
space, we decided to investigate software techniques that would also apply in differently
configured workspaces. Our goal is to provide a framework similar to the device-driver
model, window-manager system, and look and feel guidelines for PCs. We want to create
standard abstraction and application design methodologies that apply to any interactive
workspace.

• Keep it simple. At both the interface and software development levels, we try to keep things
simple. On the human-interface side, we face a fundamental tradeoff in interaction design
between the necessity of supporting diverse hardware and software and the need to provide
an interface simple enough that people will use it. The system must remain accessible to the
non-expert intermittent users that can be expected in an interactive workspace. On the
software development side, we try to keep APIs as simple as possible both to make the client
side libraries easier to port and to minimize the barrier to entry for application developers.

Page 3 of 17

Figure 1 - A View of the Interactive Room (iRoom)

The iRoom
The iRoom, short for Interactive Room, is our second generation prototype interactive workspace
(see Figure 1). Several other iRooms have been created both at Stanford and elsewhere (see
sidebar). The iRoom contains three touch sensitive white-board sized displays along the side
wall, and a custom-built 9 megapixel, 6’ diagonal display with pen interaction called the
interactive mural built into the front wall. In addition, there is a table with a built in 3’ x 4’
display that was custom designed to look like a standard conference room table. The room also
has cameras, microphones, wireless LAN support, and a variety of wireless buttons and other
interaction devices.

Common Usage Modalities
We started our research by determining the types of activities users would carry out in an
interactive workspace. Through our own use, and through consultation with collaborating
research groups we arrived at the three following characteristics of tasks:

1. Moving Data. Users in the room need to be able to move data among the various
visualization applications that run on screens in the room, and laptops or PDAs that are
brought into the workspace.

2. Moving Control. To minimize disruptions during collaboration sessions, any user
should be able to control any device or application from their current location. One
specific need is a means of providing mouse and keyboard control for GUIs on machines
across the room from the user through their local laptop or PDA.

3. Dynamic Application Coordination. The specific applications that are needed to
display data and analyze scenarios during team problem solving sessions are potentially
diverse (one company reported using over 240 software tools during a standard design
cycle), and any number of these programs may be needed during a single meeting. The
activities of each tool should coordinate with others as appropriate. For example, the

Page 4 of 17

financial impacts of a design change in a CAD program should automatically show up in
a spreadsheet program showing related information running elsewhere in the room.

Characterizing the Environment
Based on our experiences with the iRoom, we identified some key characteristics to be supported
by the infrastructure and interfaces in an interactive workspace:

Heterogeneity: A variety of different devices (PDAs, workstations, laptops, etc.) will be in use
in the workspace, each chosen for their efficacy in accomplishing some specific task. There will
also be heterogeneous software running on these devices, including both legacy and custom built
applications. All of these need to be accessible to one another in a standard way so that the user
can treat them as a uniform collection. This means that any software framework must provide
cross-platform support. From the HCI perspective, interfaces need to be customized to different
sized displays, and possibly different input/output modalities such as speech and voice.

Multiplicities: Unlike a standard PC where a single user and set of input and output devices
provide interaction with the machine, an interactive workspace by its nature has multiple users,
devices, and applications all simultaneously active.

Dynamism: Interactive workspaces will be dynamic. On short time scales, individual devices
may be turned off, wireless devices will enter and exit the room, and pieces of equipment may
break down for periods of minutes, hours or days. On longer time scales workspaces will
incrementally evolve rather than being coherently designed and instantiated once and for all. In
providing for this dynamic change, interactive workspaces will only be widely deployed if they
“just work.” It is not realistic to expect a full-time system administrator to keep a workspace
running, and at the same time users must be allowed to integrate even failure prone devices.
Thus, failure needs to be anticipated as a common case, rather than an exception [10], and the
system must provide for quick recovery, either automatically or via a simple set of steps for the
user.

The iROS Meta-Operating System
For any real world system to support the modalities and characteristics just described, systems
infrastructure and human interface issues must be looked at together. The system infrastructure
must mirror the applications and human-computer interfaces that will be written on top of it, and
human-computer interfaces must take into account the properties of the underlying system to
insure that they are not too brittle for use in real world situations. This section discusses the
system infrastructure we built, while the next presents our human-computer interaction research.

Our system infrastructure is called the Interactive Room Operating System (iROS). It is a meta-
operating system or middleware infrastructure tying together devices that each have their own
low-level operating system. In designing it we have kept in mind the boundary principle [10]
which states that ubiquitous computing infrastructure needs to allow interaction between devices
only within the bounds of the local physical space, in our case an interactive workspace. A
running iROS system is therefore associated with a specific physical interactive workspace and
support the human-computer interaction needs of applications which will be running therein.

Page 5 of 17

Figure 2 - iROS Component Structure

The three iROS sub-systems are the Data Heap, iCrafter, and the Event Heap. They are designed
to address the three user modalities of moving data, moving control and dynamic application
coordination, respectively. Figure 2 shows how the iROS components fit together. The only
system that an iROS program must use is the Event Heap, which in addition to providing for
dynamic application coordination is also the underlying communication infrastructure for
applications within an interactive workspace.

iROS Sub-systems:

The Event Heap
Given the heterogeneity in interactive workspaces and the likelihood of failure in individual
devices and applications, it is important that the underlying coordination mechanism decouple
applications from one another as much as possible. This encourages applications to be written
which are less dependent on one another, thereby making the overall system less brittle and more
stable. The Event Heap [8] coordination infrastructure for iROS is derived from a tuplespace
model [3], which offers inherent decoupling.

The Event Heap stores and forwards messages known as “events,” each of which is a collection
of name-type-value fields. It provides a central repository to which all applications in an
interactive workspace can post events. An application can selectively access events based on a
pattern match over fields and values, and can retrieve either destructively or non-destructively.
One key extension we made to tuplespaces was to add expiration to events. This allows
unconsumed events to be automatically removed, and provides support for soft-state through
beaconing. . Applications can interface with the Event Heap through several APIs including
web, Java, and C++. There is a standard TCP/IP protocol, making it easy to create clients for
other platforms. The Event Heap differs from tuplespaces in several other respects which make
it better suited for interactive workspaces. The Event Heap is presented in greater detail in [8].

The Data Heap
The Data Heap facilitates data movement in an interactive workspace. It allows any application
to place data into a store associated with the local environment. The data is stored with an
arbitrary number of attributes that characterize it, and can be retrieved by a query specifying
attributes that must be matched. By using attributes instead of locations, applications don’t need

Page 6 of 17

to worry about which specific physical file system is being used to store the data. Format
information is also stored in the Data Heap, and, assuming appropriate transformation plug-ins
are loaded, data is automatically transformed to the best format supported by retrieving
applications. If a device only supports JPEG, for example, a retrieved Power Point slide will
automatically be extracted and converted into that image format.

iCrafter
The iCrafter system [12] provides a system for service advertisement and invocation, along with
a user interface generator for services. ICrafter services are similar to those provided by systems
such as Jini [17], except that invocation is through the Event Heap, and soft-state beaconing is
used instead of leases. The novel aspect of iCrafter is the interface manager service which
provides a method for users to select a service or set of services to control, and then
automatically returns the best interface to the service(s) for the users device. The interface
iCrafter generates communicates directly with the services through the Event Heap. When a
custom-designed interface is available for a device/service pair, it will be sent. Otherwise, a
more generic generator will be used to render into the highest quality interface type supported on
the device. Generation is done using interface templates that are automatically customized based
on the characteristics of the local environment. For example, if room geometry is available, a
light controller can show the actual positions of the lights on a graphical representation of the
workspace. Templates also allow multiple services to be combined together in a single
interface—all lights and projectors in a workspace can be put together, for example.

General Principles
Some common principles run throughout the iROS system:

Decoupling to Make System More Robust: iROS applications do not communicate directly
with one another, but use indirection through the Event Heap. This helps avoid highly
interdependent application components, which have the potential to cause each other to crash.
All of the iROS systems decouple applications referentially with information routed by attribute
rather than recipient name (attribute based naming is also used, among other places, in the
Intentional Naming system [1]). The Event Heap and Data Heap also decouple applications
temporally due to persistence, allowing applications to pick up messages generated before they
were running, or while they were crashed and restarting.

Modular Restartability: In our design, failure is treated as a common case, so when something
breaks it can simply be restarted. Clients automatically reconnect, so the Event Heap server,
interface manager and Data Heap server can all be restarted without interfering with applications
other than during the period when connectivity is lost. Thus, any subset of machines that are
malfunctioning in the workspace can be restarted in any order to get it back up and running. Any
important state that might be lost during this process is either stored in persistent form in the
Data Heap, or is beaconed as soft-state which is quickly regenerated as clients come back up.

Leveraging the Web: Due to the popularity of the World Wide Web, a great deal of technology
has been developed and deployed that utilizes browsers and the HTTP protocol. We tried to
leverage that wherever we could in the iROS system. We support both movement of web pages
from screen to screen, event submission via URLs and form pages, and automatically generated
HTML UIs via iCrafter.

Page 7 of 17

Human-Computer Interaction: Issues and Examples
In designing the interactive aspects of the iRoom, our goal has been to allow the user’s attention
to remain focused on the work being done, rather than on the mechanics of interaction. The HCI
research has included two main components: the development of interaction techniques for large
wall-based displays and the design of “overface” capabilities to provide access and control to
information and interfaces in the room as a whole.

Our primary target user setting is one which we call an “open participatory meeting.” In this
setting, a group (2 to ~15 people) works together to accomplish a task, usually as part of an
ongoing project. People come to the meeting with relevant materials on their laptops or saved on
file servers, in a variety of formats, for different applications that will be used as part of the
meeting. During the meeting there is a shared focus of attention on a “primary display surface”,
with some amount of side work that draws material from the shared displays and can bring new
material to it. In many cases a facilitator stands at the board and is responsible for overall flow
of the activities, but other participants may also present during the course of the meeting. These
meetings at times include conventional presentations, but our thrust is to facilitate interaction
among participants in the room.

Examples of such meetings that have been conducted in the iRoom include our own project
group meetings, student project groups in courses, construction management meetings,
brainstorming meetings by design firms, and training/simulation meetings for school principals.

Interaction with large high-resolution displays
The initial motivation for the iRoom was to take advantage of interaction with large high-
resolution displays, such as the Interactive Mural. The attention of a presenter or facilitator in a
meeting is focused on the contents of the board and on the other participants. Any use of a
keyboard is a distraction, so we have designed methods for direct interaction with a pen and with
direct touch on the board.

The Interactive Mural is too large for today’s touch screen technologies, and we have tested both
laser and ultrasound technologies [4] as input mechanisms. The current system uses an eBeam
ultrasonic pen augmented with a button to distinguish two modes of operation, one for drawing
and one for commands. The eBeam system does not currently support multiple simultaneous
users.

We wanted to combine the benefits of two research threads in our interface: whiteboard
functionality for quick sketching and handwriting and GUI functionality for applications. We
developed the PostBrainstorm interface [7] [6] to provide a high-resolution display with the
ability to intermix direct marking, control of images, 3D rendering, and arbitrary desktop
applications. The key design goal was to provide “fluid interaction” which does not divert the
users focus from person-to-person interactions in a meeting. This goal led to the development of
several new mechanisms:

• FlowMenu: a contextual pop-up menu system that combines the choice of an action with
parameter specification in a single pen stroke. This makes it possible to avoid interface
modes which can distract users not devoting their full attention to the interface (see [13] for
discussion). Because the menu is radial rather than linear, multi-level operations can be

Page 8 of 17

learned as a single motion path or gesture, so in many cases the user does not even need to
look at the menu to select an action.

• ZoomScape: a configurable “warping” of the screen space so that the visible scale of an
object is implicitly controlled by where it is moved. The object retains its geometry while
being scaled as a whole. In our standard configuration, the top quarter of the screen is a
reduction area, in which objects are one-quarter size. An object can be moved out of the
main area of the screen and reduced all in one pen stroke, with a smooth size transition as it
goes through a boundary area. This provides a fluid mechanism for screen real-estate
management without requiring explicit commands to change size, iconify, etc.

• Typed Drag-and-Drop: Handwriting on the screen is recognized by a background process,
leaving the digital ink and annotating it with the interpreted characters. Through FlowMenu
commands, a sheet of writing can be specified to have a desired semantic (e.g., the name and
value of a property to be associated with an object) and then dragged onto the target object to
have the intended effect. This provides a crossover between simple board interaction (hand
drawn text) and application-specific GUI interactions.

The overall system was tested in actual use by several groups of industrial designers from two
local design firms (IDEO and SpeckDesign). Their overall evaluation of the facility was quite
positive [6] and provided us with a number of specific areas for improvement.

In addition to experimenting with these facilities on the high-resolution interactive mural, we
have ported them to standard Windows systems, and have made use of them on the normal
touch-screens in the iRoom.

Overface
The overface, which provides access and control to the interactive workspace as a whole, needs
to provide a variety of functions to users of the room:

• Controlling the environment (lights, projectors, display sources, …)

• Posting information of all kinds from anywhere onto any of the display surfaces

• Controlling applications running on any of the display surfaces

Based on our observed need for moving control, these should all be achievable from any of the
devices in the room. Several prototypes have been developed, as described in the following
sections.

Room-based cross-platform interfaces
One obvious advantage of working in a room-based environment is that people share a common
model of where devices are positioned, which they can use as a convenient way of identifying
them. Our “room controller” (see Figure 3) uses a small map of the room to indicate the lights,
projectors, and display surfaces. Simple toggles and menus associated with objects in the map
can be used to switch video inputs to projectors as well as to turn lights and projectors on or off.

Initial versions of this controller were built as standard GUI applications, which could only run
on some systems. We broadened their availability to a wider range of devices by providing them

Page 9 of 17

as web pages (using forms) and as web applets (using Java). Our later research generalized the
process further with iCrafter [12], which was discussed earlier.

The room control system stores the geometric arrangement of screens and lights in the room in a
configuration file, and will automatically provide controllers on any device supporting a UI
renderer available through iCrafter. Figure 3 gives examples for several devices.

(a) Java Swing

(b) Palm Handheld

(c) HTML

Figure 3 – iCrafter Generated Light and Projector Control Interfaces

In addition to providing environment control, the same room control interface serves as the
primary way of moving information onto displays. The user indicates an information object
(URL or file), the appropriate application to display it, and the display on which it should appear
using the interface on their device. On platforms that support it, drag-and-drop can be used. The
user actions generate an event that is picked up by a daemon running on the target machine,
which then displays the requested data.

Room-based input devices
In an interactive workspace physical input devices belong to the space rather than a specific
machine. One example that we have implemented is an overhead scanner which is based on a
digital camera. It allows sketches and other material to be digitized when they are placed in a
certain area of the table. Crop marks can be used to select the exact region, and when the camera
is triggered, an image of the object is placed on the specified screen. This provided an
alternative to tablet computers for sketching, which were found to have the wrong “feel” when
used by a team of brainstormers. The overhead scanner provides a method of bringing
traditional media into the space in a manner that has low cognitive overhead.

In addition to the overhead scanner, we have introduced other devices such as a bar code scanner
and simple wireless input devices, such as buttons and sliders. These post events on the Event
Heap, which are available for any program to use, and can therefore be easily adapted to

Page 10 of 17

different functions. For example, the bar code scanner was used to implement a system similar
to the BlueBoard system [14]. When the barcode scanner posts an event, the application checks
a table of codes registered to individual iRoom users, and if there is a match, it posts the user’s
personal information space to one of the large boards. Handheld wireless iRoom buttons can be
associated with any actions through a web-form interface. For example, a push on a particular
button can bring up a set of pre-designated applications on multiple devices in the room, to set up
a meeting context.

Distributed application control
One aspect of the “moving control” modality for interactive workspaces is a need for both direct
touch interaction with the GUIs on the large screens, and the ability for users standing away from
the screens to control the mouse and enter text. While it is possible to walk up to the screen to
interact, or to request the person at the screen to perform an action on your behalf, both of these
disrupt the flow of a meeting. A number of previous systems have dealt with multi-user control
of a shared device, often providing sophisticated floor-control mechanisms to manage conflicts.
In keeping with our “keep it simple” philosophy, we created a mechanism called PointRight [9],
which provides the key functionality without being intrusive.

PointRight
With PointRight, any machine’s pointing device can become a “super pointer” whose field of
operation includes all of the display surfaces in the room, as well as the machine it is on. When a
device runs PointRight, the edges of its screen are associated with corresponding other displays.
So the user simply continues moving the cursor off the edge of the local screen, and it moves
onto one of the other screens, as if the displays in the room were part of a large virtual desktop.
In addition to allowing this control through laptops, the room has a dedicated wireless keyboard
and mouse which is always available as a general keyboard and pointer interaction device for all
of the surfaces. For each active user, their keystrokes go to the machine on which their pointer is
currently active. The system also tracks state of which machines and displays are on, and which
machine is providing video to each screen. It automatically routes the mouse control to the
visible machine for each active display. This allows, for example, interaction with laptops being
displayed on the touch screens directly through the touch screens. Currently nothing special is
done to handle multiple pointers active on a screen—cursor update events are simply time-
multiplexed by the OS. This works well in practice since social protocol quickly resolves which
user will get to be active on the screen in contention.

CIFE Suite: Example of Dynamic Application Coordination
Through calls to the Event Heap, interface actions within one application can trigger actions
within another running on any of the machines in the workspace. This has been employed in a
suite of applications developed by The Center for Integrated Facility Engineering (CIFE) [11] for
use in construction management meetings. Figure 4 shows some of the application viewers that
they have constructed.

Page 11 of 17

Figure 4 – Some of the Viewers in the CIFE Suite

All of the applications are essentially standalone, and communicate through the Event Heap.
Applications emit events in a common format and match for events to which they can respond.
Users can coordinate the applications by bringing them up on any of the displays in an
interactive workspace. As users select and manipulate information in one of the viewers,
corresponding information in the other viewers becomes selected or updates to reflect changes.
Since the components are loosely coupled, the absence or disappearance of an event source or
event receiver does not affect any of the application components currently in use.

Smart Presenter
The Smart Presenter system allows the construction of coordinated presentations across the
displays in an interactive workspace. Users create a script of which content to display on what
displays for any point in the presentation. PowerPoint and web pages are two of the default
supported formats in the system, but any data format supported by the Data Heap may also be
used. In addition to content, any arbitrary event may be sent, so it is straightforward to trigger
lighting changes or switch video inputs to a projector during a presentation.

Smart Presenter leverages the Data Heap heavily to insure that any content can be shown on any
display in a workspace. In the iRoom, for example, the high-resolution front display, which only
supports JPEG images, can still be used to display PowerPoint slides since they are extracted and
transformed for that display.

Page 12 of 17

Interaction philosophy: Minimal interaction, implicit structure
A key design philosophy for our project has been: the user should have a minimum of specific
controls and modes to learn and remember, and the interface should take advantage of natural
mappings to the physical structure. Examples include the use of a physical map for controllers,
the ZoomScape mechanism for scaling images based on location, the overhead camera scanner
interface for entering sketches and other visual material, and cross-linking mechanisms that
enable actions in one structure (such as a project plan) to automatically trigger actions in another
(the CAD drawing). Although it would be an overstatement to say that the interface has become
completely intuitive and invisible, we continue to make steps in that direction.

Page 13 of 17

SIDEBAR 1:

The iRoom and Beyond: Evolution and Usage of Deployed
Environments [SIDEBAR]

Early Work: The Interactive Mural
The project started with the first version of the Interactive Mural, a four-projector tiled display
built in several stages from 1998 to 1999. It included a pressure sensitive floor, which tracked
users in front of the display with 1’ accuracy. The pressure sensitive floor was used in some
artistic applications, but has not been duplicated in the iRoom.

iRoom v1
The first iteration of the iRoom was constructed in Summer 1999. Like the current version, it had
three SMART Boards and the iTable, but it had a standard front projected screen instead of the
interactive mural at the front of the room.

Perhaps the biggest mistake we made in the construction of the first iRoom was in planning the
cabling. It seems like an obvious thing, but the number of cables needed to connect mouse,
keyboard, video, networking, USB devices etc. quickly escalates, leaving a tangle of cables that
are not quite long enough and going to unknown devices. For iRoom v2 we learned from our
mistakes and made a careful plan of cable routes and lengths in advance, and made sure to label
both ends of every cable with what they were connecting.

iRoom v2
In Summer of 2000, the Interactive Mural was integrated as the front of the iRoom, requiring a
reconfiguration of the entire workspace. During the remodel we introduced more compact light-
folding optics for the projectors on the SMART Boards, and did a better job of running the over
one-half mile of cables for the room. A developer lab adjacent to the room was added, along with
a sign-in area that holds mobile devices and a dedicated machine that can be used for room
control. The developer station has been configured with a KVM (Keyboard-Video-Mouse)
switch so that all of the iRoom PCs may be accessed from any of four developer stations. The
floor plan of iRoom 2 is shown in Figure 5.

One of the big headaches in building iRoom v2 was dealing with projector alignment and color
calibration. More about this can be found in [15].

Page 14 of 17

Figure 5 - Floor Plan and Behind the Scenes of iRoom v2

The Proliferation of Interactive Workspaces
Since the building of iRoom v2, Interactive Workspaces technology has been deployed at six
more locations around campus. Through various collaborations, Interactive Workspaces group
software is now being used in iRooms in Sweden and Switzerland. The i-Land [16] group has
also done some work which uses the Event Heap in conjunction with their own software
framework.

Related Projects
NOTE TO THE EDITORS: We were advised by the reviewer to point to an article with an
overview of related projects here. Unfortunately, we know of no such article. We were hoping
that this issue might include articles from projects similar to ours, and would serve this function
in the future. The projects we consider related are:

• Easy Living, Microsoft

• Intelligent Room, MIT

• i-Land Project, GMD-IPSI Darmstadt

• Gaia OS, UIUC

This section could just be a brief pointer to articles on any of these projects should they be in this
issue. If not, we would be happy to write a brief blurb here, or this section could be removed.

Page 15 of 17

Future Directions
Several topics call for further investigation. Three of the most prominent are security,
adaptation, and bridging interactive workspaces.

While providing many important attributes, the loose coupling model also introduces some
security concerns. The indirect communication makes all messages public. This makes it easy to
adapt programs to work with one another through intermediation, but also brings up concerns of
security and privacy. For now, we firewall the iRoom off from the rest of the world and assume
that users working together in a room have implicitly agreed to public communication. We are
undertaking an investigation of the types of security that users need in interactive workspaces,
with the subsequent development of a social model for security that will in turn shape the
software security protocols to be developed.

While our system tries to minimize the amount of time required to integrate a device into an
interactive workspace, there is still overhead in configuring room geometries and specifying
which servers to use. We plan to make it simpler to create and extend a workspace and to move
portable devices between them. Users should only have to plug in a device or bring it into a
physical space in order for it to become a part of the corresponding software infrastructure. User
configuration should be simple and prompted by the space—for example the user might be
requested to specify where in the room the device is located. The logical extension of this is to
allow ad hoc interactive workspaces to form wherever a group of devices are gathered.

As mentioned earlier, we have so far focused on co-located collaboration. Allowing project
teams in remotely located interacted workspaces to work with one another is both interesting and
useful. The main issues here are how to facilitate coordination between desired applications
while insuring that workspace-specific events remain only in the appropriate location. For
example, sending an event to turn on all lights should probably remain only in the environment
where it was generated. As we extend the work to multiple linked rooms and remote
participants, we will use observations of the work to determine how much additional structure
needs to be added. We are driven not by what is technically possible, but what is humanly
appropriate.

Final Words
As with all systems being built in relatively new domains, and particularly with systems that
involve user interaction, it is difficult to come up with a quantitative measure of success. We
have had a number of experimental uses, including:

• Design brainstorming sessions by professional designers

• Construction of class projects built on the iROS system

• Training sessions for secondary school principals

• Construction management experiments as part of a Civil Engineering research project

• Group writing in a Stanford English course

• Project groups from an interaction design course

• and, of course, our own weekly group meetings.

Page 16 of 17

The overall results have been positive, with many suggestions for further development and
improvement. Comments from programmers who have appreciated how easy it is to develop
applications with our framework are also encouraging. Finally, the adoption and spread of our
technology to other research groups (see sidebar) also suggests that our system is meeting the
needs of the growing community of developers for interactive workspaces.

For more information on the Interactive Workspaces project and to download the iROS software
(including easy installers for Windows NT/2000/XP), please go to http://iwork.stanford.edu.

Acknowledgments
We wish to thank Pat Hanrahan, one of the founders of the project for his support and efforts.
The accomplishments of the Interactive Workspaces group are due to the efforts of too many to
enumerate here, but a complete list may be found on the Interactive Workspaces website. The
work described has been supported by DoE grant B504665, by NSF Graduate Fellowships, and
by donations of equipment and software from Intel Corp., InFocus, IBM Corp. and Microsoft
Corp.

References
1. Adjie-Winoto, W., et al., The design and implementation of an intentional naming

system. Oper. Syst. Rev. (USA), Operating Systems Review, 1999. 33: p. 186-201.

2. Brumitt, B., et al. EasyLiving: technologies for intelligent environments. in Handheld and
Ubiquitous Computing Second International Symposium HUC 2000. 2000. Bristol, UK:
Berlin, Germany : Springer-Verlag, 2000.

3. Carriero, N. and D. Gelernter, Linda in context (parallel programming). Communications
of the ACM, 1989. 32(4): p. 444-58.

4. Chen, X.C. and J. Davis, LumiPoint: Multi-User Laser-Based Interaction on Large Tiled
Displays. Displays, 2002. 22(1).

5. Coen, M.H., et al. Meeting the Computational Needs of Intelligent Environments: The
Metaglue System. in MANSE99 : 1st International Workshop Managing Interactions in
Smart Environments. 1999. Dublin, Ireland.

6. Guimbretière, F., Fluid Interaction for High Resolution Wall-size Displays. Ph.D.
Dissertation, Computer Science. 2002, Stanford, CA, USA: Stanford University. 140.

7. Guimbretière, F., M. Stone, and T. Winograd, Fluid Interaction with High-resolution
Wall-Size Displays. UIST (User Interface Software and Technology): Proceedings of the
ACM Symposium, 2001: p. 21-30.

8. Johanson, B. and A. Fox. The Event Heap: An Coordination Infrastructure for Interactive
Workspaces. in To appear in Proceedings of the 4th IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA-2002). 2002. Callicoon, New York, USA.

9. Johanson, B., G. Hutchins, and T. Winograd, PointRight: A System for Pointer/Keyboard
Redirection Among, Multiple Displays and Machines. CS Tech Report, CS-2000-03.
2000, Stanford, CA: Stanford University. http://graphics.stanford.edu/papers/pointright/.

Page 17 of 17

10. Kindberg, T. and A. Fox, System Software for Ubiquitous Computing, in IEEE Pervasive
Computing. 2002. p. 70-81

11. Liston, K., M. Fischer, and T. Winograd, Focused Sharing of Information for Multi-
disciplinary Decision Making by Project Teams. ITcon, 2001. 6: p. 69-81.

12. Ponnekanti, S., et al. ICrafter: A Service Framework for Ubiquitous Computing
Environments. in Ubicomp 2001. 2001. Atlanta, GA, USA.

13. Raskin, J., The humane interface : new directions for designing interactive systems. 2000,
Reading, Mass.: Addison Wesley. xix, 233.

14. Russell, D. and R. Gossweiler. On the Design of Personal & Communal Large
Information Scale Appliances. in Ubicomp 2001. 2001. Atlanta, GA, USA.

15. Stone, M.C., Color and brightness appearance issues in tiled displays. IEEE Computer
Graphics and Applications, 2001. 21(5): p. 58-66.

16. Streitz, N., et al. i-LAND: An interactive Landscape for Creativity and Innovation. in
ACM Conference on Human Factors in Computing Systems (CHI'99). 1999. Pittsburgh,
PA, USA: ACM Press, New York, NY, USA.

17. Waldo, J., The Jini architecture for network-centric computing. Communications of the
ACM, 1999. 42(7): p. 76-82.

18. Weiser, M., The computer for the 21st century. Scientific American, 1991. 265(3): p. 66-
75.

