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Abstract

The past decade witnessed a rise in the ubiquity and capability of digital photography,

paced by the advances in embedded devices, image processing and social media. Along

with it, the popularity of computational photography also grew. Many computational

photography techniques work by �rst capturing a coded representation of the scene�

a stack of photographs with di�erent settings, an image obtained via a modi�ed

optical path, et cetera�and then computationally decoding it later as a post-process

according to the user's speci�cation.

However, the coded representation, available to the user at the time of capture,

is often not su�ciently indicative of the decoded output that will be produced later.

Depending on the type of the computational photography technique involved, the

coded representation may appear to be a distorted image, or may not even be an

image at all. Consequently, these techniques discard one of the most signi�cant

attractions of digital photography: the what-you-see-is-what-you-get (WYSIWYG)

experience.

In response, this dissertation explores a new kind of interface for manipulating

images in computational photography applications, called view�nder editing. With

view�nder editing, the view�nder more accurately re�ects the �nal image the user

intends to create, by allowing the user to alter the local or global appearance of the

photograph via stroke-based input on a touch-enabled digital view�nder, and prop-

agating the edits spatiotemporally. Furthermore, the user speci�es via the interface

how the coded representation should be decoded in computational photography appli-

cations, guiding the acquisition and composition of photographs and giving immediate

visual feedback to the user. Thus, the WYSIWYG aspect is reclaimed, enriching the
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user's photographing experience and helping him make artistic decisions before or

during capture, instead of after capture.

This dissertation realizes and presents a real-time implementation of view�nder

editing on a mobile platform, constituting the �rst of its kind. This implementation

is enabled by a new spatiotemporal edit propagation method that meaningfully com-

bines and improves existing algorithms, achieving an order-of-magnitude speed-up

over existing methods. The new method trades away spatial locality for e�ciency

and robustness against camera or scene motion.

Finally, several applications of the framework are demonstrated, such as high-

dynamic-range (HDR) multi-exposure photography, focal stack composition, selective

colorization, and general tonal editing. In particular, new camera control algorithms

for stack metering and focusing are presented, which takes advantage of the knowledge

of the user's intent indicated via the view�nder editing interface and optimizes the

camera parameters accordingly.
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Chapter 1

Introduction

Taking photos and videos has become an integral part of our daily lives. In addition

to the 100 million digital cameras sold annually [1], over a billion camera phones are

purchased every year [2], leading to the astounding ubiquity of cameras all around

the world. Photography has been extremely successful commercially, owing to the

a�ordability, the ease of use, and interactivity of modern cameras. More importantly,

however, photography has enjoyed an immense cultural success, as the act and ex-

perience of photography, content creation and sharing resonate deeply with today's

masses. For instance, more than 300 million digital photographs were uploaded to

Facebook R© every day in 2012 [3].

The rise of the popularity of digital photography coincided with, or perhaps was

aided by, the recent advances in the capability of mobile devices. In the research

community, the �eld of computational photography gained prominence: by com-

bining advances in optics, capture strategy, image processing and computer vision,

researchers could enhance the photographs produced by cameras, or enable entirely

new kinds of photography or photography experience. Many published techniques

rely on modifying the capture hardware or capture strategy to acquire coded data,

and then computationally decoding it to produce a photograph as an o�ine process.

However, the adoption and popularization of these new techniques lag behind the

progress in academia, and the techniques that have made the jump do not provide

experiences that are as compelling as they can be. While many culprits exist, such as

1
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the limited programmability of mobile devices [4], one reason is the loss of interactivity

from the aforementioned o�ine process, which robs photography of the key ingredient

of its present success: the WYSIWYG (what-you-see-is-what-you-get) paradigm.

1.1 The WYSIWYG Paradigm

The phrase what you see is what you get as it applies to user interfaces was �rst coined

in 1982 by Larry Sinclair, and was popularized in its acronymous form: WYSIWYG.

It indicates that the user's interaction with his medium in a content-creation process

is aided by a close visual approximation of the produced content. The WYSIWYG

property enables the user to immediately see the e�ect of his actions and respond

accordingly, leading to a more e�cient and more enjoyable process.

Photography has not always been a WYSIWYG experience. In the days of �lm

photography, the �nal product was in�uenced by a multitude of factors, ranging from

the capture-time parameters like exposure, gain, aperture, focus and focal length,

to the variables throughout the development process like the choice of �lm, paper,

and the amount of dodging and burning. The photographer relied on the optical

view�nder and drew from his experience to imagine in his mind how the developed

photograph would look. Only with the introduction of the digital cameras with

electronic view�nders, photography became WYSIWYG and thus accessible to the

masses. An explosion in the popularity of digital photography ensued, riding the

waves of a�ordable cameras, advances in camera phones, and the rise of social media.

With WYSIWYG photography, the photographer has not only the ability to shape

the current shot interactively, but also the power to decide how many shots are taken,

and whether photos will be taken at all.

Running counter to the notion of WYSIWYG photography is the relatively new

�eld of computational photography, where computation is applied to images before

and/or after their capture in order to enhance or extend digital photography. Over

time, two particularly e�ective paradigms have emerged. In the �rst paradigm, the

imaging device is modi�ed to capture coded data�it may be optically, spatially or

temporally coded or multiplexed�through the use of novel optics or unconventional
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capture strategy. This data may in fact not look like a good photograph, or be

recognizable as a photograph. See Figure 1.1 for examples of such coded data. Next,

the data is decoded computationally in order to yield the output photograph, perhaps

under the user's guidance. The output photograph, compared to a conventional

photograph, is enhanced in some dimension: depth of �eld, dynamic range, signal-to-

noise ratio, angular resolution, motion blur, and so forth. In the second paradigm,

the photograph is captured normally, and then edited in post-processing by the user

in a nonlinear fashion: motion may be magni�ed or suppressed, or the appearance of

objects may be selectively altered.

(a) (b) (c)

Figure 1.1: Examples of non-WYSIWYG computational photography. Many com-
putational photography techniques �rst capture a coded-representation of the scene,
and decode it later computationally. The coded representation typically does not fully
indicate to the user what the output will look like. For each example, the top row
shows the data captured by the sensor; the bottom row shows the computationally
decoded output. (a): a multi-exposure stack for high-dynamic-range (HDR) imag-
ing [5]. (b): coded aperture imaging for extending the depth of �eld [6], (c): imaging
with a microlens array for capturing a light �eld [7].

Unfortunately, these paradigms of computational photography contradict theWYSI-

WYG aspect of digital photography: what the user sees through the view�nder is of-

ten not what he gets at the end, since the user must extract the result and apply the
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decoding and/or editing operations o�ine. In addition to rendering the photograph-

ing exercise less interactive, the loss of WYSIWYG property can lead to inadequate

or excessive data capture, as the user is left on his own to visualize the �nal result

without any aid.

For some computational photography applications, this problem is solved by

providing additional computational resources�more compute, more storage, higher

bandwidth�thereby bringing the o�ine process online. By the virtue of Moore's

Law, this may well happen in near future. However, for other applications that re-

quire user guidance, the loss of WYSIWYG property will not be solved simply with

additional resources, since the user must still provide his input in a post-process.

Fortunately, for a subset of these di�cult cases, a well-engineered end-to-end system

armed with new class of algorithms can provide a WYSIWYG interface at present

time by treating the view�nder as a canvas, as will be described in this dissertation.

1.2 The View�nder as a Canvas

The electronic view�nder in the camera, since its inception, has been primarily an

output device: the scene as captured by the camera sensor is streamed onto the LCD

screen, which the photographer uses to frame his shot. With recent proliferation of

touch-enabled displays (e.g. smartphones, tablets and many compact point-and-shoot

cameras), the screen has taken on a new role as a potential input device: many cam-

eras now sport a touch-based user interface for accessing application menus, selecting

settings, or actuating the shutter. Some applications even go further, allowing the

user to select the control points for auto-focus, auto-exposure or auto-white balance.

While such uses of the screen as an input modality are signi�cant, the progress thus

far simply replicates the functionality available with physical controls (dials, knobs,

tactile buttons) onto a touch-enabled display.

Once the photograph is taken, the screen can be used as an image-editing in-

terface in a disparate application. Many image-editing software packages and appli-

cations exist on mobile devices, ranging from simple global �lters like Instagram R©

to more powerful suites like Adobe Photoshop Touch R© or specialized software that
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create cinemagraphs. In these instances, however, the screen is no longer acting as

a view�nder, since it cannot a�ect the capture process. In summary, the ability to

provide freeform input or strokes on a touch-enabled display is not being leveraged

on a camera view�nder.

Using the touch-enabled electronic view�nder as a live canvas is an intriguing di-

rection for two reasons. For one, further interactivity in photography is a positive

trait, as evidenced by the popularity and the diversity of image-manipulation pro-

grams: the users want to interact more with their photographs and videos. Secondly,

performing operations directly on the view�nder lets the user review the result imme-

diately and react accordingly�he may adjust the camera parameters or change the

framing. For instance, the Flickr R© smartphone application recently began o�ering

live previews of the Instagram-style �lters on the view�nder. Not only does this help

the user create the result he wants, pre-loading the o�ine editing process to capture

time can provide a more engaging photography experience. Sharing the resulting

photos also becomes streamlined. Lastly, it is worth noting that many recent image

manipulation algorithms already take sparse strokes as inputs, and would translate

nicely onto a touch-enabled view�nder.

It is worthwhile to note that performing live edits directly on the view�nder re-

quires the situation to be cooperative. For instance, it would need a cooperative

subject or scene who should stay relatively still while the edits are being performed.

It also requires a bright screen for the view�nder, or a cooperative viewing environ-

ment. These limitations are further explored in Chapter 8.

1.3 Contributions

This dissertation presents the design and the implementation of an end-to-end system

for mobile digital photography that enables WYSIWYG interfaces to three computa-

tional photography applications, along with the underlying mathematical algorithms

and a uni�ed user interface for all applications, called view�nder editing. The three

applications are high-dynamic-range (HDR) imaging via exposure stacks, focal stack

composition, and stroke-based image and video editing.
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Within the presented system, the main contributions are as follows:

• Improvements to a sparse data structure called the permutohedral lattice, for

use in real-time spatiotemporal edit propagation.

• An algorithm and a stroke-based user interface for performing view�nder editing

on a mobile device. That is, edits propagate spatiotemporally through a live

view�nder, providing a WYSYWYG experience for the �rst time ever for a large

class of operations.

• Camera control algorithms that, based on the user interaction with the above

interface, chooses the optimal parameters for an exposure stack or a focal stack,

to be used for HDR imaging or focal stack composition, respectively. The

proposed algorithms di�er fundamentally from the existing ones because of the

WYSIWYG property of the system.

While these contributions altogether constitute a coherent system, each of them

addresses an existing problem in the �eld of computer graphics, and has individual

applicability beyond the framework proposed in this dissertation.

The rest of the dissertation begins with an overview of the existing state of art

on the various subproblems tackled, described in Chapter 2. Chapter 3 introduces

the permutohedral lattice, previously described in several publications the author

has been involved in [8, 9, 10]. The chapter showcases new developments on the

permutohedral lattice, including a crucial algorithmic improvement and others that

are tailored towards the use in view�nder editing.

Chapter 4 lays out the framework for view�nder editing and the underlying al-

gorithms for spatiotemporal propagation. Several design choices are discussed and

explained. Then, Chapter 5 de�nes the camera control algorithms for HDR imaging

and focal stack composition, that account for and make use of view�nder editing.

Chapter 6 brings together the components described up to that point, and describe

a system for mobile photography that make use of these contributions. Chapter 7

demonstrates some of the results of the applications, along with performance evalua-

tions and discussions. Chapter 8 concludes the dissertation, discussing the uses and

limits of the proposed system, and o�ering suggestions on future work.
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The view�nder editing paradigm and the proposed system were also discussed in

a paper published in 2013 at the ACM SIGGRAPH Asia conference [11]. The work

contained in this dissertation can be considered to be an in-depth look at the more

recent iterations of the system.



Chapter 2

Prior Work

By assembling an end-to-end system for WYSIWYG computational photography,

this dissertation tackles a number of well-studied problems in computer graphics: the

�rst is the problem of fast Gaussian �ltering of high-dimensional data, commonly em-

ployed in computer vision and computational photography applications. The second

is the problem of spatiotemporally propagating edits on images and video sequences,

in order to simplify and accelerate editing tasks. The third is the problem of setting

camera parameters for stack-based image acquisition, now popular in many com-

putational photography techniques. These three problems will be considered and

addressed in the course of this dissertation, respectively in Chapters 3, 4 and 5. This

chapter contains a section devoted to the history of each of these three problems.

Fast Gaussian �ltering is a generalized framework that can express many well-

known image processing operations, such as the bilateral �lter [12, 13], joint bilateral

�lter [14] and non-local means [15]. These �lters have gained widespread use because

of their edge-aware property and mathematical elegance. Accelerating them and other

edge-aware �lters has been a key problem in the graphics community recently.

Spatiotemporal edit propagation applies Gaussian �ltering or other edge-aware

operations in order to convert sparse edits on an image onto dense edits on the

same image or onto other image sequences. The advances in this task are closely

related to those in edge-aware image processing, and existing work has dealt with

both acceleration and propagation quality.

8
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The last section discusses the determination of camera parameters for computa-

tional photography applications that capture a stack of photos. Whereas setting the

exposure, focus and gain is relatively straightforward for a conventional camera (albeit

subjective), applying the same to a stack acquisition is a nontrivial multi-dimensional

problem, and owes the recent attention to the rising popularity of HDR photography.

2.1 Accelerating Gaussian Filtering

Gaussian �ltering is a general framework for smoothing multi-dimensional signal rep-

resented by discrete samples. Let f be an abstract high-dimensional, vector-valued

function de�ned over Rdp . Formally, f : Rdp → Rdv for some natural numbers

dp, dv ∈ Z+ indicating the dimensionalities of the underlying spaces. Let (~pi, ~vi)

for i = 1, . . . , n be known samples of f , i.e. f(~pi) = ~vi. Then, we can compute a

smoothed representation g : Rdp → Rdv de�ned as a normalized weighted sum of

known samples of f :

g : ~x 7→

n∑
i=1

wi(~x)~vi

n∑
i=1

wi(~x)

, (2.1)

where the weights are de�ned with exponential dropo� with respect to the squared

distance from the sample, i.e. a Gaussian kernel:

∀~x ∈ Rdp , ∀i ∈ {1, . . . , n}, wi(~x) := exp
{
−‖~pi − ~x‖2

}
. (2.2)

In the scienti�c computing literature, the operation in Equation (2.1) is also known as

the Gauss transform [16]. As can be seen from the formula, g converges to a Gaussian

blur of f with an increase in the density of the samples. The formula for the weights

can be optionally �tted with a parameter to control the exponential dropo�, but it

can also be achieved by simply scaling the space in which the function is de�ned.

Gaussian �ltering is a powerful tool that can express many popular image-processing

operations. Given an image I, the well-known Gaussian blur can be formulated by
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setting ~pi to be the (x, y) spatial coordinate and ~vi be the pixel value at the corre-

sponding location. Simply put, pixels are mixed together with other pixels that are

close spatially, with weights that decay exponentially as a function of the squared

distance.

Similarly, the edge-preserving bilateral �lter [12, 13] for grayscale images is spec-

i�ed by setting ~pi = {xi, yi, li} and ~vi = {li} where (xi, yi, li) correspond to the two

spatial coordinates and the luminance at the said location. In this formulation, pix-

els are mixed with other pixels that are close by both spatially and radiometrically.

Color bilateral �lter is obtained by replacing li with the RGB value (ri, gi, bi). A more

sophisticated smoothing algorithm is obtained by replacing li with a local image de-

scriptor at the given pixel [15]. Joint bilateral �lter [14] can also be expressed in this

framework by drawing the position vectors pi from a source di�erent from the image

being �ltered, e.g. pi = {xi, yi, r′i, g′i, b′i}. See Figures 2.1 and 2.2 for some examples

of these operations.

(a) (b) (c)

Figure 2.1: Examples of Gaussian �ltering. (a): The input. (b): The output of a
Gaussian blur (dp = 2). (c): The output of a bilateral �lter (dp = 5). Note that
surfaces have been smoothed without crossing strong edges. The images are best
viewed electronically, to permit zooming.

The direct evaluation of Gaussian �lters on a w×h image incurs a computational
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(a) (b) (c)

Figure 2.2: Examples of denoising with Gaussian �ltering. (a): The input image
from Figure 2.1, corrupted with Gaussian noise. (b): The output of a joint-bilateral
�lter on the noisy input (dp = 5). The noisy image was �ltered with respect to the
positions of the luma channel. (c): The output of a non-local means �lter on the
noisy input (dp = 8). By mixing patches of similar appearance, noise has been e�ec-
tively suppressed. In comparison to (b), it exhibits less noise, but smooth intensity
variations in the image have become more piecewise. Either output may be the more
appropriate one, depending on the user intention.

cost of O(w2h2), resulting from the pairwise interaction of wh pixels with one another.

For large images (w, h ≥ 100, for instance), this can be prohibitively expensive. The

need for more e�cient algorithms for evaluating Gaussian �lters has spurred a number

of signal-processing-based approaches that approximate the �lter response.

2.1.1 Signal-Processing Approach

While the high-dimensional function f : Rdp → Rdv is often speci�ed by a set of n

samples, the underlying signal can be represented much more compactly, especially

since the function is to be blurred. Taking advantage of this, several existing methods

follow the same paradigm to accelerate Gaussian �ltering:

1. Resample the signal onto a data structure. This data structure is a collection
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of samples of f , and the samples may be organized as a grid, a lattice, a tree

or a general point-set, for instance. This step is called splatting. After this

step, each vertex in the data structure roughly corresponds to the aggregate of

nearby input points.

2. Blur the signal within the data structure. This step is speci�c to the particular

data structure in question, but in general, the vertices in the data structure are

blurred with nearby vertices. This step is called blurring.

3. Finally, resample the signal out of the data structure. This step is called slicing.

Often the slicing step mirrors the splatting step.

This paradigm was �rst formalized by Paris et al. [17] using a regular dp-dimensional

grid. In this work, the underlying dp-space is partitioned by a regular grid, and the

vertices of the grid are stored as a high-dimensional array. Then, the splatting step

spreads each input point onto the vertices of the hypercube enclosing the input point,

using multilinear weights. The blurring step consists of applying a separable kernel

of �nite width to the data structure. The slicing step blends the values stored at the

vertices of the same hypercube using the multilinear weights.

Adams et al. [8] uses the dp-dimensional permutohedral lattice as the data struc-

ture. Because the permutohedral lattice tessellates the space with simplices, rather

than hypercubes, barycentric interpolation is used in splatting and slicing step. The

blurring step is also performed in a separable fashion. See Chapter 3 for details.

The multi-pole method of Greengard and Strain [16] clusters the underlying space

by examining the distribution of the input points, and represents the space by a vertex

located at the center of each cluster. The splatting stores each input point into the

vertex corresponding to the cluster to which it belongs: hence, the vertex is a proxy

for all input points in the cluster. Then, to slice, the in�uence of each cluster on the

query point is computed. Yang et al. [18] improves upon this method by organizing

the clusters in a tree.

Lastly, Adams et al. [19] employs a dp-dimensional kd-tree built upon the input

dataset, and uses the nodes of the kd-tree to store samples. The splatting, blurring

and slicing steps are achieved by a probabilistic query into the kd-tree. The queries
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Method Filtering stages (Splatting / Blurring / Slicing)

Pointset

Regular grid [17]

Lattice [8]

Multi-pole [18]

kd-tree [19]

Table 2.1: Comparison of Gaussian-�ltering schemes. For each method, the splatting,
blurring, and slicing steps are illustrated from left to right. The orange-rimmed circles
in the �rst column represent the input point. The larger circles represent vertices in
the data structure. The grayscale color of each circle indicate its value. In the
splatting step, the input points are resampled onto the data structure. In the blurring
step, the vertices are �ltered. In the slicing step, for each query point, nearby vertices
are sampled in some fashion. For instance, a naive approach would be to use the
positions of the input points as the vertices, and compute the pairwise weights in the
slicing step. See Section 2.1.1 for descriptions of other methods.
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Method Time complexity Space complexity
Pointset O(d · n2) O(d · n)

Regular grid [17] O(2d · n) O(2d · n)
Lattice [8] O(d2 · n) O(d2 · n)

Multi-pole [18] O(dc · n log k) O(d · n+ dc · k)
kd-tree [19] O(d · n log n) O(d · n)

Table 2.2: Comparison of the theoretical time and space complexity of Gaussian-
�ltering schemes. Here n is the cardinality of the input dataset, and d is the dimen-
sionality of the position vectors. For the multi-pole-based fast Gauss transform [18],
c and k are tunable parameters.

proceed in parallel, branching when necessary probabilistically such that the chance

of reaching a certain vertex is proportional to the Gaussian weight.

See Figure 2.1 for a visual summary of the aforementioned methods. Table 2.1

tabulates the space and time complexity of these methods.

2.2 Camera Control for Computational Photogra-

phy

Camera control for the conventional digital photography consists of the choice of ex-

posure, gain, focus, zoom and aperture [20]. In addition to these technical parameters,

the photographer can exercise his judgment on the physical distance to the subject,

the perspective of the view frustum, the composition, and the timing of the shutter

press. Picking the ideal capture parameters in case of a single photograph is fairly

straightforward: automatic focus, exposure, gain, and aperture settings have been

available on consumer-grade digital cameras for decades [21, 22], and their principles

are well-understood, even though their implementations may only be documented

by patents written in very obscure terms. In contrast, many computational photog-

raphy algorithms make use of stack photography. This compounds the di�culty of

automatic parameter selection, since each photograph in the stack must have its pa-

rameters determined. In addition, these algorithms are not WYSIWYG, so the user
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is left to visualize the post-processed output and to guess whether the stack acquired

is su�cient. The same problem exists in case of nonlinear image editing.

2.2.1 High Dynamic Range Imaging

One of the most popular computational photography technique is high-dynamic-range

(HDR) imaging [23], which typically combines multiple photographs at varying expo-

sures to synthetically increase the dynamic range of the output [5, 24]. As such, HDR

imaging requires the determination of the exposure levels for the individual frames,

with the assumption that each region of the scene should be well-imaged by at least

one of the frames.

While HDR imaging can produce high-quality result for static scenery, existing

methods typically do not handle scene and camera motion gracefully. Handheld HDR

imaging requires registration and alignment of the frames, which can be done based

on the image content [25] or an inertial measurement unit [26], but this only accounts

for the camera motion and does not solve parallax issues. With respect to scene

motion, motion analysis can help reduce ghosting artifact at the cost of discarding

data [27]. Otherwise, expensive non-rigid registration is required [28], which still may

have issues with occlusion and disocclusion. Therefore, reducing the number of and

the duration of the photographs is desirable, as opposed to a full exposure stack�for

instance, the iconic Memorial Church dataset was based on 16 images [5] and required

a tripod.

The simplest method for multiple-exposure metering is exposure bracketing [23],

in which the scene is captured once using a standard auto-exposure algorithm, and

additional photos are acquired with a �xed number of stops o�set from the �rst (e.g.

±2 stops.) The state-of-the-art methods for multiple-exposure metering attempt to

to maximize the signal-to-noise ratio (SNR) of the resulting HDR composite. Hasino�

et al. [29] derives the mathematical formula for SNR of each pixel as a function of

the exposure values, and solves for the set of exposures that maximizes the worst

SNR among all the pixels, given a time budget. Conversely, the minimal time budget

that produces the SNRs with the desired lower bound can also be found. Gallo et
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al. [30] similarly optimizes for the average SNR over the pixels. In both cases, the

optimization problem can be reformulated as a problem on the HDR histogram of

the scene, which allows quicker evaluation of the objective function.

It is important to note that the dynamic range of display devices, whether they be

electronic screens or printers, is also limited. Consequently, HDR composites typically

undergo tone-mapping process [31] which compresses the dynamic range of the data

to �t the range that the display is capable of reproducing. Figure 2.3 illustrates

this pipeline. Ironically, this stage discards information, contrary to the ideals of

the acquisition algorithms. See �Cadík et al. [32] for a comparison and evaluation of

common tone-mapping operators.

LDR images HDR composite

BlendingCapture

Scene

LDR image

Tonemap

Pixels / Prints

Display

Stimuli

Perception

Prior work

or Editing

Figure 2.3: A typical high-dynamic-range (HDR) imaging pipeline. Multiple photos
of the scene are taken at varying exposure levels, and are combined to form the
HDR composite. Existing work on multiple-exposure metering considers these stages
(marked with the inner dashed box) only in determining the appropriate exposures. In
this dissertation, tonemapping and editing post-capture are assumed known, via the
WYSIWYG property being pursued, and are accounted for in the metering process.

In most traditional work�ows, the dynamic range of the target device and the

tonemapping operator to be used are not known a priori, and as such, choosing

exposure parameters in a manner that most faithfully record the raw data is the

rational approach. However, in a camera interface that strives to deliver stack-based

computational photography and image editing in a WYSIWYG manner, the rest

of the pipeline must be known by de�nition, in order to produce the appropriate
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visualization in the view�nder. This fact can be exploited to close the loop, by

accounting for the tonemapping and other transforms in the metering process.

2.2.2 Focal Stack Photography

In focal stack photography, multiple photographs are captured with the lens focused

at di�erent depths. These photographs can be stitched together to create an all-focus

composite: the in-focus regions of each photograph were combined together [33] in

case a single photograph is unable to image the entirety of the scene sharply because

of the limited depth of �eld (DOF) [34]. For instance, macro photography typically

su�ers from a very narrow depth of �eld, and all-focus imaging is commonly used

to overcome this problem and synthetically extend the depth of �eld of the output.

While simply stopping down the aperture can extend the depth of �eld as well, the

image quality and SNR su�er [35]. Other methods for extending the depth of �eld

exist, such as focus sweep [36], coded aperture [6, 37] and custom optics [38, 39], but

unlike others, focal stack photography does not require modi�cation of the camera

hardware or expensive and artifact-prone deblurring.

Focal stacks su�er from the same problem as exposure-stack photography; that is,

registration of the individual frames is required to handle camera motion and scene

motion. Non-rigid registration for images with varying defocus blur appears to be

an unattempted problem. There is currently no literature on separating motion blur

from defocus blur, as existing motion-deblurring research assumes that the unknown

scene content has high contrast and contains sharp edges [40].

Hasino� and Kutulakos [41] give a detailed analysis of the use of focal stack for

extending the depth of �eld, including the computation of the optimal (minimal) set

of focus distances given the target aperture size to simulate. However, this method

is scene-independent. In contrast, Vaquero et al. [42] �rst analyzes the scene content

by preliminarily sweeping the scene. Once the depths at which objects appear are

identi�ed, a minimal focal stack is acquired at these depths.

The compositing process for all-focus imaging can be generalized in order to re-

duce the depth of �eld, simulate tilt-shift lens, or even visualize non-physical depth
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of �eld [43]. For instance, Jacobs et al. [43] simulates a wider aperture by using the

slice focused on the foreground to compute the foreground pixels, and using the slice

focused closer to compute the background pixels. See Figure 2.4 for an illustration.

This method of composition produces better results compared to synthesizing defo-

cus blur in the image space with a single image [44], since the latter cannot properly

reproduce certain photographic e�ects, such as highlights or contrast inversion [45].

Jacobs et al. also provides a stroke-based user interface for manipulating the compo-

sition after acquisition. For this application, a full focal stack of 16 or 32 slices were

captured on a tripod.

A

B

C

Physical depth

A

B

C

Readout index

0 1 2d0 d1 d2

Image 0

Image 1

Image 2

Composite

Figure 2.4: An example of focal stack compositing: reduced depth of �eld. Multiple
photos of the scene are taken at varying depths. Left: In this toy example, the scene
consists of three letters A, B and C, with A being the closest. Three images are
taken at the respective depth. Middle: A depthmap can be constructed from the
stack. To simulate a lens focused at the middle letter with a wide aperture, pixels
are read out at the depth on the opposite side of the reference plane. For instance,
the letter A is read out from Image 2, whereas it is actually the sharpest in Image 0.
Right: The �nal composite. Note that by �ipping the readout depth, a considerably
greater defocus is achieved in comparison to the input image focused at the same
depth (Image 1).

2.2.3 Composition

One capture parameter that is di�cult to algorithmically optimize is composition, as

it is highly subjective and personal. There exists a general guide such as the rule of

the third [20], but the precise choice of perspective, distance and timing are up to

the photographer. Bae et al. [46] o�ers a specialized tool for helping users recreate
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the composition of a historical photograph, but no general algorithm exists for aiding

composition at capture time.

To some extent, the composition can be altered after the photograph is taken. For

instance, they can be cropped manually, or even automatically to obey standard com-

position rules [47]. However, cropping discards data and is inherently hamstrung by

the composition of the original image. Even the viewpoint can be changed slightly [48],

but such techniques require inpainting or other texture synthesis methods, which can

create objectionable artifacts.

Lucky imaging [49] can be considered a form of composition assist: a burst of im-

ages can be captured, and the user may choose the one that captures the moment the

best, e.g. a �eeting smile, or even combine the burst of images into a composite [33].

However, these methods work only o�-line. Some commercial point-and-shoot cam-

eras employ face detection [50] and alert the user when the subject smiles.

2.3 Edit Propagation

Edit propagation algorithms allow the user to specify a sparse set of edits or selections

and automatically propagate them onto the rest of the image or other frames. They

are useful for reducing the amount of user interventions in an editing or selecting task,

and are essential for input modalities such as smartphones or tablets for which pixel-

perfect speci�cation of edits is infeasible. Edit propagation is applicable to many

other image processing tasks, with examples ranging from colorization [51], image

composition [33] to tone management [52]. See Figure 2.5 as an example application.

Alpha matting [53, 54] can be considered to be the predecessor to edit propagation.

Many matting algorithms take as input a trimap, a mask specifying known foreground

and known background regions. Then the matting algorithm classi�es the remaining

regions to either foreground (α = 1) or background (α = 0) with possible fractional

alpha values between 0 and 1 [55, 56].

There are two large categories of edit propagation algorithms. One transmits

edit information from each pixel to its neighbors in an edge-aware fashion, similar to
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anisotropic di�usion [57]. The other is based on detecting regions that have appear-

ance similar to that of the user-edited area.

Figure 2.5: An example of edit propagation. Left: The input is a grayscale image,
along with sparse edits speci�ed as strokes. Right: The edit propagation propagates
the edits to regions of similar appearance. Typically each pixel is considered to be a
mixture of the known classes of exemplars, and corresponding edits are applied with
the same coe�cients in the mixture. This particular result is with the algorithm of
Levin et al. [51].

2.3.1 Edge-Aware Smoothing

Propagating edits or selection can be formulated explicitly as a di�usion process.

A cost function on the image gradient is used to build a linear system that di�uses

edits [51, 52], which can be solved either directly, iteratively or in a multi-scale fashion.

Other approaches exist, such as to use the gradients to drive graph cut [33], or to

perform wavelet decomposition with coe�cients based on the image gradient [58].

Since processing each pixel requires access to only its immediate neighbors, these

algorithms can be extremely fast. For instance, edge-avoiding wavelets [58] or domain

transform [59] can process VGA-resolution images in the order of milliseconds. As

a consequence, however, these methods cannot propagate information onto spatially

discontinuous regions, and are not robust against occlusions or camera shakes, which

can break temporal contiguity.
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2.3.2 Appearance-based Smoothing

Several competing algorithms enforce the notion that regions of similar appearance

should have similar edit or selection values, by modeling edits as a function over the

space of patch appearance. The function can be recovered in various ways. For in-

stance, An and Pellacini [60] and Farbman et al. [61] consider the pairwise interaction

between all pixels and computes the di�usion amongst pixels. Chen et al. [62] models

each pixel as a linear combination of nearby pixels, and applies the same weights onto

the edited values to form a linear system to solve. Several papers take a machine-

learning approach and treat the problem explicitly as a clustering of all pixels in the

image [63, 64]. Adams et al. [8] samples the space of the local descriptor of each

image patch. An explicit clustering of the patches can be done as well [65, 66].

So far, no existing edit propagation algorithms has tackled the problem of propa-

gating edits directly on the view�nder. Besides the technical challenge involved, one

caveat is that propagating edits on the view�nder in real time is distinct from the

problem of propagating edits on an image sequence as an o�ine process. Methods

discussed thus far for the latter explicitly assume that the input sequence is given

in its entirety, and rely on a preprocessing step that statically analyses the whole

sequence and builds expensive classi�ers, whose costs are amortized over the multiple

frames to be processed or the multiple edits to be applied [60, 61, 63, 64, 65] for ac-

celeration. For view�nder editing, such approaches are problematic because the user

edits and the view�nder content evolve over time, and would require continuously

rebuilding the classi�er.

2.3.3 Note on User Interface

It is worthwhile to note that most of the modern stroke-based edit propagation algo-

rithms require the user to specify at least two types of edits: positive edits to mark

exemplars that the user wants edited, and negative edits to mark exemplars that

the user does not want edited. While useful for specifying the edit precisely, this

requirement can complicate and protract the user interaction necessary.

When the edit propagation is fast enough to run real-time on a live view�nder,
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however, user feedback and correction become possible. Therefore, this dissertation

relies only on positive exemplars and propagate conservatively: if the user �nds that

the edits do not propagate enough, he can add additional positive exemplars easily.

In fact, this can be observed in existing touch-based image-editing algorithms on

mobile devices, which are fast enough to run in real time on a still image. Liang et

al. [67] computes an edit mask based on the bilateral distance to the pixel the user

touches�hence only a single positive exemplar is used. The extent of propagation

is controlled by the parameter to the underlying bilateral �lter, which is controlled

by a user swipe away from the point of the initial touch. A commercial software [68]

available on smartphones operates on the same principle.

2.3.4 Other Alternatives based on Tracking

There may be other alternatives for spatiotemporal propagation based on explicit

tracking. There is extensive literature available on both two-dimensional tracking

in image space, such as Kanade-Lucas-Tomasi (KLT) feature tracker [69, 70], and

three-dimensional tracking in world space, such as Simultaneous Localization and

Mapping (SLAM) [71]. Two-dimensional tracking is signi�cantly faster, but cannot

handle nonplanar distortions like parallax or occlusion. Three-dimensional tracking

has been widely used for augmented-reality (AR) applications, it is computationally

expensive. Neither of these methods handles scene motion, and assume that the

view�nder content is static. Lastly, implementing an editing framework on top of

an explicit tracking algorithm is not a straightforward task, evidenced by the lack of

research literature in the area.



Chapter 3

The Permutohedral Lattice

On one hand, the permutohedral lattice is a mathematical construct that has been

known since the mid-twentieth century [72], describing a set of points obeying a par-

ticular arrangement. On the other, its recent success for representing and smooth-

ing high-dimensional functions is noteworthy, especially for applications in computer

graphics. The use of the lattice is central to this dissertation, and inspired much of

this work. This chapter describes the permutohedral lattice, and the original work

on implementing high-dimensional Gaussian �ltering on top of the permutohedral

lattice, conducted by Andrew Adams [10] in collaboration with the author. New

contributions on the permutohedral lattice are discussed in Section 3.3 and beyond.

In the context of view�nder editing, the permutohedral lattice will be used in

the later chapters as the underlying data structure for performing high-dimensional

queries. That is, the edits performed by the user will be modeled as a function over

the space of high-dimensional texture descriptors, and this function will be stored in

the permutohedral lattice. The lattice will then be queried for each image patch in

the subsequent view�nder frames, in order to compute the value of this function. As

such, these new contributions will be crucial for accelerating this potentially time-

consuming process.

The permutohedral lattice is best recognized for its relevance to the covering

problem [73], which seeks to place unit spheres in an Euclidean space so that every

point belongs to at least one unit sphere. The optimal placement of spheres that

23
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minimizes its density is not known for arbitrary dimensions, but much literature

exists on the optimal lattice covering, as lattices are easier to deal with than arbitrary

pointsets. It is provably the most e�cient lattice up to dimension 5 [74, 75, 76], and

the most e�cient known lattice up to dimension 22 [77]. As such, it is well-suited for

sampling high-dimensional spaces: sampling a band-limited function e�ectively tiles

the space with its support, a lattice with low covering density would require fewer

samples to avoid aliasing [78].

3.1 De�nition

The d-dimensional permutohedral lattice is denoted in mathematics as A∗d and it is

dual to the root lattice Ad. Both of these lattices lie in a d-dimensional hyperplane

within Rd+1.

De�nition 3.1. The lattices Ad and A
∗
d are de�ned as follows:

Ad =
{
~x
∣∣ ~x ∈ Hd ∩ Zd+1, x0 ≡ · · · ≡ xd ≡ 0 mod d+ 1

}
, (3.1)

A∗d =
{
~x
∣∣ ~x ∈ Hd ∩ Zd+1, x0 ≡ · · · ≡ xd ≡ k mod d+ 1 for some k ∈ Z

}
, (3.2)

where Hd is the hyperplane
{
~x ∈ Rd+1

∣∣ ∑d
i=0 xi = 0

}
.

Note that this parametrization uses d+ 1 coordinates to express a d-dimensional

space corresponding to the hyperplane Hd. This parametrization is standard for

the permutohedral lattice and is useful for illustrating its properties. There exists

a standard orthonormal rotation matrix for converting coordinates between Rd and

this subspace of Rd+1 [8].

In summary, Ad is the set of integer coordinates that sum to zero and have re-

mainder 0 when divided by d+ 1. For A∗d, the condition on the remainder is relaxed

so that each component has the same remainder k for some k. It is easy to see that

A∗d is the union of d+ 1 cosets of Ad. The readers should be cautioned that the de�-

nitions given in Equations (3.1) and (3.2) have been scaled by d+ 1 to ensure that all
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coordinates are integers, for ease of manipulation, in contrast to the standard de�ni-

tions [77] which use fractional coordinates. For the remainder of the chapter, vertices

are classi�ed by the remainder of their components modulo d + 1 as remainder-k

points. Thus, each of the d+ 1 cosets has a consistent remainder modulo d+ 1.

The two- and three-dimensional analogues of A∗d are the well-known hexagonal

lattice and the body-centered cubic lattice (BCC). The two-dimensional case (d = 2)

is illustrated in Figure 3.1.

Figure 3.1: Voronoi and Delaunay tessellations of the regular grid Z2 versus A∗2.
Left: the Voronoi cells of Z2 and A∗2 are shown, along with lattice points. The two
lattices have equal density. Right: the Delaunay cells induced by the Voronoi cells
on the left. All cells of Z2 are squares, whereas A∗2 has triangular Delaunay cells.

The permutohedral lattice possesses a number of properties that are useful for

implementing Gaussian �ltering, which have been illustrated in existing literature.

A few such properties are introduced below. For the mathematical background on

the subject of lattices, See Conway and Sloane [77]. For a more detailed and self-

contained treatise on the permutohedral lattice in the context of high-dimensional

�ltering, see Baek et al. [9].

Proposition 3.2. A∗d has a uniform Delaunay cell, which is a simplex, containing

the nearest remainder-k point for each k = 0, . . . , d.

A simplex is the general analogue to a triangle in higher dimensions.

Proof. See [8, 9, 10, 77]. The key consequence of this result is that manipulating

data on the lattice is possible with a uniform algorithm that is translation-invariant.

Also, the fact that the lattice yields a simplicial tessellation of the space makes the

lattice useful for �ltering high-dimensional signals, since the complexity of the cell

grows only linearly with the dimensionality d.
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Proposition 3.3. The Delaunay cell of A∗d is a simplex, containing a remainder-k

point for each k = 0, . . . , d.

Proof. See [77]. Figure 3.2 visualizes this for A∗2.

(0, 0, 0) (2,−1,−1)(−2, 1, 1)

(−1, 2,−1)

(1,−2, 1)(−1,−1, 2)

(1, 1,−2)

(3,−3, 0)

(0, 3,−3)(−2, 4,−2)

(2,−4, 2)

(−3, 0, 3)

(−4, 2, 2)

(−2,−2, 4) (0,−3, 3)

(4,−2,−2)

(−3,−3, 0) (3, 0,−3)

(2, 2,−4)

x

y

z

Figure 3.2: Visualization of the sublattice structure of A∗2. Each remainder-k point
has been color-coded consistently. Note that each simplex, a triangle in this case,
contains one vertex of each color.

In fact, Proposition 3.3 can be strengthened further.

Proposition 3.4. Given a point, the Delaunay cell containing it is composed of the

nearest remainder-k point for each k = 0, . . . , d.

Proof. See [8, 9]. This gives rise to a natural algorithm for �nding the Delaunay cell:

�nd the nearest vertex in each of the d + 1 cosets. Conway et al. provides an O(d)

algorithm for �nding the nearest vertex in a designated coset [79].
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3.2 Prior Work on Gaussian Filtering

Performing Gaussian �ltering with the permutohedral lattice is a three-step process:

�rst, the high-dimensional data is stored in the lattice; second, the lattice undergoes

a �ltering operation; third, the smoothed high-dimensional data is resampled from

the lattice. The three steps are respectively called splatting, blurring, and slicing, as

mentioned in Section 2.1.1.

3.2.1 Splatting

The lattice can store samples only at predetermined vertex locations. Therefore, given

a high dimensional function f : Rdp → Rdv represented by a point set, the function

must be resampled at the vertices in order to be stored in the lattice. The resampling

kernel ought to be simple to compute, and should be isotropic if possible. Adams

et al. [8] conducts the splatting in A∗d based on barycentric interpolation. That is,

given a point ~p ∈ Hd, the Delaunay cell containing it is identi�ed, and since it is a

simplex, there naturally exists a set of barycentric weights with which the data can

be distributed to the vertices. See Algorithm 3.1 and Figure 3.3 for the process and

a visualization of the resulting resampling kernel.

Algorithm 3.1 The splatting algorithm

Compute the simplex containing the query point ~p ∈ Hd. Namely, compute the
nearest remainder-k point for each k = 0, . . . , d.
for k ← 0, . . . , d do

Let ~ck be the remainder-k vertex in the simplex.
Compute the barycentric weight wk of this vertex.
f(~ck)← f(~ck) + wk · ~v.

The execution of the splatting step involves �nding the nearest remainder-k point

in each of the d + 1 sublattices. Each sublattice is congruent to Ad, and �nding the

nearest vertex in Ad is O(d), as shown in Theorem 3.5, due to Conway and Sloane [80].

Be mindful that Ad is distinct from the permutohedral lattice A∗d. (See De�nition 3.1.)

Theorem 3.5. Finding the nearest vertex in Ad is O(d).
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Figure 3.3: The splatting and slicing kernel for A∗2. The kernel shows the barycentric
weight assigned to the vertex at the center as a function of the query point being
splatted.

Proof. Let ~x = {x0, . . . , xd} ∈ Hd be the vector to quantize. Obtain ~y = {y0, . . . , yn} ∈
Zn+1 by rounding each component of ~x to the nearest multiple of d+1. Let ~δ = ~x−~y.

Now compute ∆ =
∑d

i=0 δi. If ∆ = 0, then ~y belongs to Ad and is the desired

quantization. If ∆ < 0, we take the (−∆)-smallest components of ~δ and subtract d+1

from the corresponding components of ~y. If ∆ > 0, we take the ∆-largest components

of ~δ and add d + 1 from the corresponding components of ~y. This process ensures

that the resulting ~y will belong to An.

In the above step, determining the |∆|-smallest or -largest components can be

accomplished in O(d), by using the generalized selection algorithm [81] to �nd the

cuto�. Hence the entire process can run in O(d).

Figure 3.4 works through an example to illustrate how Theorem 3.5 functions.

This will be important later in understanding Section 3.3, which introduces modi�-

cations to the existing algorithms.

It follows immediately that the runtime of the splatting process is O(d2).

Corollary 3.6. The runtime of the splatting step shown in Algorithm 3.1 is O(d2).

3.2.2 Blurring

The blurring step consists of locally propagating data within the lattice, and is analo-

gous to implementing a Gaussian blur in a multidimensional regular grid via separable
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~x = {2.5, 1.5,−3.1, 1.8,−4.0, 0.0, 1.3}

~y = {0, 0,−6, 0,−6, 0, 0}

~w = {6, 0, 0, 0,−6, 0, 0}

Rounding

Shifting

~δ = {2.5, 1.5, 2.9, 1.8, 2.0, 0.0, 1.3}

~δ = {−3.5, 1.5,−3.1, 1.8, 2.0, 0.0, 1.3}
Residue

Residue

Ranking

Figure 3.4: Illustration of linear-time quantization in Ad for d = 6. The input vector
~x is rounded componentwise to the nearest integral multiple of d + 1, forming ~y.
The residue ~δ is then de�ned as ~x − ~y. However, in order to ensure that ~y ∈ Ad,
its components must add up to zero. As it stands, the sum is at -12. Hence, it is
necessary to increment two of the components by 6. This is done by choosing the two
components with the largest corresponding residue, namely δ0 and δ2. The resulting
vector ~w is then the vertex in Ad nearest to the query point ~x.

kernels. It can be mathematically shown that performing one-dimensional Gaussian

blur along each of the d + 1 linearly dependent axes of A∗d does correctly implement

a d-dimensional Gaussian [9]. These axes correspond to the translational vectors re-

lating the d + 1 sublattices. See Figure 3.2 for the examples of these axes. Then,

keeping in line with the prior work on Gaussian �ltering on a regular grid [82], a

discrete, �nite-extent kernel is applied in each of these axes, as shown in Figure 3.5.

Figure 3.5: The blurring kernels for A∗2. In general, there are d + 1 blurring kernels
for A∗d, each consisting of a directional blur along one of the d+ 1 linearly dependent
axes in the d-dimensional subspace.
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3.2.3 Slicing

The slicing step is exactly analogous to the splatting step. The same resampling

kernel is used. In fact, if splatting and slicing are guaranteed to occur in the same

locations, the barycentric weights computed in the splatting step can be cached to

accelerate the slicing step. As before, the runtime of the slicing step is O(d2).

Algorithm 3.2 The original slicing algorithm

Compute the simplex containing the query point ~p ∈ Hd.
r ← ~0.
for k ← 0, . . . , d do

Let ~ck be the remainder-k vertex in the simplex.
Compute the barycentric weight wk of this vertex.
r ← r + wk · f(~ck).

return r

3.2.4 Summary

Figure 3.6 shows the resulting kernel for Gaussian �ltering in A∗2, after splatting,

blurring and slicing are accounted for. In summary, the permutohedral lattice is a data

structure that can perform Gaussian-like smoothing of high-dimensional data quickly,

with O(d2) runtime for each splatting and slicing operation. The subsequent sections

of this chapter discusses novel modi�cations to the lattice that enable view�nder

editing.

3.3 Fast Quantization in the Permutohedral Lattice

The slicing step in the permutohedral lattice is akin to a high-dimensional lookup

operation with built-in smoothing via barycentric interpolation. A faster alternative

would be a simple quantization. This section explores how to perform quantization in

the permutohedral lattice quickly and e�ciently, as this will be useful for view�nder

editing later. The problem of vector quantization in both structured and general

lattices is a well-studied fundamental problem, dating back to the seminal work of

Conway and Sloane [79, 80].
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Figure 3.6: The overall kernel for Gaussian �ltering in A∗2. It is the convolution of the
splatting kernel, the d+ 1 blurring kernels, and the slicing kernel, and approximates
a truncated Gaussian kernel.

Given the d-dimensional lattice A∗d, the näive approach for quantization would be

to invoke Theorem 3.5 for each of the d+1 sublattices. Once the nearest remainder-k

vertex is found for each k = 0, . . . , d, the distance to the query point can be computed,

and the vertex that minimizes this distance can be chosen. However, the asymptotic

runtime of this approach is still O(d2) as noted by Conway and Sloane [80], since

simply enumerating the coordinates of the nearest remainder-k vertices would require

a quadratic-time procedure.

This runtime can be improved, however. Figure 3.7 provides an intuition as to how

subquadratic quantization may be possible: once the O(d) algorithm is executed to

�nd the nearest remainder-k point for a particular k, it restricts the choice of possible

nearest vertex in all other sublattices. Theorem 3.7 shows that a subquadratic time

is indeed possible:

Theorem 3.7. Vector quantization in A∗d is O(d log d).

Proof. Instead of running the generalized selection algorithm in O(d) for each coset,

in the proof of Theorem 3.5, we can sort the components of ~δ once in O(d log d)

instead and reuse the resulting ranking of the components. Then, to �nd the nearest

vertex in the other sublattices (translated copies of Ad), one can simply translate ~δ

by the same amount, while keeping it sorted in O(1). The constant time for update is

possible because the translation vector does not a�ect the sorted order, except for a

single element: the translation will always be a permutation of (1, 1, . . . , 1,−d). The
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(0, 0, 0, 0)

(2, 2,−2,−2)(−2,−2, 2, 2)

(2,−2,−2, 2)

(−2, 2, 2,−2)

(2,−2, 2,−2)

(−2, 2,−2, 2)

(−1,−1,−1, 3)

(3,−1,−1,−1)

(1, 1, 1,−3)

(−3, 1, 1, 1)
(−1, 3,−1,−1)

(1,−3, 1, 1)

(−1,−1, 3,−1)

(1, 1,−3, 1)

(0, 0, 0, 0)

(2, 2,−2,−2)(−2,−2, 2, 2)

(2,−2,−2, 2)

(−2, 2, 2,−2)

(2,−2, 2,−2)

(−2, 2,−2, 2)

(−1,−1,−1, 3)

(3,−1,−1,−1)

(1, 1, 1,−3)

(−3, 1, 1, 1)
(−1, 3,−1,−1)

(1,−3, 1, 1)

(−1,−1, 3,−1)

(1, 1,−3, 1)

Figure 3.7: Illustration of subquadratic quantization algorithm on A∗3. Left: all
vertices sharing a Delaunay cell with a particular vertex, namely (0, 0, 0, 0) ∈ A∗3 are
shown. Right: Once Theorem 3.5 is invoked to locate the nearest remainder-1 point,
say (1, 1, 1,−3) , it narrows down the possible candidates for the nearest remainder-k
points for k > 1. All possible vertices are shown with bolder outline. This indicates
that a linear-time algorithm for �nding the nearest vertex in the remaining sublattice
may be unnecessary.

computation of the distance to the query point can be similarly amortized to be O(1)

per vertex, resulting on O(d log d) total runtime.

One can improve the algorithm further to a linear-time process, a key result in

this dissertation.

Theorem 3.8. Vector quantization in A∗d is Θ(d).

The major insight is that a partial sorting of {δ0, . . . , δd} is su�cient.

We begin with ~x = {x0, x1, . . . , xd} ∈ Hd. Find the nearest lattice point in Ad per

Theorem 3.5 in O(d), and subtract it from ~x to obtain ~δ. We will now quantize ~δ.

The quantization of ~x can then be obtained by undoing the subtraction.

As before, denote by ~vk the nearest remainder-k lattice point to ~δ. The goal is

then to �nd ~vk over k = 0, . . . , d that minimizes the distance to δ. By construction,

~v0 = {0, . . . , 0}. From [8, 77], we know that ~vk is a permutation of the following:k, . . . , k︸ ︷︷ ︸
d+1−k

, d+ 1− k, . . . , d+ 1− k︸ ︷︷ ︸
k

 ,
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where the components of value k are stored in indices corresponding (d + 1) − k

largest components of ~δ. Let i0, i1, . . . , id be the indices sorted by their respective

components, e.g. δia ≤ δib whenever a ≤ b. For brevity, let I ↓= {i0, . . . , ik−1} and
I ↑= {ik, . . . , id}.

The task is then equivalent to solving the following:

argmink‖~δ − ~vk‖2 = argmink

d∑
i=0

(δi − vki )2

= argmink
∑
i∈I↑

(δi − k)2 +
∑
i∈I↓

(δi − k + (d+ 1))2

= argmink

n∑
i=0

(δi − k)2 +
∑
i∈I↓

[
(d+ 1)2 − 2(δi − k)(d+ 1)

]
= argmink

[(
d∑
i=0

δ2i

)
−
(

2k
d∑
i=0

δi

)
+ k2(d+ 1)

]

+

[
(d+ 1)2k − 2k2(d+ 1) +

(
2(d+ 1)

∑
i∈I↓

δi

)]

= argmink(d+ 1)2k − k2(d+ 1) +

(
2(d+ 1)

∑
i∈I↓

δi

)
by dropping the �rst summation (constant)

and the second summation (zero)

= argmink(d+ 1)k − k2 +

(
2
∑
i∈I↓

δi

)
.

For brevity, we shall denote by f(k) the objective function in the last line.

Lemma 3.9. Suppose λ minimizes f(k), and λ ∈ {1, . . . , n− 1}. Then,

δiλ − δiλ−1
≥ 1.

Proof of Lemma. By optimality, it must be that

f(λ) ≤ f(λ− 1) and f(λ) ≤ f(λ+ 1).
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The restriction on λ ensures that all terms above are well-de�ned. Substituting in

the de�nition of f(·), we obtain,

f(λ) ≤ f(λ− 1)

=⇒
[

(d+ 1)λ− λ2 + 2
∑
i∈I↓

δi

]
≤

(d+ 1)(λ− 1)− (λ− 1)2 + 2
∑

i∈I↓\{iλ−1}

δi


where I ↓:= {i0, i1, . . . , iλ−1},

=⇒ 2

∑
i∈I↓

δi −
∑

i∈I↓\{iλ−1}

δi

 ≤ (d+ 1)(λ− 1)− (λ− 1)2 −
(
(d+ 1)λ− λ2

)
=⇒ 2δiλ−1

≤ 2(λ− 1)− d

=⇒ δiλ−1
≤ (λ− 1)− d

2

Similarly, we obtain δiλ ≥ λ− d
2
from f(λ) ≤ f(λ+ 1).

Combining the two transitively produces

δiλ−1
≤ (λ− 1)− d

2
≤ λ− d

2
≤ δiλ .

The lemma follows immediately from the above inequality.

Lemma 3.9 gives us an important precondition on optimality of λ ∈ {1, . . . , d−1}.
While this does leave out the possibility of λ = 0 or λ = d, these can be checked in

O(d) respectively.

Proof of Theorem 3.8. The range of δi is contained in [−d − 1, d + 1]. Hence, we

can divide this interval into 2(d + 1) bins of unit length each, and place {δ0, . . . , δd}
into the bins, forming a histogram. By the previous lemma, δiλ−1 and δiλ cannot

be in the same bin. In fact, the former must be the maximum of a bin, and the

latter must be the minimum of the next nonempty bin. Equivalently, k must equal

the number of items in the �rst m bins for some m, so that δik−1
(i.e. the k-th

smallest component) will be the maximum of the m-th bin. In other words, we can

iterate through m ∈ {0, 1, . . . , 2d + 1} and test the appropriate f(k). Incidentally,
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this procedure ends up evaluating f(0) and f(d).

The running time of this procedure is O(d): it is true that the computation of f(·)
can be invoked up to O(d) times, but the only term potentially expensive to compute

is the expression 2
∑
i∈I↓

δi, which is the sum of all items in the preceding bins. This

expression can be evaluated in amortized O(1) time by keeping a running sum, as

shown in Algorithm 3.3.

Algorithm 3.3 Algorithm for quantizing a vector ~x ∈ Rd+1 in A∗d
Compute the nearest lattice point ~w ∈ Ad per Theorem 3.5.
Compute the di�erential ~δ := ~x− ~w.
Initialize arrays Bcount[·] = 0, Bsum[·] = 0.
for i← 0, d do

j ← �oor (δi + (d+ 1)).
Bcount[j]← Bcount[j] + 1.
Bsum[j]← Bsum[j] + δi.

Initialize k ← 0, Ssum ← 0.
for m← 0, 2d+ 1 do

Compute f(k) = k − k2

d+1
+ 2 · Ssum.

k ← k +Bcount[m].
Ssum ← Ssum +Bsum[m].

λ← argminkf(k) among all computed f(·).
Compute ~vλ, the nearest lattice point from the λ-th coset of Ad ⊂ A∗d
return ~vλ + ~w.

In terms of the pseudocode, the major insight is that computing the sum of the

items in the bins does not require sorting the contents of each bin, because Lemma 3.9

ensures that a partial sum of a bin content is never necessary. For the algorithm

below, it is easy to verify that each step outside the loops is O(d) and each step

inside the loops is O(1), yielding an asymptotic runtime of O(d) overall. Because

each of the d + 1 components must be accessed at least once, a sublinear algorithm

is impossible, leading to the conclusion that vector quantization in A∗d is Θ(d), as

desired.

Figure 3.8 visualizes the inequality in Lemma 3.9 for A∗2. As the �gure illustrates,
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the linear time algorithm relies on the fact that checking these inequality can be amor-

tized to O(1), and by checking these inequalities, one obviates the need to perform a

full sort of the coordinates of the query point.

(0, 0, 0) (2,−1,−1)(−2, 1, 1)

(−1, 2,−1)

(1,−2, 1)(−1,−1, 2)

(1, 1,−2)

Figure 3.8: One of the inequalities given in Lemma 3.9 is visualized as yellow shaded
area. The Voronoi cell of each vertex is also shown, and is a hexagon in A∗2. Note that
failing to satisfy the inequality immediately rules out remainder-1 vertices (marked
in green) from being the nearest vertex.

3.3.1 Further Improvement

While Theorem 3.8 shows that the quantization algorithm in Algorithm 3.3 cannot be

further improved asymptotically, it is indeed possible to optimize it for faster execu-

tion. Recall that Algorithm 3.3 invokes Theorem 3.5 to �nd the nearest remainder-0

vertex in Ad and then again to �nd the nearest vertex from the closest sublattice,

making use of the generalized select algorithm each time. However, branching oper-

ations can be expensive, especially on mobile CPUs that may not be equipped with

sophisticated branch-predicting hardware. By modifying the algorithm appropriately,

one can achieve linear time quantization without having to rely so heavily on con-

ditional statements. Algorithm 3.4 describes the modi�ed algorithm. A full C++

implementation is available in Appendix B, which can be dropped into the original

lattice code [8].
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Algorithm 3.4 A faster algorithm for quantizing a vector ~x ∈ Rd+1 in A∗d
Round each coordinate of ~x to the nearest multiple of d+ 1. Assign this to ~y.
E ← (

∑
i yi)/(d+ 1). This may be nonzero.

Compute the di�erential ~δ := ~x− ~y.
Initialize arrays Bcount[·] = 0, Bsum[·] = 0.
for i← 0, d do

j ← �oor (δi + (d+ 1)).
Bcount[j]← Bcount[j] + 1.
Bsum[j]← Bsum[j] + δi.

Initialize k ← 0, Ssum ← 0.
for m← 0, 2d+ 1 do

Compute f(k) = (k − E)− (k−E)2

d+1
+ 2 · Ssum.

k ← k +Bcount[m].
Ssum ← Ssum +Bsum[m].

λ← argminkf(k) among all computed f(·).
m′ ← the value of m that corresponded to this λ in the above loop.
λ← mod(λ− E, d+ 1).
for i← 0, d do

~vi ← yi + λ+ (d+ 1) · sign(E − λ).
if �oor (δi + (d+ 1)) <= m then

~vi ← ~vi − (d+ 1).
return ~v.

The key departure in the modi�ed algorithm from the original linear-time algo-

rithm is that the �anchor� vertex in Ad (denoted by ~w in Algorithm 3.3) is never

explicitly computed. This vertex is originally obtained by �rst rounding the compo-

nents of the query point ~x to the nearest integral multiples of d+ 1 (denoted by ~y in

Algorithm 3.4) and then adjusting the components by d + 1 or −(d + 1) until their

sum becomes zero, as described in the proof of Theorem 3.5. Referring to Figure 3.4,

one observes that not adjusting the components simply will cycle the residues within

the interval [−(d + 1), (d + 1)] as shown in Figure 3.9, and does little to change the

distance between the consecutive residues, which are of importance to Lemma 3.9.

Therefore, with a bit of tweak in the bookkeeping of coe�cients, one can obtain the

same quantization vector, as shown in Algorithm 3.4.

In practice, the speed-up that results from eliminating unnecessary branching is
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Figure 3.9: Illustration of the e�ect of avoiding explicitly �nding the anchor point in
quantization. The same input vector is used as in Figure 3.4. Top: The distribution
of the residues δ0, . . . , δd obtained from ~x − ~y. Bottom: The distribution of the
residues once ~y is corrected to have a zero-sum, yielding the anchor point ~w. Note
that the residues at the fringe were shifted to the other end. Ultimately, the set of
distances between consecutive residues (when sorted) remains stable, to the extent
that applying Lemma 3.9 is straightforward.

signi�cant. Table 3.1 displays the runtime of lattice lookup in the 16-dimensional

permutohedral lattice, for the prior work of Adams et al. [8] using barycentric in-

terpolation, the linear-time algorithm described in Algorithm 3.3, and the further

optimized code described in Algorithm 3.4. The linear-time algorithm is about three

times faster than the prior work, whereas the further optimization reduces the runtime

by an additional 19%.

Method Runtime
Barycentric interpolation 13.24 ms
Linear-time quantization 4.41 ms

Improved linear-time quantization 3.71 ms

Table 3.1: Runtime comparison for various lattice lookup methods. The runtime was
tested as a part of a complete view�nder-editing application that runs on the ARM
cores of a NVIDIA Tegra4 tablet. The total time taken to perform lattice lookup for
16-dimensional descriptors in each view�nder frame at VGA resolution is reported.
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3.4 Adaptations for Streaming Texture Retrieval

Looking ahead, the view�nder editing system in Chapter 4 employs the permutohedral

lattice as the underlying data structure for texture lookup. In particular, the patches

that the user wishes to edit will be stored in the permutohedral lattice, and the

patches in each view�nder frame will be looked up in the lattice to see if they had

been previously stored. This kind of usage departs in two key ways from the general

image-processing tasks in which the permutohedral lattice had previously been used.

The �rst is that the input data is a stream, potentially unbounded in length. To

address this, the permutohedral lattice can be extended to handle streaming data

in order to model a time-varying or time-weighted high-dimensional function. A

potential example with the bilateral grid is given by Paris et al. [83] for the application

of video �ltering, in which the homogeneous weight associated with the value in every

vertex is decayed by a constant factor α at each time step, and a new set of values

are additively splatted. However, this per-vertex update can be expensive to perform

at every frame. As will be shown in Chapter 4, the view�nder editing framework

explicitly avoids doing O(1) work per vertex per frame.

The second departure from previous uses of the permutohedral lattice is that there

is an imbalance between splatting and slicing needs: splatting is a rare event that

occurs only when and where the user generates a command, whereas slicing must be

fast enough to process view�nder frames in real time. Therefore, slicing step can be

replaced by a simple vector quantization shown in Section 3.3, rather than barycentric

interpolation. It is true that replacing the slicing step with a simple quantization

makes the overall kernel less isotropic (farther away from a true Gaussian), but in

practice the high-dimensional �ltering works well enough, as shown in the results in

Chapter 7.
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3.4.1 Importance Measure

In the modi�ed version of the permutohedral lattice, each vertex ~p has an associated

importance measure M(~p)1. This importance measure is lazily updated upon access.

To allow computing the correct factor for decay, the vertex ~p also records the times-

tamp t(~p) (typically the associated frame count) of the last update. In summary,

when the vertex happens to be accessed at time tnow, the vertex data updates itself

as follows:

M(~p)←M(~p) · αtnow−t(~p),
t(~p)← tnow.

Whenever the vertex receives new data via splatting or is accessed via slicing, the im-

portance measure is augmented by the corresponding barycentric weight. Therefore,

the importance measure is proportional to the frequency of read or write access, and

decays over time. Note that the aggregate total of the importance measure over the

entire lattice can be easily tracked: each splatting operation will increment it by 1,

and each slicing operation will increment it by 1 or less, depending on whether the

vertices of the enclosing simplex exist. Between every iteration, it decays by α.

3.4.2 Deleting Vertices

In order for the permutohedral lattice to function with a �nite, bounded amount of

memory, it must be able to delete vertices once the load factor on the underlying hash

table is su�ciently large. The time-decaying importance measure provides a useful

metric for this purpose: given its use in the view�nder editing framework, any image

patches the user wishes to edit will have its importance boosted via splatting. The

importance decays slowly, unless the image patches remain within the �eld of view of

the camera: in this case, the image patch will be found during the slicing step, and

will keep its importance high. Hence, deleting nodes with the lowest importance is a

1Note that this measure is unrelated to the possible homogeneous coordinate in the associated

value of the vertex.
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well-grounded approach.

Unfortunately, searching the lattice for the nodes with the lowest importance is

impractically expensive. As an approximation, the following scheme is used: when

splatting a vertex that induces a hash collision, the lowest importance is tracked. If

the number of hash collision exceeds a threshold (between 6 and 12 in the implemen-

tation), the entry corresponding to the lowest importance is removed, and the new

vertex is inserted in its place.

3.5 Summary

The permutohedral lattice is a mathematical structure that has been successfully

adapted to the task of high-dimensional Gaussian �ltering, in collaboration with

Andrew Adams and others. This chapter introduced its de�nition and its use in high-

dimensional �ltering, and unveiled a fast quantization scheme for high-dimensional

lookup as a new contribution, among others. Theorem 3.8 and Algorithm 3.4 embody

the key results. The resulting quantization scheme is considerably faster than the

original work that relies on barycentric interpolation, and will be used in view�nder

editing in Chapter 4.



Chapter 4

View�nder Editing

View�nder editing is a new concept proposed in this dissertation, but it is perhaps a

natural extension to the existing state of art in edit propagation. View�nder editing

allows the user to specify local and global edits directly on the view�nder of a cam-

era. Hence, editing photographs becomes an online process with immediate feedback,

as opposed to the traditional work�ow in which one captures the photos �rst and

then downloads them to one's desktop computer to process them in a photo-editing

software that may deploy the traditional edit propagation algorithms.

The obvious advantage of this approach is that the user can immediately see

the result of his edits and obtain useful feedback, essentially making the experience

WYSIWYG. This helps the user reconsider his composition, or may even factor into

the decision to take the particular photograph in the �rst place. It further accelerates

the content-publishing pipeline, as the user can immediately upload or share his

creations at the time of shutter press. Furthermore, as will be explored in Chapter 5,

new kinds of camera control algorithms are enabled by the WYSIWYG property of

the proposed framework.

The main challenges of view�nder editing lies in designing a robust algorithm for

propagating edits spatiotemporally that can operate within the limits of the compu-

tational capability and programmability of mobile devices. The subsequent sections

describe the design and implementation of such an algorithm, using the permutohe-

dral lattice discussed in Chapter 3 as a foundation.

42
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4.1 A�nity-Based Edit Propagation

Image editing on a view�nder stream of a hand-held camera must accommodate

temporally persistent selection of objects through sparse user input. While explicit

tracking of keypoints through SLAM (Simultaneous Localization and Mapping) or

other variants [84] is possible, such an approach remains computationally expensive

and does not account for scene motion.

The view�nder editing framework forgoes explicit tracking, and relies instead on

a�nity-based edit propagation [60, 64], in which edits are modeled as functions re-

siding in the space of local patch descriptors. Consider a d-dimensional descriptor

function D that operates on an m×m patch:

D : Rm2 → Rd. (4.1)

Note that spatial information is discarded in the above descriptor, in departure from

the existing work: some spatial locality will be regained later through image-space

operations. Then, the edits are de�ned as follows:

Si : Rd → [−1, 1], i = 1, 2, . . . (4.2)

where each of S1, S2, . . . corresponds to a particular type of edit, such as tone, color,

saturation or blurriness. The sign of the function corresponds to the direction of the

edit�for instance, for tonal edits, positive edits correspond to brightening whereas

negative edits correspond to darkening; for focus edits, positive edits correspond

to sharpening whereas negative edits correspond to blurring, and so on. Finally,

S0 : Rd → [0, 1] is reserved for representing the soft selection mask. The above

formulation implicitly assumes that the local context around each pixel is su�cient

to describe the set of regions that the user wants to associate with the given edit; in

other words, pixels with similar neighborhoods should be subjected to similar edits.

To compute the edit maskMi for an entire view�nder frame, one iterates through the

m×m-sized patches sampled from the frame and computes the composition (Si ◦D)
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for each i ≥ 0 to obtain the edit masks:

Mi : Z2 → [−1, 1], where

Mi : (x, y) 7→ Si ◦D({the m×m patch centered at (x, y)})). (4.3)

Once the edit maps are computed for each type of edit, they can be applied to the

view�nder content, which is displayed to the user. Note that there is no explicit

continuity constraint on the mask, but in practice the mask will eventually undergo

spatial smoothing as described in Section 4.4.3.

There are three main hurdles to accomplishing the above task on the view�nder

stream. First, a user interface must be designed so that the function Si can be

implicitly constructed by the user's interaction with the view�nder. Second, the

composition of the vector-valued function ~S = (S0, S1, S2, . . .) and D, namely ~M =

(M0,M1,M2, . . .) must be computed quickly. Third, an adequate descriptor D must

be designed, which is su�ciently discriminative yet robust and fast to compute. These

three subproblems are presented in the following sections in the provided order, as

the later subproblems are informed by the earlier ones.

4.2 Representing and Specifying Edits

Existing a�nity-based methods attempt to globally optimize or interpolate ~S based

on the user-provided samples. The cost of global optimization or interpolation is often

mitigated by preprocessing the dataset to learn the topology of the patch descriptors

or training a classi�er. While this approach works well for o�ine processing of video

or image sequences, it is impractical for the online processing the view�nder frames

in a streaming fashion.

In order to address this issue, ~S is represented by the permutohedral lattice de-

scribed in Chapter 3. The lattice is suitable since it can store high-dimensional

vector-valued function (e.g., ~S) with O(1) cost for incremental update. Note that the

lattice internally performs resampling in the patch descriptor space upon splatting,

which serves to locally propagate the data.
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Because we forgo an explicit optimization or interpolation unlike previous work,

edits do not propagate as aggressively, but this issue is mitigated in three ways: �rst,

we apply edge-aware smoothing on Si with respect to the scene image whenever a

view�nder frame is produced. Second, because the user receives feedback interac-

tively as the strokes are made, it is easy and intuitive to control propagation�the

user essentially interactively paints Si. Third, once the user captures a stack, we

rely on existing edit-propagation algorithms in the literature for high-quality o�ine

processing.

Instead of initializing the lattice with all patches present in a given image, we

take a streaming approach: as the user strokes over the screen and selects patches,

we locate only nodes corresponding to these patches and update their values. Note

that unselected patches are never written into the lattice; if a patch lookup fails at

any point, a default value is assumed for ~S.

As customary in Gaussian �ltering, we use 2D homogeneous coordinates to rep-

resent each of S0, S1, . . . in the permutohedral lattice. The actual value of S0, S1, . . .

is obtained by dehomogenizing the 2D vector. We will denote the homogeneous form

as S̃i : Rd → R2 for each i. The homogeneous coordinates are used to express the

relative weight of the edit.

Edits are speci�ed in three phases, as illustrated in Figure 4.1: �rst, the user

strokes over the region of interest, and con�rms the selection by tapping on the

selected area. Second, the user is shown a widget listing the various types of edits

supported, and the user taps on his choice. Third, the user horizontally swipes left or

right, in order to specify how much the edited value should be decreased or increased.

All of the phases are interactive; as the user moves a �nger on the screen, the updated

edits are re�ected on the view�nder.

Selection. While the user stroke is being registered, image patches whose cen-

ters are within a small �xed distance from the touch event are converted to descriptors

and are looked up from the lattice. New nodes are created if they are not found. We
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(a) (b)

(c) (d)

Figure 4.1: Interface for view�nder editing. (a): The user begins by stroking over
the region of interest. (b): As the user swipes his �nger, the selection updates on the
screen. In this example, the user has selected the doll via a single stroke. (c): The
user con�rms the selection by tapping within the selected region, which invokes a UI
widget o�ering various edit operations the user can choose from. The user chooses to
edit the hue of the selected region. (d): As the user swipes his �nger horizontally to
indicate the sign and the magnitude of the edit, the view�nder updates. The images
are actual screen grabs from an editing session on a tablet. The tablet border and
the hand are simulated images.

increment the value of S0 for these nodes to signify that they are now selected

S̃0(~p) := S̃0(~p) +

(
1

1

)
. (4.4)

In practice, a vertex lookup (via splatting) in the permutohedral lattice will return

several nearby vertices for barycentric interpolation. The above equation is applied to
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all these, scaled by the appropriate barycentric coe�cient for each vertex. If the user

passes over the same texture ~p multiple times in a single stroke, the dehomogenized

value ~S0(~p) will still be 1, but the weight of the selection will be larger, so ~p will be

more in�uential in the interpolation performed in the lattice.

The cost of specifying selection is O(1) for each event, independent of view�nder

dimensions and the edit history.

Editing. If the user is in the act of specifying an edit k ∈ [−1, 1] of type j,

then for each selected descriptor ~p, we adjust S̃j(~p) before applying it to the image.

S̃j(~p) := S̃j(~p) + k ·
(
S0(~p)

1

)
. (4.5)

As shown in Equation (4.5), the extent of the edit is further scaled by the soft selection

mask S0.

Note that this adjustment is not yet written into the lattice. Therefore, the cost

of visualizing each view�nder frame grows linearly with the view�nder dimensions,

and is independent of the number of nodes in the lattice. Once the user �nalizes

the edit, we can fold it into the lattice by applying Equation (4.5) to every selected

patch ~p in the lattice, and reset S̃0(~p) to zero. Hence, the cost of �nalizing an edit is

proportional to the size of the lattice, and independent of the view�nder dimensions.

While this step is slightly more expensive, it is only performed when the user signals

the end of a discrete edit.

4.3 Descriptor Design

Because the robustness of the appearance-based edit propagation scheme depends

strongly on the texture descriptor, the descriptor must be carefully selected. Fig-

ure 4.2 shows a number of well-known texture descriptors in the graphics and vision

literature. On one hand, the descriptor must be su�ciently discriminative. On the

other hand, increasing the dimensionality of the descriptor quickly overwhelms the
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edit propagation algorithm or can lead to over�tting [63]. Descriptors at several di-

mensionalities were explored. The smallest descriptor tested was a simple color value

at each pixel (d = 3), and was quickly deemed insu�cient. Generally, anything under

d = 8 was not su�ciently discriminative. At the same time, understanding of the use

of the permutohedral lattice and its runtime discouraged dimensionalities at d = 20

or higher. Between these thresholds, several descriptors at either d = 8 and d = 16

were implemented and evaluated, as described below. Note that dimensionalities of

powers of 2 are preferred for ease of 4-wide vectorization.

01 3 5 8 14 16 20 36 50 64 128 192

Mean brightness

Mean color

RGBXY

PCA on patch

Steerable filters

PCA-SIFT

Spin image

SURF

GLOH

SIFT

8x8 patch

Moment invariants

Figure 4.2: A summary of popular descriptors in the computer graphics and vision
literature, sorted in the order of increasing complexity from left to right. The number
on the scale indicates the dimensionality of the descriptors. On one hand, descrip-
tors that are less than 8 dimensions (marked by a red outline on the left) were not
su�ciently descriminative. On the other hand, descriptors that are 20 dimensions
or higher (marked by a similar red outline on the right) were too expensive. As
described in Section 4.3, various descriptors of dimensionalities between 8 and 16,
inclusive, were tested. Eventually, a descriptor of 16 dimensions was chosen.

All the descriptors tested contain three components corresponding to the mean

pixel value in the underlying 3-dimensional color space (RGB, YUV, etc.), and the

remaining components are values computed from the luminance channel. Each de-

scriptor required manual tuning of the relative strength of the individual channels. In

the implementations, however, equal weights were assigned to the auxiliary channels�

the ones other than the mean pixel value. The weights for the mean chrominance

channel were set higher by a factor of 4 or 8 than that of the mean luminance channel,

as the numerical variation in chrominance channels is typically smaller.
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Pixel-based Descriptors

Using the pixel values in an image patch directly as a descriptor has been highly

successful in denoising tasks [85]. However, as the dimensionality is too large for

real-time applications, even at 8-by-8 grayscale patches (dp = 64), dimensionality-

reduction techniques such as principal component analysis (PCA) [86] are essential

for other tasks. Figure 4.3 shows the �rst 12 principal components from a set of 30

million image patches sampled from view�nder sequences. It was observed that the

principal components resemble the zeroth-, �rst- and second-order gradients on the

image patch, in addition to some components corresponding to color information.

Based on this information, the following 8-dimensional descriptor was developed and

tuned: mean pixel values (3 components), the �rst-order derivatives (2 components)

of intensity, the second-order derivatives (3 components) of intensity. This particular

descriptor with patch size of 8× 8 was used for generating all �gures from [11].

Figure 4.3: The �rst 12 principal components of 8-by-8 image patches in the YUV
color space. The top-left image corresponds to the �rst component, and the rest
of the images are numbered in order, traveling down in a column �rst then across
rows. Each image visualizes the coe�cient of each of the 8-by-8-by-3 pixels: the �rst
third corresponding to the 8-by-8 patch in the luminance channel, and the next two
to the two chrominance channels. The maximum and minimum in each image are
normalized to white and black, respectively.
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Steerable Filters

Steerable �lters, �rst described by Freeman and Adelson [87], refer to the family of

kernels whose rotations can be described by a linear combination of a set of basis

kernels. The derivatives of a given order of a Gaussian kernel are primary examples.

In the steerable version, the dominant orientation of the patch is �rst computed by

analyzing the distribution of the gradients [88], and the �lters are rotated accordingly

in order to gain rotational invariance.

Figure 4.4 visualizes the derivatives of a Gaussian kernel up to fourth order. The

�rst- and second-order derivatives can be appended to the mean patch values in

order to form an 8-dimensional descriptor. Similarly, the �rst-, second-, third- and

fourth-order derivatives can be used along with the mean patch values to form a

16-dimensional descriptor, after dropping one of the fourth-order derivatives. The

standard deviation of the Gaussian was set to 5m
32

where m equals the width and

height of the underlying patch. Patch sizes of 8× 8 and 16× 16 were tested.

Gradient-based Descriptors

Gradient-based descriptors have been successful in keypoint localization and recall [88,

89, 90]. However, these descriptors are typically very large, ranging from 64 to 128

dimensions. Among these, SURF (speeded-up robust features) [90] is fast to compute.

In the original SURF descriptor, the patch is partitioned into 4-by-4 subsquares, and

in each square, four gradient statistics are computed:
∑ |dx|, ∑ |dy|, |∑ dx|, and

|∑ dy|, leading to a 64-dimensional descriptor. To create a more compact descriptor,

this is reduced into a 12-dimensional descriptor by partitioning the patch into 2-

by-2 subsquares and only computing the �rst three gradient statistics. The resulting

descriptor is augmented by the mean patch value, and yet another component is given

by the standard deviation of the luminance channel, resulting in a 16-dimensional

descriptor overall. Patch size of 16× 16 was tested.
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(a) (b)

Figure 4.4: Steerable derivatives of the Gaussian kernel over a 16-by-16 patch, up to
the fourth order, in addition to the zeroth order Gaussian kernel. (a): The 15 kernels
are shown in order, from left to right, and from top to bottom. (b): The rotated
versions (by 45 degrees) are shown. Each �lter has been independently rescaled for
visualization.

4.3.1 Evaluation

While evaluating the performance of a keypoint descriptor for retrieval tasks can be

done in a straightforward manner by plotting the receiver operating characteristic

(ROC) curves of the given descriptor [89], evaluating texture descriptors for the pur-

pose of view�nder editing is not straightforward. In existing spatial edit propagation

tasks, methods are typically compared by �rst providing a detailed user input�

strokes of multiple classes�and visually inspecting if distinct objects are segmented

properly [62]; quantitative comparisons have been intractable.
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There are two additional factors complicating the evaluation of texture descriptors

for view�nder editing: �rst, the spatial edit propagation framework in this dissertation

relies on the fact that immediate user feedback is possible, so it can be and should

be conservative. Second, only a single class is used in this framework, rather than

multiple classes, in contrast to existing edit propagation work.

Hence, the evaluation was performed in the following manner: a camera applica-

tion was implemented on a tablet to record hypothetical user interactions. It records

up to 30 seconds of incoming view�nder frames at 30 fps and also records the stream

of touch events. The user was instructed to �rst stroke over objects or regions he

would want to edit on the view�nder, and then to introduce camera or object motion

as desired. No visual feedback was given beyond the location of the touch events

and the incoming view�nder stream. 20 such sequences were captured and stored,

shown in Figure 4.5. Then, the view�nder editing was tested o�ine by replaying the

sequences and the accompanying touch events, with two instances of the algorithm

running side by side, using two di�erent descriptors. The quality of the segmentation

was noted visually and compared qualitatively, as done in the evaluation of existing

spatial edit propagation papers.

4.3.2 Discussion

There are several observations made from the comparison of various texture descrip-

tors. First, rotational invariance of a descriptor does not enhance its performance.

The oriented and non-oriented versions of steerable �lters exhibited equivalent per-

formance. Two explanations are hypothesized: �rst, the descriptor is not being used

for one-to-one matching, so the change in orientation is not problematic. Second,

when the user strokes over a texture, several equivalent patches at varying orienta-

tion may be stroked over. In that case, the rotation of the scene or the object may

cause each of them to generate a di�erent descriptor, but taken as a set, the resulting

descriptors should register a match against the original set of descriptors, albeit with

a permutation within the set.

Second, using physical units for the underlying color space, such as LogLUV,
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Figure 4.5: Datasets for descriptor evaluation. 20 sequences of still frames at 30 fps,
each up to 30 seconds, along with touch events generated by the user, were acquired.

considerably outperformed using gamma-mapped YUV or RGB space. For instance,

the FCam [49] implementation on the tablets used or the FlyCapture SDK [91] for

the PointGrey Flea3 camera can return Bayer-mosaicked raw frames along with the

frame metadata, which can then be reliably converted to LogLUV space. In contrast,

the Android camera framework [92], while signi�cantly more portable, is a black

box and returns auto-exposed gamma-mapped YUV or RGB values, which cannot

be converted to LogLUV space without knowing the camera response curve. (Even

if the camera response were known, the YUV or RGB values provided are already

quantized to 8 bits, so the resulting LogLUV values would have quantization artifacts.)

Given that tuning the coe�cients tied to the individual components of the descriptor

requires knowing the noise characteristic of the incoming data, descriptors based on

the latter camera API had di�culty handling a wide range of scenes.

Third, using high-dynamic-range (HDR) view�nder frames also outperformed us-

ing low-dynamic-range (LDR) view�nder frames. This di�erence is simply due to the

fact that HDR imagery will contain less noisy image patches at either extreme of
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pixel intensity. On the other hand, for LDR view�nder frames, pixels may saturate,

or be below the noise �oor, in which case the descriptor is no longer reliable.

Fourth, a descriptor computed over a larger neighborhood outperformed the same

type of descriptor computed over a smaller neighborhood. For each class of descriptor,

computing it on a 16-by-16 patch invariably showed better performance qualitatively

over computing it on a 8-by-8 patch, for instance. At 32-by-32, computing the descrip-

tor became too expensive: each doubling of the width and height of the descriptor

will quadruple the runtime of descriptor computation, unless the descriptor allows

caching computation locally.

Fifth, in general, higher-dimensional descriptors generated better-looking selection

masks than the lower-dimensional counterpart in terms of mask quality, at the cost

of additional computation time. This should not be surprising, as the best keypoint

descriptors have dimensionalities ranging from 64 to 128. It was determined that

lookup of descriptors at d = 16 could be implemented to be fast enough to maintain

interactive rates on a mobile device.

Sixth, the gradient-based descriptor outperformed the others, being able to handle

complex textures better. All in all, the 16-dimensional SURF-like descriptor over 16-

by-16 local context was found to the be the best candidate.

4.4 Computing Edits Quickly and Robustly

The design of the pipeline outlined in this chapter must be su�ciently e�cient in

order to accommodate real-time view�nder editing on a mobile device with limited

computational resources. At the same time, the quality of the edit propagation must

be adequate. Several modi�cations to the pipeline were motivated and engineered, in

order to meet these requirements.

4.4.1 Subsampling Edit Masks

In order to accelerate the computation of edit masks, the edit masks are initially eval-

uated at samples placed in regular intervals. The resulting subsampled edit masks can
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be upsampled with respect to the edges of the view�nder image using an edge-aware

joint-upsampling algorithm. The runtime of the mask generation is then e�ectively

reduced by the square of the subsampling period. Although the cost of a joint-

upsampling operation is incurred additionally, this cost is relatively small�as small

as several milliseconds�compared to the cost of the lattice lookup, and a spatial

smoothing operation is nevertheless helpful even when upsampling is not necessary,

since it suppresses noise and unevenness in the edit masks.

Several subsampling periods (1, 2, 4, 8, 16) were tested. Among these, a subsam-

pling factor of 4 at least was necessary to obtain reasonable frame rate on mobile

platforms. Once the factor exceeds 8, the performance degraded considerably. For

instance, Figure 4.6 shows a frame from a test dataset, processed with subsampling

period of 8.

Figure 4.6: Subsampled edit mask. (a): A still frame from one of the test datasets.
(b): The corresponding selection mask with subsampling period of 8, without any
spatial smoothing applied. The mask has been resized with a nearest-neighbor up-
sampling routine.

The joint-bilateral �lter [14], edge-avoiding wavelets [58] and domain transform [59]

were implemented as a potential joint-upsampling algorithm. It was empirically found

that edge-avoiding wavelets were the fastest, with domain transform being essentially

as fast. The joint bilateral �lter was implemented in two �avors: �rst, a full joint bi-

lateral �lter was implemented, which was found to be too slow for this purpose; later,

it was replaced by a simpler upsampling scheme that accesses only the four known

samples at the corners of each enclosing square in the subsampling grid. Among these,

domain transform was found to present a good balance between runtime e�ciency

and smoothing performance.
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4.4.2 Multi-scale Lookup

Appearance-based edit propagation methods are often prone to false positives or false

negatives in classifying image patches. Operating on a complex texture exacerbates

this problem, as it becomes very likely that the user does not stroke over all possible

exemplars, leaving out some patches that do belong to the same object. To address

this issue, we rely on a multi-scale approach, in which we store the image patches

the user strokes over at multiple resolutions, and combine the lookup response across

scale to generate a single mask for each view�nder frame. For this dissertation, three

scales were used, with consecutive scales being apart by a factor of 2.

Figure 4.7 illustrates the usefulness of such multi-scale approach. As shown in the

�gure, regions with a diverse set of texture cannot be matched to the user selection

simply via examining the neighborhoods at the �nest scale. However, at a coarser

scale, the distance between the patch and the ones in the lattice will be smaller,

allowing the patch to be recognized as having been selected.

4.4.3 Spatiotemporal Smoothing

As discussed above, only a subsampled set of image patches are converted to de-

scriptors and then looked up from the permutohedral lattice, saving a signi�cant

amount of time, but yielding edit selection masks at a resolution lower than that

of the view�nder. The resulting edit masks undergo edge-aware upsampling using

domain transform with respect to the edges of the view�nder content. Generalizing

this, we also perform the recursive variant of the domain transform �lter across frames

temporally, in order to reduce temporal artifacts.

In essence, the �lter blends the masks for the previous and the current frames

together where the pixel di�erence is small to reduce the temporal noise, but preserves

the current frame content where the di�erence is large�usually because the edges do

not align due to camera motion; because of this non-linearity, it is not necessary to

register the masks. This helps to suppress �ickering in noisy regions, where the result

of the lattice lookup is inconsistent because of spurious texture introduced by the

camera noise.
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Figure 4.7: Demonstration of multi-scale texture lookup. Top: Three view�nder
frames sampled from a sequence captured on the tablet. In the sequence, the user
strokes over the checked shirt of the subject. Bottom: Corresponding selection mask
generated from multi-scale lookup, prior to any spatiotemporal smoothing. Red cor-
responds to pixels whose neighborhoods match the ones stored in the permutohedral
lattice at the �nest scale. Green corresponds to pixels whose neighborhoods return
positive response from the lattice at a coarser scale (by a factor of 2), excluding the
ones already marked red. Blue corresponds to an even coarser scale.

4.4.4 O�ine Processing

Once the user is satis�ed with the edits and presses the shutter, the necessary frames

can be captured at full resolution of the sensor, and they can undergo the same

processing as the view�nder content, respecting the WYSIWYG property. This com-

putation can happen o�ine, and as such, additional computation can be performed

in order to generate edit masks with much higher quality. The image patches are

processed at full resolution without the subsampling discussed in Section 4.4.1, gen-

erating a full-size edit mask. The full-size edit mask is still smoothed spatially with

domain transform.

The resulting edit masks could still be improved by leveraging the existing body of

work in o�ine edit propagation. Among the available algorithms, we choose manifold-

preserving edit propagation [62], which exhibits higher mask quality over competing

methods, albeit slow. To apply this algorithm, the full-resolution edit mask is �rst
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thresholded and eroded to create a trimap. The trimap is then passed to manifold-

preserving edit propagation in order to re-populate low-con�dence areas of the edit

mask, where con�dence is given by the homogeneous coordinates in the lattice. This

additional step was found empirically to help produce cleaner and more homogeneous

masks. Figure 6.6 demonstrates an example of this process.

4.4.5 Discussion

Method
Runtime

Pre-computation Per-frame cost Total
Chen et al., 2012 [62] 2000.0 ms � 2000.0 ms

An and Pellacini, 2008 [60] 1900.0 ms � 1900.0 ms
Li et al., 2008 [63] 1500.0 ms � 1500.0 ms

Farbman et al., 2010 [61] 580.0 ms � 580.0 ms
Xu et al., 2009 [64] 433.0 ms 30.0 ms 463.0 ms
Bie et al., 2011 [65] 163.0 ms 15.0 ms 178.0 ms
Li et al. 2010 [66] 22.7 ms 20.0 ms 42.7 ms
Proposed method � 13.6 ms 13.6 ms

Table 4.1: Runtime comparison for various edit propagation methods. Self-reported
runtimes in previously published papers are used. The reported time for the resolu-
tion closest to VGA was taken, and was interpolated linearly to VGA resolution if
necessary. No adjustment for the di�erence in the testing rigs was done. However,
each of the above methods reported measuring its runtime on a multi-core Intel CPU.

The appearance-based edit propagation algorithm described thus far is consider-

ably faster than other appearance-based methods in the literature. Table 4.1 lists

the runtimes of recent work and also that of the proposed algorithm, decomposing

the runtime into pre-computation cost and per-frame cost whenever such a division

is applicable; as discussed in Chapter 2, many existing algorithms rely on perform-

ing a static analysis of the input dataset in a non-causal manner in order to build a

classi�er or a data structure, and then amortizing this cost over the multiple frames

to be processed.

The proposed method represents a speed-up of an order of magnitude over all

existing methods, with the exception of Li et al. [66]. However, Li et al. [66] relies on
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the RGB pixel values (3 channels) to describe the local texture, while the proposed

method employs a 16-dimensional descriptor. The proposed method is therefore con-

siderably more robust, while still being three times faster. On the other hand, if the

speed is less important�for instance, in o�ine processing�methods based on static

analysis will outperform the proposed work in terms of mask quality.

4.5 Summary

This chapter de�nes the notion of view�nder editing, and describes the underlying

algorithms and the design process through which the algorithms were determined

and developed. View�nder editing realizes spatiotemporally coherent edits on a live

view�nder via appearance-based edit propagation, and is based on the permutohe-

dral lattice (Chapter 3). The performance necessary to run on the live view�nder

of a mobile platform is achieved by combining a number of approaches, including

subsampling, multi-scale processing, spatiotemporal smoothing, and gradient-based

texture descriptor. All in all, the performance of view�nder editing represents an

order-of-magnitude speed-up over that of competing methods.



Chapter 5

Appearance-Based Camera Control

View�nder editing, as designed in the previous chapter, enables a real-time inter-

face to locally manipulating the view�nder content. Interestingly enough, view�nder

editing can be used to bring the WYSIWYG aspect to stack-based computational

photography, in which a set of frames at varying parameters are acquired and then

composited together to yield the �nal output. Two prime examples are high-dynamic-

range (HDR) image tonemapping and focal stack compositing. Instead of running the

composition as an o�ine process, the camera application can provide the said com-

position interactively, directed by the user's interaction.

In fact, knowing the user's intention ahead of the capture time has an auxiliary

bene�t for stack-based computational photography that goes beyond regaining the

WYSIWYG aspect: the camera application can rely on the user edits to determine

the optimal capture parameters for the exposure or focal stack, capturing exactly and

only the data necessary to accommodate the transform the user wishes to perform

on the scene, ensuring that the captured data exhibits the su�cient dynamic range,

depth of �eld, signal-to-noise ratio in each region of the scene to the extent necessary.

This approach diverges from the existing philosophy on data acquisition for stack-

based computational photography. The present algorithms for determining camera

parameters are aimed at faithfully acquiring the scene, attempting to maximize some

measure of signal-to-noise ratio [29, 30]. This philosophy is rational when the post-

processing to be performed on the acquired image is unknown, and when there is no

60
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additional information on the relative saliency of di�erent scene elements. In contrast,

with view�nder editing it is possible to fold the entire post-processing pipeline into

the camera application, including tonemapping and local edits, and one can leverage

this knowledge to optimize the capture parameters. For instance, if the user sees

the tonemapped HDR image on the view�nder, and proceeds to brighten a darkened

region, a longer exposure may be necessary; if the user darkens clipped regions to

reveal the details, a shorter exposure may be necessary.

This chapter discusses how to mathematically take advantage of the WYSIWYG

property that arises from view�nder editing�the knowledge of the local edits and

the rest of the post-processing pipeline. A new multi-exposure metering and a new

stack focusing algorithms are proposed. The new multi-exposure metering algorithm

is evaluated against prior methods.

5.1 Appearance-Based HDR Metering

Appearance-based HDR metering extends the state-of-the-art HDR metering by in-

corporating the knowledge of the �nal post-processed output. Because the WYSI-

WYG interface by de�nition requires the application to deliver the �nal result in real

time, the system must be computing the display value of each pixel. This value can

then be used to derive the metering algorithm, allowing the algorithm to optimize

for the quality of the tonemapped, edited output, instead of the quality of the scene

luminance estimate as done in existing work. Figure 5.1 illustrates this distinction.

5.1.1 Image Appearance Model

We assume a c-bit linear camera whose sensor captures the scene and records values

p(x, y), which are perturbed by additive Gaussian noise as shown in Equation (5.1):

p(x, y) = min (2c − 1, L(x, y) · t ·K +N(0;σr)) , (5.1)

where L(x, y) is the physical scene luminance; t is the exposure time; K is a calibration

constant; N(0;σr) is the Gaussian read noise; and the measurement has been clamped
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Figure 5.1: Comparison against existing multi-exposure metering methods. Top: The
standard imaging pipeline assumed by existing multi-exposure metering methods.
Going from the left, the actual luminance present in the scene is observed by the
sensor with some amount of uncertainty, becoming a probability distribution of sensor
values. From this, the algorithm estimates the actual luminance, which is used as
a basis for the subsequent optimization process. Bottom: The augmented pipeline
with a WYSIWYG interface. The tonemapping operator and its parameters, along
with any edits, are available to the system, since the �nal result must be provided to
the user in real time. As such, the displayed pixel value (rightmost) are known and
can be used as a basis for the subsequent optimization process instead.

to properly re�ect the possibility of saturation. From this model, one can reconstruct

an unbiased estimate of the scene luminance with Equation (5.2), barring saturation�

for high-dynamic-range scenes in which saturation is a problem, multiple photos may

be taken to improve the �delity of the estimate:

L̃(x, y) =
p(x, y)

t ·K . (5.2)

The estimate for the linear scene luminance �nally undergoes a monotonic tonemap-

ping operator T to be shown on a k-bit display, resulting in the �nal pixel value

Ĩ(x, y). In addition, Ĩ(x, t) includes a possible per-pixel manipulation of the scene

luminance with an edit mask ME : {(x, y)} −→ R+ prior to tonemapping:

Ĩ(x, y) = min
(

2k − 1, T
(
L̃(x, y) ·ME(x, y)

))
. (5.3)



CHAPTER 5. APPEARANCE-BASED CAMERA CONTROL 63

In Equation (5.3) above,ME is equivalent to the power of two raised to the appropriate

number of stops for either brightening or darkening the pixel. Note that this model

can fully handle nonlinear cameras by folding the camera response function into T .

The computed pixel intensity Ĩ(x, y) still su�ers from the uncertainty inherited

from the sensor measurement. In the context of an image patch of a particular

brightness, this per-pixel uncertainty in Ĩ(x, y) manifests itself as spatial noise in

I(x, y). Hence, to curb the appearance of spatial noise on display, the uncertainty in

Ĩ(x, y) should be quanti�ed and bounded.

To quantify the uncertainty in Ĩ(x, y), recall that the estimate L̃(x, y) in fact

represents a Gaussian probability distribution. Provided that T is smooth and the

standard deviation of L̃(x, y) is relatively small, one can apply �rst-order approxi-

mation to model the probability distribution corresponding to I(x, y) as a Gaussian,

with its standard deviation σI(x, y) computed as follows:

σI(x, y)

∆Ĩ(x, y)
≈ σr

∆p(x, y)

=⇒ σI(x, y) ≈ σr ·
dI(x, y)

dp(x, y)

=⇒ σI(x, y) ≈ σr ·ME(x, y)

t ·K · T ′
(
L̃(x, y) ·ME(x, y)

)
, (5.4)

where T ′(·) is the �rst-order derivative of T with respect to its parameter. The relative

error for this �rst-order approximation is below 5% for all but 3% of possible pixel

values for a gamma tonemapping operator at γ = 2.2 with σd = 0.01(2k− 1), proving

that the linear approximation holds well.

The acceptable per-pixel uncertainty is a function of the displayed imagery, as well

as the viewing condition, including the viewer's visual adaptation level. However, for

the purpose of computational photography applications, a bright display and photopic

vision for the viewer are assumed, leading to a �xed constant (denoted by σd hereafter)
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for the threshold on per-pixel uncertainty. Then, requiring that the estimated per-

pixel uncertainty is bounded above by σd, we derive,

σr
K
·
ME(x, y) · T ′

(
L̃(x, y) ·ME(x, y)

)
σd

≤ t. (5.5)

Because Equation (5.4) is applicable only if the pixel is not saturated in the sensor,

we enforce an upper bound as to avoid sensor saturation:

t <
2c − 1

K · L̃(x, y)
. (5.6)

If a pixel saturates on display after editing and tonemapping, it may be permissible

for the sensor to saturate. However, sensor saturation causes the scene luminance

estimate to be incorrect. This is allowable, provided that the resulting incorrect

estimate will still cause the pixel to saturate on display:

t ≤ (2c − 1)ME(x, y)

K · T−1(2k − 1)
. (5.7)

In summary, by placing a threshold on the visual quality of the displayed pixel

values, one can obtain lower and upper bound on the exposure that will guarantee

meeting the said threshold. Each pixel in the image yields a lower and upper bound

on the exposure.

5.1.2 Per-Pixel Objective Function

Before the lower and upper bound on the exposure for each pixel can be aggregated, it

must �rst be converted into a meaningful objective function. This objective function

should penalize exposure times outside the lower and upper bounds. Denote by

B∗(x, y) and B∗(x, y) the bounds derived at each pixel using Equations (5.5�5.7).

For exposure values outside the interval [B∗(x, y), B∗(x, y)], the objective function

has a value of 0.

Otherwise, for the region within the interval [B∗(x, y), B∗(x, y)], the objective
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function should have a positive score. There are the following considerations for the

values within this region: on one hand, the objective function should favor shorter

exposures in order to reduce the total exposure time. On the other hand, longer

exposures do yield increase in SNR. These two concerns can be balanced by providing

a linear dependence on the logarithm of exposure value, determined empirically. The

logarithm of the exposure value is used, in lieu of the exposure value itself, because

the SNR rises linearly with the former, not the latter.

By combining these guidelines, the following objective function was born:

J(x, y, t) =

0, if t 6∈ [B∗(x, y), B∗(x, y)],

1 + α(x, y) log2
t

B∗(x,y)
, otherwise,

(5.8)

illustrated in Figure 5.2 (a) and (b) on a logarithmic time axis, with α(x, y) = −0.3

if the pixel is saturated on display, and 0.0 otherwise. The linear coe�cient α(x, y) is

negative for pixels saturated on display, because increasing exposure does not increase

the SNR of the displayed pixel in this case.

1

J(x, y, t)

tB∗(x, y) B∗(x, y)

Case a: P (x, y) is not saturated.

1

J(x, y, t)

tB∗(x, y) B∗(x, y)

Case b: P (x, y) is saturated.

Figure 5.2: Appearance-based metering via per-pixel analysis. For each pixel on the
screen, we compute the minimal and maximal permissible exposure values, accounting
for the local and global transforms raw sensor values undergo. (a, b): For metering,
each pixel yields an objective function J(x, y, t) based on the minimum and maximum
per-pixel exposure values B∗(x, y) and B∗(x, y). For instance, (a) signi�es that any
exposure value between B∗(x, y) and B∗(x, y) is equally desirable, whereas the plot
in (b) suggests that while any exposure value in the range is acceptable, shorter
exposures are preferred.
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5.1.3 Aggregating Per-Pixel Objectives

The per-pixel objective function in Equation (5.8) can now be aggregated across the

entire image to form a single objective function. Multi-exposure metering then can

be performed by analyzing this function. Gallo et al. [30] note that most scenes are

handled by three exposures or fewer, and that most cameras o�er only a limited

number of possible exposure values. In practice, the domain of this function can

be discretized to a few values on a geometric scale�256 in the implementation in

Chapter 6�so that evaluating the function now can be done on a discrete set.

For multi-exposure metering that captures more than one shot, the choice of the

multiple exposures a�ect one another. As such, they should be optimized simulta-

neously in order to guarantee global optimality. However, for simplicity and ease of

implementation, a greedy approach that seeks to iteratively maximize the aggregate

objective function
∑

x,y J(x, y, t) with respect to the exposure time t was implemented

instead and is described herein.

When t is mapped to logarithmic domain, the objective in Equation (5.8) becomes

a sum of piecewise-linear functions, which can be maximized in linear time using

dynamic programming, by pre-computing and caching the �rst- and second-order

derivatives of the objective. The algorithm, shown in Algorithm 5.1, greedily �nds

exposures that maximize the objective. The algorithm is run iteratively, each time

removing the pixels from consideration whenever their requirements are met. The

procedure terminates upon reaching the maximum stack size or satisfying a certain

percentage of per-pixel requirements.

5.2 Appearance-Based Focal Stack Focusing

Another popular target for manipulation is the depth of �eld. A focal stack, a set

of images focused at di�erent depths, can be combined to simulate extended depth

of �eld [41]; reduced depth of �eld can be obtained likewise [43]. See Figure 2.4 for

example. In focal stack composition, an indexing map that speci�es the depth from

which each pixel should be drawn is �rst created, and the �nal composition is obtained
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Algorithm 5.1 A dynamic programming routine for solving the global objective
function for the optimal exposure in linear time.

Require: T = {t0, t1, . . . , tn−1}, a discretized set of possible exposure values in an
increasing geometric sequence with ratio r.

Require: Per-pixel lower and upper bound on exposures, B∗, B
∗ : {(x, y)} −→ T .

Require: Arrays J,A,B[0, . . . , n − 1], initialized to zero. They respectively model∑
(x,y)

J(x, y, t) and its �rst- and second-order di�erentials with respect to t.

1: for each (x, y) in the image do
2: k∗ ← the index such that tk∗ = B∗(x, y)
3: k∗ ← the index such that tk∗ = B∗(x, y)
4: B[k∗] ← B[k∗] + α(x, y) log2 r . B[·] keeps track of the aggregate slope.
5: B[k∗] ← B[k∗]− α(x, y) log2 r
6: A[k∗] ← A[k∗] + 1 . A[·] keeps track of the aggregate step.
7: A[k∗] ← A[k∗]− (1− (k∗ − k∗)α(x, y) log2 r)

8: d ← 0
9: for i ∈ {0, . . . , n− 1} do

10: J [i] ← J [i− 1] + A[i] + d . Here J [−1] is de�ned as zero.
11: d ← d+B[i]

12: k ← argmaxiJ [i] where i ∈ {0, . . . , n− 1}
13: return tk

by indexing into the focal stack, which is e�ectively a three-dimensional volume.

If the user can interactively specify the desired manipulation prior to capture and

verify it via visualization in the view�nder, the autofocus routine can deduce the

minimal focal stack needed, instead of capturing the full focal stack. In other words,

the system acquires only the parts of the three-dimensional volume that are necessary.

5.2.1 Image Appearance Model

Recall the well-known Gaussian lens formula [34], which relates the physical depth

of the object to the distance between the lens and the sensors in the thin-lens model

shown in Figure 5.3:
1

f
=

1

do
+

1

di
, (5.9)
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Figure 5.3: The thin-lens model. In the thin lens model, the distances from the lens to
the object and to the image, denoted by do and di respectively, follow a mathematical
formula known as the Gaussian lens formula (Equation (5.9)), provided that the
object is in focus. If the formula is not met, as in the case of the misplaced sensor in
dashed lines, a defocus blur known as the circle of confusion will result.

where f is the focal length of the lens, and do and di are the distances from the lens

to the object and to the image on the sensor planes, respectively, provided that the

object is currently in focus.

It is common to quantify the state of a camera lens module in diopters, which

corresponds to inverse of the distance to the object in focus. For instance, focusing at

in�nity is equivalent to 0 diopter, and focusing at 1m away is equivalent to 1 diopter.

Using the Gaussian lens formula in Equation (5.9), one can show that the diopter

measure is mathematically equal to 1/f − 1/di. In turn, any o�set in diopters from

this value results in defocus.

Let [zmin, zmax] be the range of diopters supported by the lens module. The user

interaction begins with a reference photograph focused at a particular depth, corre-

sponding to z0 ∈ [zmin, zmax] diopters. The user then paints a mask F : {(x, y)} →
[−1, 1] via view�nder editing, specifying which regions should be sharper or blurrier

in a reference photograph focused at depth. Meanwhile, the view�nder stream cy-

cles through a number of focus settings to continuously acquire the scene at various

depths and builds a rough depthmap z∗ : {(x, y)} → [zmin, zmax] (in diopters) based

on a local contrast measure.
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Then an indexing map ẑ : {(x, y)} → [zmin, zmax] can be created as follows:

ẑ : (x, y) 7→



z0, if F (x, y) = 0,

z∗(x, y), if F (x, y) = 1,

zmin, if F (x, y) = −1 and z0 < z∗(x, y),

zmax, if F (x, y) = −1 and z0 ≥ z∗(x, y),

linearly interpolate, otherwise.

(5.10)

The rationale behind the construction of the indexing map in Equation (5.10) is

that when the user performs no edit (F (x, y) = 0), the reference depth is speci�ed;

when the user maximally sharpens the region (F (x, y) = 1), the pixels should be

drawn from the depth corresponding to the region; on the other hand, when the user

maximally blurs the region (F (x, y) = −1), the pixels should be drawn from the

depth that would maximally defocus the region, away from the actual depth. For any

other values of F (x, y), linear interpolation is used for the indexing map.

Once the indexing map ẑ is computed, the �nal composition can be constructed as

described earlier. Since ẑ contains a continuous range of diopter values, it is possible

that a slice focused at the exact depth is unavailable in the focal stack. In such cases,

the two nearest slices are accessed, and the looked-up values are linearly interpolated.

5.2.2 Per-Pixel Objective Function

The indexing map ẑ described in Equation (5.10) can serve as a basis for a per-

pixel objective function. The per-pixel objective function penalizes deviation from

the desired diopter value given by the indexing map, as visualized in Figure 5.4 and

detailed mathematically in Equation (5.11).

J(x, y, z) = max

(
0,

ε− ‖z − ẑ(x, y)‖
ε

)
. (5.11)

The per-pixel objective is 1 at the desired depth ẑ(x, y), linearly reducing to

zero at depth error ε. In the implementation in Chapter 6, the value of ε = 1.0 is
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1

J(x, y, z)

dioptersẑ(x, y)

ε

Figure 5.4: Appearance-based focusing via per-pixel analysis. For each pixel on the
screen, the desired depth at which the lens should be focused is �rst computed in form
of an indexing map. This gives rise to an objective function that penalizes deviation
from the indexing map.

used for a lens with zmin = 0.0 and zmax = 10.0 diopters. Because this per-pixel

objective is linear as a function of diopters, it can be aggregated over all pixels and

be optimized quickly as in Section 5.1.3: the optimal focus distance is iteratively

selected by maximizing the aggregate objective, while holding out pixels whose per-

pixel objective functions achieve nonzero values at previously chosen focus distances.

5.3 Evaluation

In this section, the proposed appearance-based HDR metering method is evaluated

against the existing state of the art. On the other hand, the prior work on determining

focus values for a focal stack is sparse: there exists an algorithm designed for obtaining

the minimal focal stack required for an all-focus composition [42], but existing work

on general focal stack composition, such as Jacobs et al. [43], assumes that the entire

focal stack is captured. Thus for focal stack composition, see the empirical results

shown in Chapter 7.

5.3.1 Methodology

The appearance-based HDR metering proposed in Section 5.1 was evaluated against

the HDR metering method of Hasino� et al. [29] in an o�ine comparison, and against
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a generic histogram-based HDR metering�akin to Gallo et al. [30]�in an online com-

parison. Hasino� et al. solves for the set of exposures that maximizes the worst per-

pixel SNR across the image. A MATLAB implementation was written to perform

an exhaustive global search over the parameter space in order to solve this maxi-

mization. Histogram-based HDR metering computes the luminance histogram of the

scene, and greedily picks the exposures in an iterative fashion, holding out histogram

bins that are well-covered by previously chosen exposures. Once the metering method

to be evaluated computes the metering parameters for the given scene, we capture the

corresponding exposure stack, register and blend them, tonemap the resulting HDR

image, and perform any local edits speci�ed prior to capture. The tonemapping

function, its parameters, and any local edits are known prior to capture, following

the assumptions in appearance-based camera control. The appearance-based HDR

metering makes use of this knowledge.

For the o�ine comparisons, the scene to be captured was simulated in one of two

setups. In the �rst setup, publicly available high-dynamic range radiance maps of

static scenes were used to generate the requested exposure stack. Additive read noise

reported by Granados et al. [24] for a point-and-shoot camera was included, and a

12-bit sensor was assumed.

The second setup was designed to objectively study the e�ect of exposure duration

on moving scenes. A high-frame-rate image sequence was captured at 180 fps. From

this image sequence, any photograph whose exposure duration is an integer multiple

of 1/180" could be synthesized by simply accruing these frames. Photographs of other

exposure duration could be synthesized by integrating the appropriate frames with

fractional weights. Hence, the exactly same camera and scene motion can be provided

to multiple metering methods, and the results can be compared against one another.

Lastly, an online comparison was performed on a static scene. A ground truth

radiance map was �rst obtained via a redundant exposure stack on a tripod, and then

the candidate metering methods were run serially.
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5.3.2 Noise Characteristics for Static Scenes

In this set of comparisons, the appearance-based HDR metering proposed in Sec-

tion 5.1 was evaluated against the HDR metering method of Hasino� et al. under

�xed time budget, using publicly available high-dynamic range radiance maps of static

scenes. That is, each metering method was allowed to freely allocate a �xed amount

of time across multiple shots. The �nal tonemapped results are shown in Figures 5.5

through 5.7. Figure 5.5 and Figure 5.7 highlight the improvement in the image quality

for the proposed method over the prior work.

Studying Figure 5.6 reveals an interesting intuition that explains the reason be-

hind the performance of the proposed method. Because both metering methods have

the same time budget, the metering process can be seen as �distributing� a set amount

of noise across the scene histogram. Because the appearance-based metering outper-

forms the prior work in the insets provided in Figure 5.5, it stands to reason that

the prior work may actually be better in some other areas. Figure 5.6 demonstrates

precisely this point. However, appearance-based metering puts most of the noise in

regions in which the noise would not be perceptually conspicuous, by design. On the

other hand, Hasino� et al. tries to improve the SNR of the underexposed reason at

the cost of the SNR of other areas, which are perceptually more important in the

tonemapped image.

5.3.3 Metering for Moving Scenes

The aforementioned high-frame-rate datasets containing scene and camera motion

were used to compare the proposed method against that of Hasino� et al. We allow

each metering method to freely minimize the total time budget on its own, but control

for the �nal image quality by �xing one of the exposures. No noise was synthetically

added to the exposure stacks. The results are shown in Figure 5.8. In general,

appearance-based HDR metering is able to capture the scene satisfactorily in less

time than the prior work, which mitigates the halo and ghosting artifact that result

from scene motion shown in Figure 5.8c.
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(a) Hasino� et al. [29] (b) Appearance-based metering

(c) Inset from (a) (d) Inset from (b)

Figure 5.5: Synthetic comparison of appearance-based HDRmetering against Hasino�
et al. [29] on church dataset. In each case, a total time budget of 103 ms was allowed.
(a): The HDR composite resulting from the metering of Hasino� et al. (0.027 ms,
1.70 ms, 101.30 ms). (b): The HDR composite resulting from the appearance-based
metering proposed in Section 5.1 (0.50 ms, 9.96 ms, 92.18 ms). (c, d): Insets from
(a) and (b). Reduction in noise is clearly visible for appearance-based metering. The
input dataset is courtesy of Paul Debevec [5].
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(a) Inset from Figure 5.5a (b) Inset from Figure 5.5b

(c) Brightened version of (a) (d) Brightened version of (b)

Figure 5.6: The distribution of noise in appearance-based metering. (a, b): Insets
from the top-left corners of the images from Figures 5.5a and 5.5b. The wooden
structure in the shadow exhibits some noise in both cases, but are qualitatively similar
in terms of perceivable noise. (c, d): The insets have been arti�cially brightened.
Appearance-based metering in (d) exhibits marginally more noise near the wooden
buttress in this case, but only when the image has been arti�cially brightened. In
summary, when working with a �xed budget, a metering method must �distribute�
noise across the histogram, and appearance-based HDR metering is designed to put
most of this noise in regions in which noise would not be perceptually conspicuous.
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(a) Hasino� et al. [29] (b) Appearance-based metering

(c) Inset from (a) (d) Inset from (b)

Figure 5.7: Synthetic comparison of appearance-based HDRmetering against Hasino�
et al. [29] on flower dataset. In each case, a total time budget of 103 ms was allowed.
(a): The HDR composite resulting from the metering of Hasino� et al. (0.027 ms,
1.70 ms, 101.30 ms). (b): The HDR composite resulting from the appearance-based
metering proposed in Section 5.1 (0.50 ms, 9.96 ms, 92.18 ms). (c, d): Insets from
(a) and (b). Reduction in noise is clearly visible for appearance-based metering,
especially in the bottom-right quadrant of the inset. The input dataset is courtesy of
Greg Ward.
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(a) Hasino� et al. [29] (b) Appearance-based metering

(c) Inset from (a) (d) Inset from (b)

Figure 5.8: Comparison of appearance-based HDR metering against Hasino� et al.
on a moving scene. The scene was simulated from a high-frame-rate video, so that
the two metering methods receive the exposure stacks with the identical scene and
object motion. We �xed one of the exposures and allowed the two metering methods
to independently minimize the total time budget. The �ower was locally brightened
during view�nding. (a): The HDR composite resulting from the metering of Hasino�
et al. (5.0 ms, 80.0 ms). (b): The HDR composite resulting from the appearance-
based metering proposed in Section 5.1 (5.0 ms, 22.0 ms). (c, d): Insets from (a)
and (b). Longer total exposure time for the prior work results in a more pronounced
ghosting artifact in the resulting tonemapped output.
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5.3.4 Empirical Results

The simulated results thus far lend credibility to the hypothesis that appearance-based

HDR metering can obtain better image quality and also reduce motion artifacts. This

was veri�ed by online testing on both static and dynamic scenes.

The �rst online test was conducted by setting up a static scene, and capturing

an HDR radiance map via four methods: an exhaustive multi-exposure bracket (13

exposures in total with consecutive shots being a stop apart), appearance-based HDR

meetering, histogram-based HDR metering, and single-exposure metering. The data

acquired via the �rst method served as the ground truth. All four acquisitions were

conducted serially on a tripod. Figure 5.9 shows the result obtained with the latter

three methods, and visualizes the relative error compared to the groundtruth. As seen

in the �gure, the �nal tonemapped and edited image exhibits a considerably higher

SNR in the edited region when the stack was captured with appearance-based HDR

metering, compared to histogram-based HDR metering or single-exposure metering.

We also performed an online comparison on a dynamic scene with a histogram-

based HDR metering method, which is also fast enough to run in real time. The

results shown in Figure 5.10 corroborate the �ndings in the previous experiments

that appearance-based metering can help mitigate ghosting artifacts by minimizing

the total exposure time better than prior work. Surprisingly, despite having shorter

total exposure time than its competitor, it exhibits considerably cleaner midtone

areas in Figure 5.10d, demonstrating that being aware of the post-processing pipeline

is bene�cial to the capture process.

5.3.5 E�ect of Local Edits

In order to demonstrate the e�ect of local edits on metering, the appearance-based

metering algorithm was used to generate two HDR composites in Figure 5.11, once

without any local edits and once with a local edit that brightens a backlit black

statue. As shown in the �gure, di�erent exposure stacks were produced: the former

case produced a 2-image stack with 16 ms total exposure, whereas the latter case

produced a 3-image stack with 96 ms total exposure, tacking on an extra shot in
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order to accomodate the edit the user speci�ed.

5.4 Summary and Discussion

This chapter augments the existing state-of-art methods on multi-exposure camera

control by further taking into account the WYSIWYG property that arises from

view�nder editing (Chapter 4.) Whereas existing methods analyze how camera set-

tings a�ect the quality of the raw radiance map, the proposed method goes fur-

ther down in the pipeline and analyzes how camera settings a�ect the quality of the

tonemapped, edited output displayed to the user.

Both o�ine and online comparisons with the existing state-of-the-art methods

for HDR metering suggest that the common wisdom of capturing the entire scene

radiance faithfully may not be the best solution in all cases. Today's displays have

considerably less bitdepth than the HDR composites (or even a single RAW image

produced from a commodity sensor), necessitating a compressive tonemapping oper-

ation. In addition, some regions of the image may be brightened or darkened by the

user. In the end, the signal-to-noise ratio is not equally important across all the pix-

els, and appearance-based HDR metering takes advantage of this fact. Existing HDR

metering methods would be more suitable over the proposed appearance-based HDR

metering for work that requires true o�ine post-processing in softwares like Adobe

Photoshop or Lightroom, since the o�ine post-processing cannot be predicted during

capture. However, in those crucial sitautions, photographers will rely on tripods and

capture an overcomplete stack.
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Figure 5.9: An empirical comparison of appearance-based HDR metering against
generic histogram-based HDR metering on a static scene. (a): The unedited
tonemapped output, along with the edit mask to be applied (computed during
view�nder editing). (b, c, d): Descending from the top, the edited tonemapped
output using appearance-based HDR metering, histogram-based HDR metering, and
a single-shot metering. On the right hand side is the visualization of the output SNR,
using the groundtruth obtained from an exhaustive multi-exposure bracket, is shown.
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(a) Histogram-based metering (b) Appearance-based metering

(c) Inset from (a) (d) Inset from (b)

Figure 5.10: An empirical comparison of appearance-based HDR metering against
generic histogram-based HDR metering on a dynamic scene. In this example, the
backlit face of the child was brightened prior to capture. (a): The composite resulting
from the histogram-based HDR metering (0.579 ms, 9.958 ms, 23.879 ms). (b):
The composite resulting from the appearance-based metering proposed in Section 5.1
(0.645 ms, 5.555 ms, 11.101 ms). (c, d): Insets from (a) and (b). The proposed
method mitigates ghosting artifact, but is also able to reduce noise despite having a
shorter total exposure time.
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(a) Result without local edit (b) Result with local edit

(c) Inset from (a) (d) Inset from (b) (e) Inset from (a) with edit

Figure 5.11: The real-time e�ect of local tonal edits on appearance-based metering.
(a): This tonemapped image was produced from a 2-image stack at (1.607 ms, 14.874
ms), as determined by the appearance-based metering. (b): The user brightened the
dark statue on the view�nder and retook the photo. Our algorithm automatically
adjusted to the new appearance on the view�nder and appended an extra shot (79.613
ms) to the stack. (c, d): Insets are shown from the center of the two images. Both
insets are relatively free of noise. (e): Just applying the local edit to the statue
after capture without taking it into consideration during metering yields much more
noticeable noise in the output, compared to (d) where the local edit is accounted for
during the metering process. The insets are best viewed on a screen while zoomed in.



Chapter 6

Implementation

In the previous chapters we discussed the algorithmic details of view�nder editing and

appearance-based camera control routines. Combining them together, we now detail

the end-to-end implementation of a complete camera framework that realizes WYSI-

WYG computational photography on two distinct platforms: one is a traditional x86

environment hosted on a laptop with a USB camera. User input is provided with a

mouse on a windowed application. The second platform is the ARM-powered tablet

with an embedded lens module and a touch-enabled screen.

For ease of demonstration, two separate executables were built in order to show-

case appearance-based HDR metering and appearance-based focal stack compositing.

Because the lens used with the desktop platform does not support electronic focusing,

the focal stack compositing application is implemented only on the tablet platform.

6.1 Hardware

The implementations on the two platforms described in this chapter can in theory

cover a large range of hardware. The only requirement is su�cient computational

power, a camera with a known response curve, and an input device. For reference,

the two platforms used in the development of the system are described in this section.

Much of the real-time result and �gures for the desktop platform in this disser-

tation were gathered from a laptop with Intel Core i7-2760QM CPU (2.4 GHz) and

82
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Figure 6.1: Camera hardware used for the two platforms. Left: the NVIDIA Tegra3
developer tablet with an embedded camera module. The screen is simulated. Right:
a Fujinon varifocal lens attached to the PointGrey USB camera. The assembly con-
nects to a laptop via USB 3.0 protocol.

NVIDIA Quadro 1000M GPU, using a PointGrey Flea3 FL3-U3-32S2C-CS USB cam-

era [93] with a Fujinon varifocal YV4.3X2.8A-2 lens on a CS mount, shown on the

right half of Figure 6.1. The camera itself is capable of producing Bayer-mosaicked

1280x960, 12-bpp (bits-per-pixel) images at 60 fps. PointGrey provides drivers and

an SDK [91] for the Windows OS, with which the system interfaces. Because the SDK

does not support deterministic per-frame alternation of camera parameters, such as

exposure and gain, the system pipelines frames in order to obtain this property, at

the cost of cutting the frame rate by a third. Therefore, for the HDR application, the

system obtains frames at 20 fps. The Fujinon lens has dials for manually adjusting

focus, zoom and aperture, but the dials are not motorized and cannot be automated.

On the other hand, the mobile implementation was realised on the NVIDIA Tegra3

developer tablet, shown on the left half of Figure 6.1, featuring a quad-core ARM

Cortex-A9 CPU and ULP GeForce GPU with OpenGL ES 2.0 support. It provides

two rear-facing cameras, one of which is available via an implementation of the FCam

API [49], and can stream Bayer-mosaicked 1296x972, 10-bpp images at 30 fps. While

the particular FCam driver implemented on the tablet does nominally support de-

terministic alternation of capture parameters, it internally throttles the frames to

achieve it, and the e�ective frame rate is 10 fps. The camera also contains a voice-

coil-driven lens module that can change focus on demand, useful for the focal stack

application. Additional benchmarking was done on a Tegra4 developer tablet.
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Figure 6.2: A diagram of the camera pipelines for the HDR application and the focal
stack application, respectively on the left and the right. See Sections 6.2.1 through
6.2.5 for details. The blue rectangles indicate a moving window for combining the
most recent frames.

6.2 Camera Pipeline

Figure 6.2 summarizes the camera pipelines for the HDR application and the focal

stack application, respectively. The camera pipeline is responsible for fetching the

sensor data and preparing inputs to the view�nder editing module.

6.2.1 Image Acquisition for HDR Application

The sensor streams raw image data into a stack that caches the most recent N frames,

where N = 3 for the desktop platform and N = 2 for the tablet platform. Both the

PointGrey camera and the built-in camera module of the tablet are capable of pro-

ducing Bayer-mosaic data at bitdepths of 12 and 10, respectively, and at resolutions

of 1280x640 and 1292x972, respectively. In both cases, the Bayer-mosaic data is

cropped at center to be 1280x640, and then demosaicked by a simple downsampling

scheme to produce a three-channel 16-bit RGB images at VGA resolution (640x480).

The metering for the view�nder stream should ensure that the patches the user

operate on are of high �delity�the edit propagation mechanism works better on a
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faithful HDR image than one with saturated, blurry, or underexposed regions. As

such, the streaming frames are metered using a greedy, histogram-based HDR meter-

ing, rather than applying the appearance-based metering in Chapter 5. The exposure

for the next frame is chosen by evaluating how well it covers the log-luminance his-

togram of the scene, after discounting bins in the histogram that are covered by the

latest N − 1 frames. These are the frames that are expected to be blended with the

target frame, as described in Section 6.2.4. For a relatively static scene and stable

camera, this scheme converges quickly to a reasonable solution.

6.2.2 Image Acquisition for Focal Stack Application

The built-in lens module of the tablet is equipped with a voice coil motor that can

move the lens in order to focus. The software stack for the tablet implements the

FCam API[49], and using this API, a command for moving the lens is issued after

receiving each frame. Empirically, the real-time lens position returned by the API

was not accurate when the lens is moving, as internally it operates by assuming that

the lens travels at a constant speed, whereas the lens typically overshoots its target

position and converges to it over time. As such, a delay of 3 frames was necessary

after issuing the command to guarantee that the lens position returned was accurate.

As such, we issue the command to move the lens at 1/3 of the frame rate. The target

focus value is cycled from the set {0.0, 4.0, 7.0, 10.0} in diopters. The returned raw

image data is demosaicked and cached separately for each target focus value.

6.2.3 Registration and Alignment

In both applications, a moving window over the stream of incoming frames is used to

de�ne the set of images to be combined together. As such, rudimentary registration

and alignment of the frames are required to avoid ghosting artifacts. On the x86

platform, feature points are found from the source frame in a strati�ed manner,

and they are searched for in the target frame. For the matching keypoints, sparse

�ow vectors are recovered by running a pyramidal implementation of the Lucas-

Kanade feature tracker [69] in the OpenCV library after histogram equalization, and
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a homography is computed from the �ow vectors. On the tablet platform, each camera

frame is tagged with metadata from the inertial measurement unit using the FCam

API [49], recording the quaternion of the orientation. A homography is then recovered

under the assumption that the center of the rotation coincides with the center of the

tablet. Then, the frames in the moving window are warped to align with the most

recent frame. The homography between each pair of frames consecutive in time is

cached, so that only one registration operation is needed per each incoming frame; the

homography between the latest frame and any other previous frames can be computed

by accruing the pairwise homographies.

For the focal stack applications, the frames at di�erent focus values may have

slightly di�erent levels of zoom [43]. To address this discrepancy, photographs of a

calibration setup is obtained at various focus distances with the tablet, and scalars

relating the relative zoom levels is computed by extracting SIFT features [88] and

solving for a scale transform about the center of the frame. The resulting scale factors

are applied to each incoming frame to ensure that the �eld of view stays constant.

Note that this calibration procedure is needed to be performed only once per device.

Table 6.1 lists the scale factors recovered for the tablet used. For intermediate focus

distances, the scale factor was linearly interpolated in diopter space from the nearby

known values.

6.2.4 Image Blending for HDR Application

Once the N frames in the moving window are registered and aligned, the frames

are then merged into an HDR radiance map in LogLUV format [23], which accounts

for the nonlinearity of human visual system. The blending of the individual frames

follows a formula based on the work of Robertson et al. [94]:

Iout(x, y) ∝

∑N
i=1wi(Ii(x, y)) · Ii(x, y)

Ei∑N
i=1wi(Ii(x, y))

,where

wi(p) = E2
i

(
exp

{
−16 ·

(
p− 1

2

)2
}
− exp

{
−16 ·

(
−1

2

)2
})

. (6.1)
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Diopters Focus Distance Scale Factor
0.0 ∞ 1.00000
1.0 1.00m 0.99664
2.0 50.0cm 0.99343
3.0 33.3cm 0.98996
4.0 25.0cm 0.98676
5.0 20.0cm 0.98348
6.0 16.7cm 0.98079
7.0 14.3cm 0.97739
8.0 12.5cm 0.97442
9.0 11.1cm 0.97117
10.0 10.0cm 0.96845

Table 6.1: Table of scale factors for correcting the change in �eld of view as a function
of focus, for the focal stack application on the NVIDIA Tegra3 tablet.

Here Ei is the exposure time of the i-th frame; Ii(x, y) is the pixel at (x, y) of the i-th

frame. The formula in Equation (6.1) penalizes pixel values that deviate from 0.5,

and the penalty is o�set so that saturated or blank pixels have zero weight. This o�set

is necessary because there will almost always be saturation in the longest exposure.

6.2.5 Image Blending for Focal Stack Application

In the focal stack application, an all-focus image serves as a proxy for the scene,

meaning that image patches for the purpose of high-dimensional lookup are drawn

from this all-focus composite. This is in order to ensure that defocus blur does not

interfere with the patch-based texture selection algorithm described in Chapter 4. To

compute the all-focus image, a sharpness measure M at each pixel is de�ned to be

the sum of the absolute response to the two 3x3 oriented Laplacian kernels.

M :=

∣∣∣∣∣∣∣∣


1 −2 1

1 −2 1

1 −2 1

⊗ I
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣


1 1 1

−2 −2 −2

1 1 1

⊗ I
∣∣∣∣∣∣∣∣ (6.2)

The cached frames at each of the four focus distances are uploaded to the GPU,
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and a GLSL shader is used to convert them to grayscale and then apply Equa-

tion (6.2). A 32-bit RGBA texture is generated by collecting the pixel values from

the frame with the highest response at each pixel. The alpha channel is used to hold

the focus distance of the corresponding frame, and is mathematically equivalent to a

depth map. The CPU converts the returned RGBA texture to LogLUV format, so

that the focal stack application can use the same pipeline as the HDR application

onward.

6.3 User Interface

READY

SELECTION

Splat

Splat

CONFIRM

SELECTION

PICK

EDIT TYPE

Display
UI widget

ADJUSTMENT

ADJUSTMENT

IN PROGRESS

Hide
UI widget

Reset
Selection

Visualize
editFinalize

edit

Figure 6.3: A diagram of the state machine for the view�nder editing applications.
Circles represent distinct states in the state machine. A solid arrow is a transition
via a touch-down event; a dashed arrow is a transition via a touch-up event.

Both applications employ a touch-based user interface. The user interface inter-

nally relies on a simple state machine, as illustrated in Figure 6.3. The transitions

between states are triggered by touch-on and touch-o� events. On the desktop plat-

form, mouse events are used instead.

Selections are indicated by an alternating pair of translucent diagonal stripes, one

white and one black, scrolling over time. Refer to Figure 4.1 for an interaction that

traverses across the states of the state machine.
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6.3.1 Edit Modalities

Depending on the e�ect the user wants to achieve on his photographs or videos, the

system can enable di�erent kinds of edits. The basic modality supported by the

system is a general-purpose one in which the user selects regions and change the

brightness, saturation or hue. This modality is demonstrated in [11]. The process of

specifying a hue edit is demonstrated in Figure 4.1.

In subsequent work, two additional modalities were implemented for view�nder

editing. In the �rst, the view�nder begins desaturated, and the user can selectively

restore regions to its original color, enabling the user to easily obtain an image in which

everything but a speci�c object is desaturated. In the second, the user can additively

paint desaturated regions with red, green, or blue, allowing her to re-colorize the

scene, using the following mathematical formula:

{rout, gout, bout} := yin · ({S1(·), S2(·), S3(·)}+ {1, 1, 1}) , (6.3)

where S1(·), S2(·), S3(·) ∈ [−1, 1] are the edit map values returned by the view�nder

editing module. As can be deduced from the formula, the user can increase the current

RGB values up to a factor of two, or completely mute individual channels. Figure 6.4

shows an example use case.

As mentioned before, a separate application implements the focus editing. In this

application, focus edit replaces exposure edit from the basic modality.

All in all, each application instance supports three distinct types of edits. This

requires 3 edit masks (S1, S2, S3) in addition to the selection mask (S0). Hence,

the underlying permutohedral lattice represents a function mapping 16-dimensional

texture descriptors (dp = 16) to 8 values (dv = 8) corresponding to the four pairs of

homogeneous coordinates for the four masks.

6.3.2 Selection Inversion

The system supports a rudimentary form of inverting user selection, which is a com-

mon operation in many image editing programs. This feature is accessible from the



CHAPTER 6. IMPLEMENTATION 90

Figure 6.4: A demonstration of colorization of the scene. Left: The input scene is
shown, desaturated. Middle: Selecting a region and con�rming the selection brings
up a context menu with three icons, each corresponding to one of the primary colors.
Right: The user has chosen to paint the wall red, and the view�nder re�ects the edit
in real time. The screenshots are from the tablet implementation.

UI widget that appears when the user con�rms his selection. When this feature is

engaged, the selection mask returned by the view�nder editing module is �ipped prior

to visualization. In practice, however, simply replacing every value of the selection

mask S0(x, y) with 1.0 − S0(x, y) does not work well, because most selected patches

tend to have a selection value well below the maximum. Hence, a mapping that

clamps the input from above will create a more visually pleasing result:

S0(x, y)←− 1.0− max(0.5, S0(x, y))

0.5
. (6.4)

Folding the edit into the lattice requires a special care, because an edit with in-

verted selection must apply to any future patches that have not yet been encountered.

Hence, this is implemented by amending the default return value of the lattice appro-

priately, and then applying the uninverted edit to the values for all existing vertices.

6.4 Rendering Pipeline

After the view�nder editing module processes the incoming image data and user

inputs, the results are rendered onto the screen using OpenGL ES shaders. Figure 6.5

summarizes the rendering pipeline for the two applications.
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Figure 6.5: A diagram of the rendering pipelines. Top: The rendering pipeline for
the HDR application. The inputs to the stage are the LogLUV radiance map and
the edit masks. Bottom: The rendering pipeline for the focal stack application.
The inputs to the stage are the 4-frame focal stack described in Section 6.2.2, along
with the scene depthmap and the edit masks. In both stages, the output is the RGB
pixel values to be displayed. The darker rectangles are modules for algorithmic or
arithmetic operations.
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6.4.1 Rendering for HDR Application

The rendering pipeline for the HDR application involves tonemapping the LogLUV

radiance map to screen-space RGB, then to HSL space [95] to apply the hue and

saturation edits, and then �nally converting back to RGB for �nal display. Because

both LogLUV radiance map and the edit masks are 32-bit-per-pixel images, uploading

them to GPU via OpenGL calls are straightforward.

Exposure edits can be applied by additively shifting the log-luminance value ap-

propriately by the edit mask values. This operation is equivalent to adjusting the

�stops� in a photograph and is well-understood. Mathematically, the mask values

in [−1, 1] were mapped linearly to a range of twelve stops ([−6, 6]). However, sim-

ply adjusting the log-luminance value tends to compress the contrast. Under the

assumption that the edited regions are more salient to the user, local contrast was

additionally enhanced by �rst computing the smooth base layer of the log-luminance

channel via domain transform [59] and then interpolating away from this base layer

appropriately as shown in Equation (6.5):

LogL(x, y) := [LogL(x, y) + 6 · S1(x, y)]

+(LogL(x, y)−DT(LogL)(x, y)) ·max(6 · S1(x, y), 0). (6.5)

Consistent with the assumptions made in the camera control algorithms, the

tonemapping stage uses the method proposed by Reinhard et al. [31] to convert the

resulting LogLUV value to RGB. Then, hue edits are applied by shifting the present

hue value in the [0, 6] range by twice the mask value in [−1, 1], and then taking the

remainder modulo 6 so that the �nal hue value falls in [0, 6]. Saturation edits are

applied by also shifting the present saturation value in the [0, 1] range by the mask

value in [−1, 1] and clamping to [0, 1]. Hence, regardless of the current saturation

level, the user can completely saturate or desaturate the pixel by specifying the ap-

propriate mask value. For the other modalities discussed earlier, the edits are easily

implemented via the GLSL mix function.

Finally, the visualization for the selection mask can be added. See Appendix A

for the GLSL shader code that accomplishes the rendering.
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6.4.2 Rendering for Focal Stack Application

The rendering pipeline for the focal stack application �rst requires the computation

of the desired depth at each pixel, denoted by ẑ(x, y) in Chapter 5, from the scene

depthmap and the focus edit mask as described earlier. Because focal stack slices are

available only at �xed focus distances, the GLSL shader determines the closest focus

distance to ẑ(x, y) and indexes into the appropriate focal stack slice, generating a

focal stack composite. The rest of the pipeline is the same as in the HDR application:

hue and saturation edits are applied after temporary conversion to HSL space, and

the selection mask is added at the end.

6.5 High-Resolution Capture and O�ine Processing

Once the user is satis�ed with the composite shown on the view�nder, he can order an

appropriate stack to be captured at higher resolution by pressing an on-screen button.

In contrast to the view�nder stream that does not make use of the appearance-

based camera control, the high-resolution capture con�gures a vector of frames to

be acquired in accordance with the optimal parameters. Because the camera drivers

in the two implementations do not support dynamic resizing of the camera bu�er

without restart, the system orders the frames at same size (1296x972 for the tablet,

and 1280x960 for the PointGrey camera). However, the demosaicking step forgoes

downsampling, and instead demosaics at the same resolution via adaptive color-plane

interpolation [96] as implemented in ImageStack utility [97]. Larger image sizes were

possible with the given sensors, but changing image resolutions via the appropriate

API calls would have required restarting the camera pipeline and incurred delay.

Along with the exposure (or focal) stack, the system exports other metadata,

such as a copy of the current instance of the permutohedral lattice and the capture

parameters, to be used in further processing. The processing applied to the higher-

resolution stack is roughly equivalent to the real-time pipeline for the view�nder.

However, several steps are performed with higher �delity in order to minimize visual

artifacts in the �nal result. The subsequent sections describe these steps.
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6.5.1 Homogeneous Edit Propagation

For the high-resolution LogLUV radiance map, the per-patch descriptor is com-

puted at every possible 16x16 overlapping patch instead of at each 8x8 or 16x16

non-overlapping patch. While this extension increases the cost of descriptor compu-

tation and lattice lookup signi�cantly, it promises a good quality for the resulting

edit masks. As a result, the edit masks produced by the lattice are already of the

same scale as the input data, and no upsampling is required. However, edge-aware

smoothing with domain transform is still necessary in order to ensure that the edit

masks are noise-free and conform to the strong edges in the scene.

To enhance the mask quality further, domain transform is performed in homo-

geneous coordinates: that is, mask values to be smoothed are considered to have

con�dence associated with them. The con�dence values arise naturally from the per-

mutohedral lattice in the form of the vertex weights. The use of the con�dence value

in the permutohedral lattice to enhance the quality of a smoothed map has been

documented in prior work, e.g. in spatiotemporally �ltering of depth data [98].

To implement this homogeneous domain transform, all 8 channels returned by

the permutohedral lattice are processed independently. However, because the edge

weights from the reference image can be shared, one can interleave the 8 channels�

each a 32-bit �oating-point image�and vectorize the code for 256-bit-wide �oating

point vectors. Once the channels are smoothed, they can be dehomogenized as before

to arrive at four 8-bit edit masks.

Note that homogeneous edit propagation requires �ltering 8 channels rather than

4 channels in case of non-homogeneous edit propagation, so the runtime doubles. A

CUDA [99] implementation of domain transform would signi�cantly speed up the

execution of domain transform, for both online and o�ine work. While CUDA-

capable mobile devices are not yet available at the time of this dissertation, at least

one such SoC (system on chip) has been announced [100], and preliminary results

indicate that several milliseconds will su�ce for processing VGA-resolution data with

domain transform.
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6.5.2 Manifold-Preserving Edit Propagation

There exists a body of work in high-quality edit propagation for still images and

videos. One recent method by Chen et al. [62], called manifold-preserving edit propa-

gation (MPEP hereafter), expresses each pixel as a linear combination of nearby pix-

els, and enforces the resulting linear relationship on the mask values. This structural

constraint helps generate high-quality masks. Hence, after edit masks are smoothed

with domain transform, they can be further re�ned via MPEP.

Formally, MPEP requires an input mask, along with a binary map indicating

whether the value of the input mask at a given pixel is reliable or not. (For existing

applications of MPEP, the binary map is typically provided by user strokes.) To ac-

commodate this input requirement, the edit masks are thresholded by the smoothed

con�dence values, and are morphologically eroded. The remaining values are con-

sidered reliable: the idea is to mark the boundary regions between selected and

unselected regions as unknown, so that MPEP algorithm can �ll in these regions.

Figure 6.6 demonstrates the overall improvement of the edit masks via o�ine pro-

cessing, after homogeneous edit propagation and MPEP are applied.

Figure 6.6: Improving edit mask quality o�ine. Left: An unedited view�nder frame
from the tablet implementation, which has already undergone HDR blending and
global tonemapping. Middle: The view�nder frame with edits made by the user,
displayed live on the tablet screen. In this example, the user has requested a brighten-
ing of the unlit side of the building. Right: The �nal output after additional o�ine
processing. The insets in the middle and right images show the computed mask be-
fore and after o�ine re�nement. In the re�ned version, the selected region is more
homogeneous and its edges are sharper. While imperfect, the real-time result in the
middle is su�cient to give the user a feel for the �nal photograph.
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6.5.3 Focal Stack Compositing

For o�ine processing of focal stack compositing, the aforementioned extensions are

also applied in mask generation. In addition, the depthmap obtained from maximizing

the contrast measure is smoothed with a cross-bilateral �lter, as done in [43], before

being used to compute the index map for the desired depth.



Chapter 7

Results and Discussion

Chapter 6 discussed the implementation of a system that realises view�nder editing

and engages in computational photography. This chapter showcases some of the

results created with this system, and reports on the runtime performance. A total of

three separate applications are considered: high-dynamic-range (HDR) imaging, focal

stack composition, and live video editing. See Chapter 5 for qualitative evaluation of

the proposed HDR metering algorithm against prior work. The results contained in

this chapter are meant to display the range of pragmatic use cases and the situations

in which view�nder editing is useful.

7.1 Appearance-based HDR Acquisition

In this application, the user makes tonal and color edits on the view�nder in order to

drive HDR acquisition. During the editing session, the user may alter the tone, hue,

or saturation locally, or tweak the global tonemapping. Once the shutter is actuated,

the camera application orders the image sensor to capture high-resolution images at

the exposure(s) chosen by the appearance-based HDR metering. Figure 7.1 shows

some empirical results, in addition to those shown in Section 5.3.
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7.2 Appearance-based Focal Stack Acquisition

As described in Section 6.2.2, the lens module on the Tegra3 tablet was driven to

cycle through multiple focus values in order to provide a �live� focal stack to the

camera application, which then combines the stack into a composite and enables the

user to perform edits on the said composite. Figure 7.2 and Figure 7.3 demonstrate

two user interactions and the resulting composites.

It was found that for most practical scenes, local edits were crucial for producing

a pronounced reduction in depth of �eld. The chief reason is that multiple objects at

a meter away or farther (0.0− 1.0 diopters) will have approximately equal-sized blur,

since the circle of confusion grows with the depth disparity in diopters. Hence, global

edits cannot cause them to have distinctive blurs.

Lastly, producing a faithful all-focus image while the camera is quickly moving is

di�cult because of registration artifacts: a strong edge that is incorrectly registered

will create ghosting. This can be quite jarring to the user. Turning o� image blend-

ing when the camera is moving fast mitigated this problem, since the user cannot

distinguish between the ghosting artifacts and the motion blur of the device itself.

7.3 Live Video Editing

The view�nder editing algorithm is fast enough to be used in editing live videos as they

are �lmed. This obviates the need to revisit the videos afterward and decode them

for processing. Figure 7.4 demonstrates an example. A full video of the interaction,

along with additional results, are available on the project website [101].

Many existing edit propagation algorithms operating on o�ine videos require

keyframes containing user strokes every 20 frames or so [102], whereas the proposed

method does not. The need for keyframe is tied to the fact that the spatial locations

of the edits are used in these algorithms: if objects are displaced signi�cantly over

time, then the spatiotemporal distance in patch space becomes large enough that

edits do not properly stick. The proposed method, in contrast, places no emphasis on

spatial or temporal distance, obtaining robustness against scene and camera motion.
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Figure 7.1: Additional results of HDR capture with view�nder editing, demonstrating
various scenarios in which view�nder editing is useful. Left: Results without local
edits. Right: Results with local edits. The images were locally brightened and/or
darkened, or had saturation adjusted, after which appropriate exposure stacks were
acquired.
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(a) A still shot of the user interaction

(b) Results without local edit (c) Computed mask for focus edit

(d) Results with local edit (e) Reference photograph

Figure 7.2: Focus edit for the racer scene. (a): A still shot of the user interaction
on the tablet. (b): The result that was presented to the user initially. (c): The edit
mask computed for focus edits. Red corresponds to sharpening, and blue corresponds
to blurring. (d): The result after the user performs local edits. The focal stack was
appropriately indexed to generate this composite. (e): A reference photograph taken
by the tablet, focused on the foreground. The edited result in (d) simulates a far
wider aperture than what is physically possible on the device.
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(a) A still shot of the user interaction

(b) Results without local edit (c) Computed mask for focus edit

(d) Results with local edit (e) Reference photograph

Figure 7.3: Focus edit for the lego scene. (a): A still shot of the user interaction
on the tablet. (b): The result that was presented to the user initially. (c): The edit
mask computed for focus edits. Red corresponds to sharpening, and blue corresponds
to blurring. No further blur was requested by the user. (d): The result after the
user performs local edits. The focal stack was appropriately indexed to generate
this composite. (e): A reference photograph taken by the tablet, focused on the
foreground. The edited result in (d) simulates a non-physical depth of �eld, allowing
the user greater artistic freedom than conventional devices.
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Figure 7.4: Edit propagation on a live video. (a): In this example featuring a faded
volleyball, the user marks a region as selected, corresponding to the ball's stripes as
shown. (b): The user then applies an edit to accentuate the color, restoring the
unfaded look. (c-e): This edit can be seen persisting through frames #150, #300,
and #420 of a 30-fps video sequence, despite considerable motion of the ball between
frames and the resulting motion blur. See the supplementary video on the project
page [101] for the entire sequence.



CHAPTER 7. RESULTS AND DISCUSSION 103

7.4 Performance

The implementation of view�nder editing has undergone several iterations of engineer-

ing throughout the lifetime of the project, with each iteration improving the runtime

of a module via parallelism, vectorization and algorithmic improvements. Figures

from various stages of engineering are reported.

Task
Platform

Laptop (Intel x86) Tablet (ARM, Tegra3)
HDR blending 12.18 ms 48.46 ms

Patch descriptor computation 1.49 ms 18.37 ms
Lattice lookup 3.34 ms 12.92 ms

Domain transform 8.77 ms 24.64 ms
Appearance-based metering 1.79 ms 10.35 ms

GPU Processing 1.70 ms 44.38 ms
Total 29.27 ms 159.12 ms

RAW capture rate 20.0 FPS 10.0 FPS
Application FPS 34.2 FPS 6.3 FPS

Table 7.1: Runtime on both laptop and tablet implementations for the HDR appli-
cation. Timing of the view�nder editing framework at VGA resolution are reported.
The GPU processing consists of LogLUV decoding, tonemapping, applying edits, and
UI rendering. Note, however, that the implementation used is dated, without all the
optimizations. See Table 7.2 for more recent numbers.

Table 7.1 summarizes the breakdown of the runtime of the HDR application on

both the laptop and tablet platform, at the time of the submission of the project to

the SIGGRAPH Asia 2013 conference [11]. There are a few interesting observations

to be made from the breakdown. First, real-time HDR blending was quite costly, and

was the most time-consuming step for either platform. This step involves registering

individual LDR frames and blending them into a single HDR frame�see Section 6.2

for details. Warping multiple frames via homography is expensive on the CPU. While

warping texture on the GPU is faster, the cost of moving the image data back and

forth negated any performance gain. Also, handling HDR radiance map required

high-precision arithmetic in either full 32-bit �oating point or 32-bit �xed point,

which increased the �nal blending cost.
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The second observation is that the GPU portion of the application (color space

decoding, tonemapping, rendering) was exceedingly large for the tablet platform.

This was largely due to driver issues that had trouble channeling data between the

CPU and the GPU, and was improved in the subsequent generation of the hardware

running Tegra4, the successor to the Tegra3 SoC.

View�nder editing was in fact ported to a Tegra4 tablet, and the runtime break-

down is presented in Table 7.2, representing the most recent progress. For this mea-

surement, HDR blending and registration were turned o�, allowing the camera to

run at its native speed of 30 fps. Compared to the Tegra3 implementation used in

Table 7.1, the lattice lookup implements the linear-time quantization described in

Section 3.3, and domain transform was simpli�ed and optimized further. Multi-scale

approach described in Section 4.4.2 was added. Most importantly, the GPU overhead

largely disappeared, owing to improved drivers and �rmware. In the end, the system

boasts an impressive frame rate of 44.7 fps.

Task Runtime on Tablet (ARM, Tegra4)
Patch descriptor computation 8.64 ms

Lattice lookup 3.71 ms
Multi-scale composition 1.16 ms
Spatiotemporal �ltering 1.52 ms

Overhead 3.45 ms
Other 3.87 ms

Total 22.35 ms

RAW Capture rate 30.0 FPS
Application FPS 44.7 FPS

Table 7.2: Breakdown of the runtime on a Tegra4 tablet. A non-stack-based LDR
view�nder stream was processed. �Overhead� corresponds to the cost of multi-
threading, operating mutexes, function and application overheads. �Other� corre-
sponds to the cost of rendering and the time taken by the camera thread and other
system processes running on the background.
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7.4.1 Discussion

Neither platform�the PointGrey SDK nor the FCam implementation on the Tegra

tablets�on which view�nder editing was implemented supported per-frame alteration

of capture parameters. To alter camera parameters while streaming view�nder con-

tent, the camera module had to drop two frames. As a result, the rate at which the

camera application fetched image frames was cut in a third. In practice, this meant

that the PointGrey camera capable of running at 60 fps was actually providing an

LDR frame at 20 fps, so an entirely new HDR frame with an unoverlapping sliding

window was being obtained at 6.66 fps. The ability to alter capture parameters per-

frame without loss of frame rate is critical in stack photography applications. A fully

programmable camera module (like the Frankencamera [49]) would be necessary to

realise a full frame rate on today's mobile devices.

Lens shading, if left uncorrected, can a�ect the performance of texture matching.

The vignetting that results from lens shading is typically low-frequency and may be

inconspicuous to human eyes, but it can alter the appearance of the same texture

depending on its location relative to the center of the frame.

Programming mobile devices remains a challenge, as the available computes are

distributed among many subsystems, such as the CPU, the vector co-processor unit

(ARM NEON), the GPU and the DSP. The programmability of these subsystems also

varies wildly. Implementing view�nder editing and appearance-based camera control

encompassed writing C++ code, NEON intrinsics, handwritten assembly, and GLSL

scripts. Various multi-threaded and single-threaded schedules were tested manually.

Even then, the overall performance varied greatly, depending on the �aws and id-

iosyncrasies of various drivers and �rmware controlling the hardware�the narrative

surrounding Table 7.1 and Table 7.2 comes to mind. There are current e�orts to

facilitate harnessing computes from such a heterogeneous environment [103], which

would signi�cantly reduce the burden on the researchers for implementing a compute-

intensive algorithm on mobile platforms.
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Conclusions

This dissertation realises a full-�edged camera application running on a mobile plat-

form, introducing the notion of view�nder editing for the �rst time, and demon-

strating its usefulness in both regular photography and stack-based computational

photography. This system is made possible by simultaneous advances in several ar-

eas, including fast high-dimensional �ltering, appearance-based image editing, and

multi-exposure camera control. Each of these advances is validated by both theoret-

ical analyses and empirical experiments, showing improvement over the state of the

art in runtime complexity, runtime benchmarks, and/or the �nal image quality.

Each of these advances provides value in its own right: appearance-based camera

control is still applicable without any local editing. Appearance-based edit propaga-

tion can be applied to still images for still image manipulation. Fast high-dimensional

�ltering has many well-documented applications in other �elds, such as physics, �-

nance, and computer vision.

All of these advances were combined to enable view�nder editing, as described in

this dissertation. View�nder editing can be a powerful tool for enhancing both the

photography experience and the photographs themselves. This paradigm of enabling

new ways of content manipulation for photographers should lead to other applications

and contribute to the continued cultural success of photography.

In the remainder of this dissertation, the limitations of the proposed system are

considered, and avenues for future work are discussed.
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8.1 Usability Issues

The system was designed primarily to serve casual users. These are users who, sub-

consciously or not, derive more utility from the act of taking photographs than the

resulting photographs themselves, and as such, they will �nd the pre-capture inter-

action novel, valuable and engaging.

On the other hand, professional photographers will always be willing to take the

image manipulation o�ine in order to produce the best result. It will still be bene�cial

to augment the current system to allow post-capture edits, e.g. enable a more precise

speci�cation of the edits or corrections to the online result, so that the �nal output

can be re�ned. In any case, professionals can still bene�t from appearance-based

camera control, reducing the time required to capture an exposure or focus stack.

There were following concerns raised on the user interaction for the system by

observers and reviewers of the work.

Screen Brightness In a bright, sunny environment, the angle of the screen

surface with respect to the sun can sometimes cause glare, making it di�cult to prop-

erly see the content on the screen. There is also the issue of physiological adaptation

of the human visual system: if the user is staring into the sun and his eyes adapt

to the bright sky, the screen becomes comparatively dark. This is a fundamental

problem with electronic screens in outdoor environment, but OLED technology keeps

improving, nonetheless, towards eliminating this problem. As it stands, the screen

is viewed unhampered in an indoor environment, or in outdoors on an overcast day.

The metering, editing and capture algorithms still work as intended in all situations.

Ergonomics It was found that the form factor of a tablet supported

more precise edits than that of a smartphone, simply by the virtue of having a larger

screen�7-10 inches in diagonal, compared to 3-5 inches for a typical smartphone. At

the same time, however, the larger mass can put more strain on the user, since users

typically support the device with only one hand, making strokes on the screen with

his other. Other types of input modalities for mobile devices, such as voice or gaze

tracking, are on the rise currently, and may be able to help ameliorate the ergonomics

issue in the future.
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Input Precision Specifying edits via sparse strokes on a touch interface

has been commonly employed in many recent papers. However, it is inherently less

precise than other input modalities available on deskside environment, like a trackball

or a mouse. A stylus may be able to provide a more precise input. There is also recent

research on tolerating user mistakes on sparse strokes [104], which would enhance the

user interaction considerably when applied to the current system.

8.2 Algorithmic Issues

The limitations of mobile platforms render the underlying algorithms less precise and

less robust than their desktop implementations. Some limitations of the underlying

algorithms and future work are discussed.

Latency Almost all digital imaging systems exhibit some level of

latency: the view�nder screen lags behind the physical world by some time. The

current system is pipelined so that the view�nder imagery has no visible latency

beyond that of a typical digital camera, but the edit masks are behind by 20-120 ms,

depending on the platform. In practice, this delay did not hinder the user experience

substantially. Further optimization should reduce it to a more reasonable amount on

existing hardware. In comparison, some commercial products, such as Sony DSC-

QX10 lens [105] that connects to a smartphone via wireless, exhibit latency in the

order of a second for the view�nder content.

Frame rate Most digital camera view�nders run at 30 fps, which the

current implementation of the system can keep up with at VGA resolution. Higher

frame rates, such as 60 fps or even 120 fps, are becoming more popular, however. For

the live video editing application, processing 1080p video at 120 fps represents a 27-

fold increase in the number of pixels to process in a given unit of time, and will require

signi�cant increase in the capabilities of the hardware, along with improvements in

the algorithm. It is worthwhile to note that CUDA-capable mobile devices have been

announced [100]. The permutohedral lattice [8] has been implemented on CUDA,

and so has domain transform. Moving these compute-intensive operations fully onto

the GPU may already go a long way.
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Handling texture The proposed algorithm in Chapter 4 is not as robust as

some existing algorithms that propagate edits onto o�ine datasets. This di�erence

is a design choice: it arose primarily as a result of the substantially less available

compute in mobile devices. Also, the view�nder stream tends to exhibit noise and

other de�ciencies, compared to the clean images and videos typically used to evaluate

edit propagation algorithms.

The biggest di�culty that was encountered in manipulating live view�nder con-

tent was handling objects with diverse texture. Objects with relatively simple texture,

such as sky, foliage, building façades, faces, are easy to select and manipulate. On the

other hand, cabinets containing various objects, heavily checkered fabric and other

heavily textured surfaces were troublesome. Multi-scale processing (Section 4.4.2) was

introduced in the second iteration of the system in response to these objects. How-

ever, because the texture classi�cation occurs on a subsampled grid (Section 4.4.1) and

the ensuing spatial smoothing (Section 4.4.3) is only edge-aware instead of �texture-

aware,� the online result has di�culty generating a clean mask that preserves strong

edges between texture boundaries. A truly �texture-aware� spatial smoothing algo-

rithm in place of domain transform would solve this issue. In addition, increase in

the computing power of mobile device should close the gap between o�ine and online

performances in the future.

Illumination Because the proposed edit-propagation method is based

on the local appearance, illumination currently plays a larger role in determining

whether an object is fully selected than it ought to. This can cause problems in two

ways: �rst, for a surface with su�ciently specular component in its re�ectance, the

angle at which the camera points at the surface will alter its brightness. Second, a

large surface may be unevenly lit, and the di�erence in the brightness levels of two

regions at either end of the surface can be large enough that stroking over one end

does not select the other end of the surface.

Because spatial propagation of edits can overcome the conservative selection caused

by illumination issues, identifying which image patches become selected via domain

transform and then splatting them into the lattice as a feedback system may help

ameliorate this issue.
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Scale and focus If the object moves towards or away from the sensor, the

size of the object as seen in the view�nder will change, enlarging or shrinking the

relevant textures. For complicated textures, the resized patches may su�ciently be

di�erent from the originals. Also, the degree of sharpness of its texture may also

change, depending on the extent of the motion. In practice, the algorithm can handle

minor changes in scale and sharpness, but is not entirely robust against them.

8.3 Extensions

View�nder editing and other modules developed in this dissertation can be extended

or improved in various ways, beyond what has been discussed already in Sections 8.1

and 8.2. A few examples are studied here.

Spatial locality Because the selection is based on appearance, distinct

objects that share the same appearance cannot be disambiguated currently. If the

user wants to select one out of multiple identical objects, some notion of image-

or world-space coordinates will be necessary, which can be provided by 2D- or 3D-

tracking. Once image- or world-coordinates that compensate for camera motion are

available, they can be included in the texture descriptor in order to localize edits,

as done already in many edit-propagation works that deal with a single photograph.

Handling scene motion, however, is an area of open research in computer vision.

Geometric edits All edits currently supported by the system are photo-

metric, per-pixel edits, with the exception of focus edits. One can consider geometric

edits, such as distortions, object removal, duplication, in the style of Barnes et al. [106]

as an example. However, such algorithms are very expensive even with a powerful

desktop, considerably more so than appearance-based edit-propagation algorithms.

A plausible approach may be to obtain a planar (or otherwise simple) proxy for

the target, perform geometric edits on the proxy, and display the edited proxy on top

of the view�nder content in the proper orientation and scale to compensate for any

change in the camera pose.

Common textures Some textures are prone to being manipulated by users

across many cases, such as the sky, foliage and faces. These textures can be learned
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a priori and found via face detection [50] and other specialized searches that may be

more e�cient than the general texture-matching in the permutohedral lattice.

Presets In the current implementation, the current state of the

permutohedral lattice can be saved along with the view�nder content and be loaded

again, so that the same type of edit can be applied to multiple photos or scenes. This

practice can be generalized as presets, enabling the users to plan and save edits prior

to a shoot, or save useful edits after a shoot for future events. For instance, it would

be interesting to attend a sporting event armed with a preset in which the appearance

of the ball is enhanced or edited in some way, as in Figure 7.4. However, for presets

to be truly useful, the algorithm will have to be improved in order to handle subtle

changes in illumination, scene scale and focus settings.

Power e�ciency This thesis does not address one important aspect of

mobile application design, which is power e�ciency. Mobile devices have limited

battery capacity. Future work will bene�t from carefully incorporating the power

requirements into design decisions.

8.4 Closing Remarks

In the strictest sense of the words, the notion of view�nder editing is not new. Photog-

raphers have always had the ability to alter what �ows through their view�nders by

physically moving their devices, and turning the knobs to manually adjust exposure,

gain and focus. More recently, photographers have been able to tap on the electronic

view�nder to drive touch-to-exposure or touch-to-focus algorithms. This dissertation

further extends the photographers' ability to direct their content creation process by

allowing local edits prior to capture, and demonstrates its bene�ts for both the user

and the camera application. Especially in this day and age when uploading and shar-

ing photos immediately after capture is popular (and even being the default option

for many camera applications), enabling such creative control prior to capture is an

exciting avenue of work.

As with any endeavor to develop a full end-to-end system, this dissertation has

encountered challenges in several places, with some fruitful results. Both individual
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parts and the system as a whole�along with insights and observations mined from

the engineering e�ort�will be useful to researchers in the �eld of computational pho-

tography, and to others who are tackling problems requiring fast high-dimensional

lookup, better camera control algorithms, et cetera. Finally, we hope that this disser-

tation inspires and enables future e�orts to reinvent the experience of taking photos

in the 21st century.



Appendix A

GLSL Shader for HDR Application

p r e c i s i o n mediump f l o a t ;

uniform sampler2D uLogLUV ;

uniform sampler2D uMasks ;

uniform sampler2D uBlurredL ;

uniform f l o a t uFormulaK ;

uniform f l o a t uReinhardScalar ;

uniform f l o a t uTargetExposure ;

uniform f l o a t uFractionalTime ;

uniform vec3 uColorScale ;

uniform in t uEditInProgress ;

vary ing vec2 vTexCoord ;

mat3 XLZ_TO_RGB = mat3 ( 2 .5651 , −1.0217 , 0 .0753 ,

−1.1665 , 1 .9777 , −0.2543 ,
−0.3986 , 0 .0439 , 1 .1892 ) ;

void main ( void )

{

vec4 LogLUV = texture2D ( uLogLUV , vTexCoord ) ;

vec2 LogL = LogLUV . xy ;

f l o a t U = LogLUV . z ;

f l o a t V = LogLUV . w ;

vec4 mask = texture2D ( uMasks , vTexCoord ) ;

vec2 LogLBlurred = texture2D ( uBlurredL , vTexCoord ) . rg ;

const f l o a t LOG2 = 0.6931472 ;
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// Construct the l i n e a r luminance .

f l o a t logEdit = ( ( mask . y − 0 .5 ) ∗ 2 .0 ) ∗ 6 . 0 ;

LogL . x = dot ( LogL . xy , vec2 ( 255 . 0 , 255 .0 ∗ 256 .0 ) ) ;

LogLBlurred . x = dot ( LogLBlurred . xy , vec2 ( 255 . 0 , 255 .0 ∗ 256 .0 ) ) ;

LogL . x = ( LogL . x − LogLBlurred . x ) ∗ ( 1 . 0 + max( logEdit , 0 . 0 ) ) + LogLBlurred . x ;

f l o a t L = exp ( ( LogL . x / 256 .0 − 64 .0 + logEdit ∗ 0 . 5 ) ∗ LOG2 ) ∗ ←↩
uTargetExposure ∗ uFormulaK ∗ uReinhardScalar ;

// Convert to RGB a f t e r Reinhard tonemapping .

U = U ∗ 0 . 6 2 ;

V = V ∗ 0 . 6 2 ;

f l o a t S = 1.0 / ( U ∗ 6 .0 − V ∗ 16 .0 + 12 . 0 ) ;

U = U ∗ S ∗ 9 . 0 ;

V = V ∗ S ∗ 4 . 0 ;

vec3 XLZ = vec3 (U , V , 1.0−U−V ) ∗ ( L / V ) ;

mat3 colorScaleMatrix = mat3 ( uColorScale . r , 0 . 0 , 0 . 0 , 0 . 0 , uColorScale . g , 0 . 0 , ←↩
0 . 0 , 0 . 0 , uColorScale . b ) ;

vec3 rgb_linear = XLZ_TO_RGB ∗ colorScaleMatrix ∗ XLZ ;

f l o a t maxRGB = max(max( rgb_linear . r , rgb_linear . g ) , rgb_linear . b ) ;

f l o a t Lnormalized = ( L / ( L + 65535 .0 ) ) ;

vec3 normalizer = mix ( vec3 (L , L , L ) , rgb_linear , Lnormalized ∗ Lnormalized ) ;

rgb_linear = rgb_linear / ( normalizer + 65535 .0 ) ;

vec4 rgb = vec4 ( rgb_linear , 1 . 0 ) ;

// Convert from RGB to HSL

vec3 hsl ;

bvec3 comp1 = greaterThanEqual ( rgb . xyz , rgb . yzx ) ;

bvec3 comp2 = greaterThanEqual ( rgb . xyz , rgb . zxy ) ;

vec3 max_finder = vec3 ( comp1 ) ∗ vec3 ( comp2 ) ;

max_finder . y = max_finder . y ∗ ( 1 . 0 − max_finder . x ) ;

max_finder . z = max_finder . z ∗ ( 1 . 0 − max_finder . x − max_finder . y ) ;

f l o a t max_rgb = dot ( max_finder , rgb . xyz ) ;

f l o a t min_rgb = min(min ( rgb . x , rgb . y ) , rgb . z ) ;

f l o a t delta = max_rgb − min_rgb ;

hsl . z = ( max_rgb + min_rgb ) ∗ 0 . 5 ;

hsl . y = delta / (1 .0001 − abs ( 2 . 0 ∗ hsl . z − 1 . 0 ) ) ;

hsl . x = dot ( max_finder , vec3 ( 0 . 0 , 2 . 0 , 4 . 0 ) ) + ( dot ( max_finder . zxy , rgb . xyz ) − ←↩
dot ( max_finder . yzx , rgb . xyz ) ) / ( delta + 0.0001) ;

hsl . x = f r a c t ( hsl . x / 6 . 0 ) ∗ 6 . 0 ;

mask . z = sqr t ( abs ( mask . z − 0 . 5 ) ∗ 2 . 0 ) ∗ 0 .5 ∗ s i gn ( mask . z − 0 . 5 ) + 0 . 5 ;

// Apply hue ed i t .

hsl . x = f r a c t ( ( hsl . x + ( mask . z − 0 . 5 ) ∗ 4 . 0 ) / 6 . 0 ) ∗ 6 . 0 ;

// Apply s a tu r a t i on ed i t .
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i f ( hsl . y > 0 . 0 )

{

hsl . y = clamp ( hsl . y + ( mask . w − 0 . 5 ) ∗ 2 . 0 , 0 . 0 , 1 . 0 ) ;

}

// Convert from HSL back to RGB.

f l o a t c = (1 . 0 − abs ( 2 . 0 ∗ hsl . z − 1 . 0 ) ) ∗ hsl . y ;

f l o a t q = f r a c t ( hsl . x ∗ 0 . 5 ) ;

f l o a t x = c ∗ ( 1 . 0 − abs ( q ∗ 2 .0 − 1 . 0 ) ) ;

rgb . x = c ;

rgb . y = x ;

rgb . z = 0 . 0 ;

i f ( q >= 0 . 5 )

{

rgb . xyz = rgb . xzy ;

}

i f ( hsl . x >= 1.0 && hsl . x < 3 . 0 )

{

rgb . xyz = rgb . zxy ;

}

e l s e i f ( hsl . x >= 3.0 && hsl . x < 5 . 0 )

{

rgb . xyz = rgb . yzx ;

}

rgb . xyz = rgb . xyz + vec3 ( hsl . z − 0 .5 ∗ c ) ;

// Draw the s e l e c t i o n mask .

i f ( uEditInProgress == 0)

{

mask . x = max( 0 . 0 , mask . x − 0 . 1 ) ∗ ( 1 . 0 / 0 . 9 ) ;

f l o a t r = f r a c t ( ( vTexCoord . x ∗ 1 .333 + vTexCoord . y ) ∗ 20 .0 + uFractionalTime ←↩
∗ 0 .001 ) ;

i f ( r < 0 . 3 )

{

rgb = mix ( rgb , vec4 ( 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ) , mask . x ∗ 0 . 5 ) ;

}

e l s e i f ( r > 0 . 7 )

{

rgb = mix ( rgb , vec4 ( 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) , mask . x ∗ 0 . 5 ) ;

}

}

gl_FragColor = rgb ;

}
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Fast Quantization Source Code

The following code snippet can be dropped into the publicly available implementation

of the permutohedral lattice from Adams et al. [8], replacing the method with the

same signature. Refer to Algorithm 3.4 for more concise pseudocode, and Section 3.3

for commentary.

template<in t kd , i n t vd> void PermutohedralLattice<kd , vd>:: slice ( const f l o a t ∗ ←↩
position , f l o a t ∗ const value )

{

f l o a t elevated_tmp [ kd + 1 ] ;

f l o a t barycentric_tmp [ kd + 2 ] ;

shor t greedy_tmp [ kd + 2 ] ;

i n t rank_tmp [ kd + 1 ] ;

shor t key_tmp [ kd + 2 ] ;

mapToHyperplane ( position , elevated_tmp ) ;

// Try to f i nd a nearby remainder−0 po int .

const f l o a t scale = 1.0 f / ( kd + 1) ;

i n t sum = 0 ;

f o r ( i n t i = 0 ; i <= kd ; i++)

{

greedy_tmp [ i ] = ( ( shor t ) floorf ( elevated_tmp [ i ] ∗ scale + 0.5 f ) ) ∗ ( kd + 1) ;

sum += greedy_tmp [ i ] ;

}

sum /= kd + 1 ;

// Build the b ins .

char bins [ 2 ∗ kd + 2 ] ;
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char invBin [ kd + 1 ] ;

f l o a t maxBin [ 2 ∗ kd + 2 ] ;

f l o a t minBin [ 2 ∗ kd + 2 ] ;

f l o a t binSum [ 2 ∗ kd + 2 ] ;

f o r ( i n t i = 0 ; i < 2 ∗ kd + 2 ; i++)

{

bins [ i ] = 0 ;

binSum [ i ] = 0 ;

}

f o r ( i n t i = 0 ; i <= kd ; i++)

{

const f l o a t delta = elevated_tmp [ i ] − greedy_tmp [ i ] ;

const i n t index = ( in t ) delta + ( kd + 1) ;

invBin [ i ] = index ;

char count = bins [ index ]++;

i f ( count == 0 | | delta > maxBin [ index ] )

maxBin [ index ] = delta ;

i f ( count == 0 | | delta < minBin [ index ] )

minBin [ index ] = delta ;

binSum [ index ] += delta ;

}

// I t e r a t e through bins , check ing the ones that s a t i s f y the lemma .

i n t lastNonemptyBin = −1;
char cellCount = 0 ;

f l o a t cellSum = 0 ;

char bestK = 0 ;

i n t bestCellIndex = 0 ;

f l o a t bestObjective = 0 ;

f o r ( i n t i = 0 ; i < 2 ∗ kd + 2 ; i++)

{

f l o a t score = ( kd + 1) ∗ ( cellCount − sum ) − ( cellCount − sum ) ∗ ( cellCount←↩
− sum ) + 2 ∗ cellSum ;

i f ( score < bestObjective )

{

bestObjective = score ;

bestCellIndex = lastNonemptyBin ;

bestK = cellCount ;

}

cellCount += bins [ i ] ;

cellSum += binSum [ i ] ;

lastNonemptyBin = i ;

}

i n t sumsum = sum − bestK ;

bestK = ( bestK − sum + ( kd + 1) ) % ( kd + 1) ;

sumsum += bestK ;
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i n t offset = sumsum < 0 ? ( kd + 1) : ( sumsum == 0 ? 0 : (−1 − kd ) ) ;

f o r ( i n t i = 0 ; i <= kd ; i++)

{

key_tmp [ i ] = greedy_tmp [ i ] + bestK − ( ( invBin [ i ] <= bestCellIndex ) ? ( kd + ←↩
1) : 0) + offset ;

}

// Ret r i eve po in t e r to the value at t h i s ver tex .

Entry<kd , vd> ∗entry = hashTable . lookup ( key_tmp , f a l s e ) ;

i f ( entry )

{

f o r ( i n t i = 0 ; i < vd ; i++)

value [ i ] = entry−>values [ i ] ;

}

e l s e

{

f o r ( i n t i = 0 ; i < vd ; i++)

value [ i ] = default_values [ i ] ;

}

}
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