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Tracking the coordinated activity of cellular events through volumes of intact tissue is a 

major challenge in biology that has inspired significant technological innovation. Yet 

scanless measurement of the high-speed activity of individual neurons across three 

dimensions in scattering mammalian tissue remains an open problem. Here we develop and 

validate a computational imaging approach (SWIFT) that integrates high-dimensional, 

structured statistics with light field microscopy to allow the synchronous acquisition of 

single-neuron resolution activity throughout intact tissue volumes as fast as a camera can 

capture images (currently up to 100 Hz at full camera resolution), attaining rates needed to 

keep pace with emerging fast calcium and voltage sensors. We demonstrate that this large 

field-of-view, single-snapshot volume acquisition method---which requires only a simple 

and inexpensive modification to a standard fluorescence microscope---enables scanless 

capture of coordinated activity patterns throughout mammalian neural volumes. Further, 

the volumetric nature of SWIFT also allows fast in vivo imaging, motion correction, and 

cell identification throughout curved subcortical structures like the dorsal hippocampus, 

where cellular-resolution dynamics spanning hippocampal subfields can be simultaneously 

observed during a virtual context learning task in a behaving animal. SWIFT’s ability to 

rapidly and easily record from volumes of many cells across layers opens the door to 

widespread identification of dynamical motifs and timing dependencies among coordinated 

cell assemblies during adaptive, modulated, or maladaptive physiological processes in 

neural systems.  
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Introduction 

 

The ability to record activity from intact tissue at physiologically relevant timescales and at 

appropriate resolution is central to any attempt to model and understand the dynamic behavior of 

complex biological systems. The mammalian nervous system represents a particularly 

challenging example of such a system, due to the complex, three-dimensional spatiotemporal 

activity patterns that diverse populations of neurons exhibit as they store, retrieve, and process 

information at millisecond time scales across large volumes of tissue. Consequently, capturing 

the coordinated neural firing and statistical dependencies among cells that are thought to be 

important in behavior (and disease) will ultimately require simultaneous high-speed observation 

of neuronal timing relationships throughout large tissue volumes. 

  

Since the introduction of synthetic ​(Tsien 1980)​, genetically-encoded Ca ​2+​ ​(Miyawaki et al. 

1997; Tian et al. 2009)​, and voltage sensors ​(Akemann et al. 2010; Kralj et al. 2011; Jin et al. 

2012; St-Pierre et al. 2014; Gong et al. 2014)​, a number of powerful new technologies for 

optically recording activity signals in neurons have been introduced. Recent advances in 

single-cell Ca​2+​ imaging have yielded impressive results using fast three-dimensional scanning of 

single ​(Göbel, Kampa, and Helmchen 2007; Duemani Reddy et al. 2008) ​ or multiple ​(Niesner et 

al. 2007; Cotton et al. 2013)​ laser beams, or by scanning a sheet of light ​(Tomer et al. 2012; 

Ahrens et al. 2013; Bouchard et al. 2015)​ to image many neurons by sequentially illuminating 

parts of a volume over time. However, such methods capture the volume (and therefore the 

activity of neurons across the volume) asynchronously, and are fundamentally limited by the 

inertial and settling constraints of the moving components. Although scanless volumetric 

microscopy technologies including holographic ​(Rosen and Brooker 2008)​, extended 

depth-of-field ​(Quirin et al. 2014)​, and multi-focus ​(Abrahamsson et al. 2012)​ microscopy exist, 

these methods require acquisition of multiple images for each volume, projection from three into 
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two dimensions, or suballocation of the camera sensor for each axial plane, thereby limiting 

rapid three-dimensional imaging and full volumetric reconstruction. To date, no mammalian 

activity imaging approach has allowed synchronous full-volume acquisition with validated 

cellular resolution using the full scope and speed of fast cameras. Compounding this challenge, 

analytical tools necessary for accurate discovery of neurons in such large volumetric time series 

data over time remain to be developed. 

  

In considering these challenges, we noted that certain features of light field microscopy---a 

method that allows the reconstruction of a full volume from a single camera frame ​(Marc Levoy 

et al. 2006; Marc Levoy, Zhang, and McDowall 2009; Broxton et al. 2013; Cohen et al. 

2014) ​---might support synchronous volumetric imaging in mammalian preparations at rates 

appropriate for new generations of fast calcium and voltage sensitive dyes. Several 

proof-of-concept experiments have developed and demonstrated the basics of light field 

deconvolution ​(Broxton et al. 2013; Prevedel et al. 2014)​ and light field microscopy has been 

shown to work for volumetric functional imaging of neuronal activity in small, optically 

transparent neurobiological systems, first in a single brain region ​(Grosenick, Anderson, and 

Smith 2009)​ and subsequently across a zebrafish brain—all of these approaching but not fully 

attaining cellular resolution ​(Deisseroth and Schnitzer 2013; Prevedel et al. 2014; Tomer et al. 

2015) ​, and most recently across the Drosophila brain ​(Aimon et al. 2015)​. However, adapting 

and scaling the technology for millimeter-scale volumes in scattering mammalian preparations 

and achieving single-cell resolution have remained the biggest challenges.  

 

We hypothesized that with our volume reconstruction method ​(Broxton et al. 2013)​, it might be 

possible to attain camera-limited imaging rates at a resolution that would allow identification and 

activity recording from individual neurons over significant tissue volumes in mammalian 

systems both in vitro and in vivo during behavior. However, beyond the volume 

reconstruction---already a challenging computational problem to scale to many 

volumes---significant analytical advances would also be required, since identification of neurons 

and dynamics over time in volumes consisting of ~5-100 million voxels at rates up to 100 Hz 
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(terabytes per data set) would require substantial development of statistical and computational 

methodology. In particular, machine learning methods appropriate for motion correction and cell 

localization in terabyte-scale data sets would be needed. To address this challenge, here we 

develop, validate, and apply an integrative computational imaging approach (SWIFT) enabling 

the synchronous acquisition and analysis of single-neuron resolution activity throughout intact 

scattering tissue volumes at high frame rates. Open source code implementing SWIFT will be 

made available online. 

 

Single-snapshot volumetric imaging of biological neural networks in mammalian tissue 

 

By inserting an array of thousands of microlenses at the intermediate image plane of a standard 

epifluorescence microscope and positioning the camera sensor at the image plane formed by this 

array (Fig. 1A,B), it is possible to capture the four-dimensional light field in a single, 

synchronous exposure of the camera sensor ​(Marc Levoy et al. 2006; Marc Levoy, Zhang, and 

McDowall 2009)​. This light field image (Fig. 1D) encodes information about the entire volume 

under the objective, albeit at somewhat reduced lateral resolution (Supplementary Fig. 1). 

However, this modest reduction in lateral resolution is acceptable so long as we can still identify 

individual cell bodies, and worthwhile as it fundamentally enables synchronous, high-speed 

volumetric functional imaging. A single light field volume can be reconstructed from a single 

camera frame to obtain a volume by solving a large maximum likelihood problem (e.g., inverting 

a 5.5 million pixel by 2-100 million voxel linear system per volume; Fig. 1C), thereby estimating 

the most likely intensity distribution in the volume given the captured image on the sensor. Our 

algorithm is analogous to tomographic reconstruction and deconvolution techniques in medical 

imaging, but has been adapted here for single-snapshot volume fluorescence imaging ​(Broxton et 

al. 2013)​.  We use a wave optics (i.e., physical optics) model of light transport through the 

microscope and the microlens array and a noise model that correctly accounts for noise sources 

on the image sensor (principally photon shot noise).  Due to the manner in which light is focused 

by the microlenses, this inverse problem is well conditioned and cell-scale details can be 

recovered much deeper into scattering tissue than standard epifluorescence imaging allows. 
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Fig. 1E and Supplementary Movie 1 demonstrate that such reconstruction is achievable for a 

complex living neural system at cell-resolution in mammalian tissue; hippocampal neurons in an 

acute mouse slice preparation are shown expressing the genetically-encoded Ca​2+​ sensor 

GCaMP6f ​(T.-W. Chen et al. 2013)​. With a 40x 0.8 NA objective, apical dendrites and the 

largest spines are just visible. Each full volume in a time series is reconstructed using a single 

camera exposure, thus the imaging rate is limited only by the available light from the sample and 

the maximum frame rate of the camera.  

 

However, the rapid collection of large volume data immediately creates a problem: many tens of 

thousands of images recorded during a single experiment must be reconstructed into volumes, 

motion aligned, and then further processed to extract and analyze the spatial locations and time 

courses of the large numbers of neurons. To meet this challenge, we developed our own 

distributed data processing system that runs on the Amazon Elastic Compute Cloud (EC2) and 

the Google Compute Engine (GCE) cloud computing services (see Methods). Our 

GPU-accelerated volumetric deconvolution system is capable of reconstructing 9000 volumes 

per hour on 300 compute instances. Subsequent motion alignment, source extraction, and time 

series analysis is carried on clusters ranging from 128-1024 cores using the Apache Spark cluster 

computing framework ​(Zaharia et al. 2016)​ and the Thunder data analysis framework ​(Freeman 

et al. 2014) ​. 

 

For extraction of the locations of neural sources and their time series from motion aligned 

volumetric time series data, we developed new, scalable machine learning methods based on 

previous work in high dimensional settings ​(Jenatton, Obozinski, and Bach 2009; Grosenick et 

al. 2013; Allen, Grosenick, and Taylor 2014)​ to seek smooth, local spatial structures with global 

sparsity so that these resolved “sources” were cell-sized and cell-shaped, i.e. sparse but 

structured nonnegative matrix factorization. Similar methods have recently yielded 

state-of-the-art results on smaller problems ​(Pnevmatikakis et al. 2016)​. Along with methods to 

significantly accelerate computational extraction of the neural sources (Methods; runtime is 
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about one hour for 3000 sources in a volume with two million voxels over 27000 time points), 

we also developed automated screening and validation procedures to increase confidence that 

sources used in all subsequent analyses are of neural origin (See Methods; runtime is about 10 

minutes on the same data). We validated these methods and the quality of the spatial and 

temporal sources (see Methods). This integration of physical optics, computational optics, and 

statistical methods enables extraction of neural locations and activity time series simultaneously 

across mm-scale tissue volumes; we term this method SWIFT (Statistical Wave-optics 

Identification of Features in Tissue) volume imaging. 

 

SWIFT: fast functional recording of volumes of neurons  

 

Standard light field deconvolution microscopy is compatible with imaging neural activity in 

largely transparent animals such larval zebrafish ​(Grosenick, Anderson, and Smith 2009; 

Prevedel et al. 2014; Cohen et al. 2014)​ and certain invertebrates such as C. elegans and 

Drosophila ​(Prevedel et al. 2014; Aimon et al. 2015) ​, but most vertebrate neural tissues, 

including mammalian brains, are turbid and highly scattering ​(Ntziachristos 2010)​. However, we 

found that due to its light field deconvolution model SWIFT was effective for volumetric 

functional imaging in living mammalian neural circuitry. Beginning with acute mouse prefrontal 

cortical (PFC) slices virally transduced with a genetically encoded Ca​2+​ indicator (GECI) using 

an adeno-associated virus (AAVdj::CamKIIa::GCaMP6f; Methods) and using a 10x 0.6NA 

objective, we were able to simultaneously image 1.1 mm x 1.0 mm x 0.4 mm volumes spanning 

all cortical layers and all of prelimbic cortex (PL) in vitro with parts of cingulate cortex (Cg) 

and/or infralimbic cortex (IL) in a single field of view (Supplementary Fig. 2A,B; 

Supplementary Video 2). We found that SWIFT was in fact well suited to identifying neurons 

and their time series through this scattering volume of tissue even using wide-field illumination 

(Supplementary Fig. 2B-D; Methods). Indeed, the larger size of mouse neurons (20-30 µm soma 

relative to 5-10 µm soma in, for example, zebrafish fry) enabled efficient segmentation of 

individual cells with computationally-optimized, high-dimensional machine learning 

identification of smooth, local spatial structures (“structured sparsity”) ​(Jenatton, Obozinski, and 
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Bach 2009; Grosenick et al. 2013)​ so that resolved sources of high temporal variance were the 

size and shape of cell bodies (Supplementary Fig. 2B). Supplementary Fig. 2C shows 12 Ca​2+ 

imaging fluorescence traces with numbers corresponding to the numbered spatial filters shown in 

Supplementary Fig. 2B, with cells exhibiting a diversity of activity, from sparse spiking to 

concentrated bursts of activity similar to “UP” states previously reported in cortical slices 

(Cossart, Aronov, and Yuste 2003) ​. Supplementary Fig. 2D-H further characterize the 

autocorrelations and signal-to-noise using whole-cell patch clamp, and by comparing 25 Hz 

two-photon laser scanning microscopy to 25 Hz SWIFT volume imaging in the same cells. No 

cross-talk was detectable between reconstructed neurons, we confirmed that the spatial sources 

resembled the somata of patched, back-filled cells, and found that SWIFT exhibited an 

approximately 2x improvement in SNR over a commercial, resonant scanning 2PSLM system 

(Leica SP5; See Supplementary Fig. 2 and Methods).  

 

Synchronous volumetric imaging across hippocampal subfields  

 

This success of SWIFT for imaging volumes of neurons in vitro led us to explore imaging of 

large subcortical brain volumes in behaving mice. Following the techniques shown in previous 

groundbreaking work imaging in dorsal hippocampus (subfield CA1) ​(Dombeck et al. 2007; 

Barretto, Messerschmidt, and Schnitzer 2009)​, we implanted glass windows just above the dorsal 

hippocampus in C57BL/6J mice (Fig. 2A,B; Methods), moving our coordinates anterior and 

lateral relative to previous studies in order to allow simultaneous optical access with a 10x 0.6 

NA long-working-distance water-dipping objective to parts of hippocampal subfields CA1, CA2, 

and CA3 virally transduced with GCaMP6f (AAVdj-CamKIIa-GCaMP6f, Methods). Starting at 

2-3 weeks after viral transduction and implantation, mice could be imaged with SWIFT while 

head-fixed and running on an axially-fixed spherical treadmill (Fig. 2C) ​(Dombeck et al. 2007)​.  

 

Volumes were reconstructed as in the in vitro experiments above, however, in a behaving animal 

brain motion relative to the sensor resulted in motion artifacts between temporally adjacent 

volumes, as previously described ​(Dombeck et al. 2007)​. Such artifacts can significantly degrade 
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accurate estimation of cell location and sensor transients, making image alignment a critical first 

step for SWIFT as for other calcium and voltage imaging modalities. However image alignment 

is considerably easier in SWIFT because each volume can be treated as a frame captured at a 

single period of time. This avoids nonlinear sampling effects known to make motion correction 

difficult in data acquired by scanning methods ​(Dombeck et al. 2007)​. Even so, the high dynamic 

range and low background signal of GCaMP6 required statistically partitioning large calcium 

transients from the static background fluorescence, the latter being necessary for motion 

correction. To accomplish this we developed a motion correction protocol using the Robust 

Alignment by Sparse and Low Rank (RASL) algorithm ​(Peng et al. 2012)​ (Methods), and scaled 

it to work on terabyte-scale data using Apache Spark ​(Zaharia et al. 2016)​. This method 

identifies set of three-dimensional translation and rotation corrections to each volume and allows 

the entire dataset to be decomposed into sparse neural dynamics superimposed upon a low-rank 

background signal ​(Peng et al. 2012)​. We found that RASL outperformed normalized volumetric 

cross-correlation (Supplementary Fig. 3D).  

 

Fig. 2D shows a sequence of motion-corrected, background-subtracted (see Methods) SWIFT 

volumes taken during alternating periods of locomotion and non-locomotion of a 

CamKIIa::GCaMP6f-expressing mouse on the treadmill (Supplementary Movie 3). Note that 

parts of CA1, CA2, and CA3 are present in the 1.1 mm x 1.0 mm x 0.75 mm volumes shown 

(each is composed of 300 2.5um thick z-planes), and that individual cells are visible at depths 

500 μm below the implant glass (white arrowhead in second volume; Fig. 2E shows z-slices 

through the indicated single time point volume). Imaging this curved structure across such depths 

in scattering tissue using only wide-field illumination is enabled by the maximum likelihood 

estimation method used for volume reconstruction ​(Broxton et al. 2013)​ (Methods), which can be 

thought of as yielding point estimates of each location in the presence of isotropic noise (e.g., 

that resulting from nearly isotropic scattering in turbid tissues). 

 

Once motion corrected volumes are obtained, source extraction was performed on the resulting 

volumetric time series, resulting in the identified neurons shown in Fig. 2F,G. Fig. 2G shows 12 
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estimated calcium traces corresponding to the spatial filters of the numbered red neurons 

identified in Fig. 2F. Thresholded spike probability estimates (5% percentile) obtained using 

nonnegative deconvolution with a autoregressive model of the calcium transient ​(Vogelstein et 

al. 2010; Pnevmatikakis et al. 2016)​ was used to obtain the black dots below each trace, with 

each dot indicating a bin in which the cell is likely firing based on the model (Methods, scale bar 

1 min). 

 

Volumetric imaging with cellular resolution during a contextual learning behavior  

 

To leverage synchronous volumetric imaging across hippocampal subfields, we developed a 

virtual environment apparatus appropriate for contextual learning, a task in which the different 

subfields are thought to have distinct roles ​(McNaughton and Nadel 1990; Sekino et al. 1997; 

Chevaleyre and Siegelbaum 2010; Wintzer et al. 2014)​. The apparatus is similar to others 

reported previously ​(Harvey et al. 2009)​. Two video projectors presented a virtual environment 

onto a spherical screen placed 20 cm from the mouse and covering 220 degrees of the mouse’s 

visual field of view (Figure 3A; Methods). Head-restrained mice ran on an axially-constrained 

spherical treadmill, with forward or backward movement of the ball read out by an optical mouse 

(Dombeck et al. 2007)​. Automated delivery of odorants via an olfactometer, auditory cues by 

two speakers placed behind the mouse, and a small feeding tube placed immediately under the 

animal’s mouth allowed multisensory stimulation and training using water rewards in 

water-deprived animals (Fig 3A, Methods).  

 

Standard video game development software (Unity3D) interfacing with custom Python code was 

used to present virtual environments with motor activity and licking behavior (measured via 

infrared movies of the mouse) as behavioral outputs (Methods). During training animals (n=3) 

ran through a series of two possible 120 cm long virtual “contexts”, pseudo-randomly ordered 

and with each context defined by a distinct combination of visual environment, auditory cue, and 

odorant (Figure 3B). One context was not visible from the other (animals ran through an opaque 

black doorway into the next context). Odorants were delivered for 1 second immediately at the 
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start of the context ​(Stettler and Axel 2009)​ (Methods), and auditory cues were presented 

through the duration of the context starting immediately upon context entry (~75 dB, see 

Methods). Of the two context types encountered by the animal, one was rewarded (and occurred 

in only ~20% of all context presentations) while the other was not rewarded (~80% of contexts; 

Fig. 3C top). During training, each animal received water rewards of the same magnitude (100 

µL) at a 1 second delay after context entry. After 7-10 days, previously treadmill-naïve animals 

learned to run rapidly through the contexts to collect water rewards (Fig. 3C bottom), stopping to 

lick the reward tube after each reward delivery (top trace, bottom panel, Fig. 3C shows example 

mouse position relative to start of context; bottom trace, bottom panel shows smoothed licking 

rate). All mice successfully learned this task. 

 

SWIFT was used to locate cells across motion corrected volumes (Fig. 3D,E). Position in the 

context and licking behavior (Fig. 3C top and bottom traces, respectively) is registered to raster 

plots of calcium activity (Fig. 3E) for 1043 identified neurons (Methods) for one animal; and 

cells in the raster plot are dendrogram ordered by similarity of fluorescence traces (Methods). 

The activity traces and spatial locations of the 12 example neurons highlighted in the horizontal 

red band in Fig. 3E are shown in detail in Fig. 3D. We next looked at neurons that were active 

>80% of the time within a 2 second window centered around water reward onset (reward 

occurred reliably 1s after context entry; 139/1043 identified neurons responded >80%). Ordering 

these by the first time point at which their reliability exceeded the 80% threshold yielded a 

reliability heat map where each column represents a time point (relative to water reward onset) 

and each row corresponds to an identified neuron. Pixel color indicates the percentage of times 

the cell was active in that time bin across rewarded trials (Fig 3E). This plot reveals a ramping up 

of behavior beginning ~50 ms before the reward is delivered, and persisting for at least 1s after 

reward onset in many cells. All three animals showed this similar pattern of reliability (n=3, 

8.6% +- 0.44% SD of neurons showing >80% reliability; all starting after context entry and 

before reward onset). To determine if this activity was significantly different than expected by 

chance, we circularly permuted the time series within each trial (n=999 circular permutations) 

and show the empirically observed mean percent reliability in firing across neurons for each time 
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bin (red) relative to the mean percent reliability in firing for circularly permuted time series. The 

observed trace clearly diverges from the empirical null significantly (p<0.001, uncorrected) 

~25ms prior to reward onset. All animals showed this divergence pattern over time, with initial 

significant divergence starting 25ms-50ms post context onset (n=3). 

 

 

Discussion 

 

By integrating computational optics for volume reconstruction from two-dimensional camera 

images with high-dimensional statistics for motion correction and cell localization, SWIFT 

volume imaging enables fast, synchronous, cellular resolution recording and quantitative 

modeling of neural population activity across cortical layers and regions in scattering 

mammalian tissue. The frame rates of large-format scientific cameras and the kinetics of 

available fluorescent activity indicators therefore now represent the primary limiting factors for 

action-potential resolution imaging of large neural populations across brain regions. Increasing 

quality and speed of scientific cameras, and continued progress in the signal and speed of both 

calcium and voltage sensors will likely expand the spatiotemporal reach of the methods 

described here.  

 

Computational imaging has spurred a revolution in photography ​(Giles 2009; Raskar 2009; M. 

Levoy 2010; Ehrenberg 2012)​, but so far has been relatively limited in its applications in 

biological light microscopy. Our findings highlight the recent promise of computational imaging 

to extend the reach of microscopy, using a combination of physical and statistical models, paired 

with new computational architectures for large data, to push the limits of classical imaging. 
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Methods 

 

Light Field Microscopy  

 

Imaging data were acquired using light field microscopes ​(Marc Levoy et al. 2006; Zhang and 

Levoy 2009; Broxton et al. 2013; Cohen et al. 2014)​. A standard commercial epifluorescence 

microscope (an Olympus BX51WI) was modified to be a light field microscope by placing a 125 

µm pitch microlens array (RPC Photonics, see below for more details) at the intermediate image 

plane (i.e., the location of the camera sensor in a standard microscope). The back focal plane of 

the microlens array was then re-imaged via relay optics (see below) onto the sCMOS camera 

sensor (Andor Zyla, pixel size: 6.5µm). The microlens array and camera were placed on 

motorized linear stages (Thorlabs) for easy focusing adjustment.  

 

We used microlens arrays with a square lenslet aperture (truncated, 100% fill factor) and a 

spherical lenslet surface profile. The f-number ( ) of the lenslets was chosen to match the 

magnification (M) and numerical aperture (NA) of the microscope objective via the formula: 

. An f/10, 125 µm microlens array and a 10x 0.6 NA water-dipping 

objective (Olympus) were used in mouse in vivo/in vitro experiments. The relay optics between 

the microlens array and the camera sensor (Nikon NIKKOR) were chosen to demagnify the 

sensor pixels and increase the angular sampling rate in the light field. A 135:85 mm relay yielded 

31 pixels per lenslet diameter.  

 

Samples were illuminated evenly using LED epifluorescence illumination (Leica SP5 wide-field 

light engine or Lumencor Spectra X). All samples were imaged at wavelengths standard for 

GCaMP6f using fluorescence filters (Semrock filters: excitation 475/35 nm; dichroic 495 nm; 

emission 535/50 nm). Mouse in vitro volumes were recorded at 4 Hz or 25 Hz and mouse in vivo 

images at 50 Hz. We note that the maximum acquisition frame rate in our experiments is limited 

only by the frame rate of the camera. Although we started in mouse slice with longer integration 

times to ensure image data of sufficient quality to identify neurons in scattering tissue, we 
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discovered that faster frame rates (up to 100 Hz in tests with GCaMP6f in vivo) were also 

effective. Volume imaging with frame rates up to 100 Hz and beyond are therefore possible 

using this technique, limited only by the speed and signal-to-noise ratio of the camera and 

calcium/voltage sensor signal to noise.  

 

Light field images were recorded over a Camera Link 10-tap PCI interface onto a SSD RAID-0 

disk array in a desktop workstation (Dell or Colfax Intl.). Images were recorded using our own 

custom image acquisition software as well as the open-source Micro-Manager image acquisition 

software ​(Edelstein et al. 2014) ​. Dark frames and radiometric calibration frames were recorded 

before each experiment and used to correct for bias on the camera sensor and vignetting 

introduced by the microscope optics, respectively.  

 

Light field volume reconstruction/deconvolution  

 

Volume data were reconstructed from raw light field frames using our light field 

three-dimensional deconvolution algorithm, which uses wave optics to model diffraction and 

other light transport phenomenon in the light field microscope. Three-dimensional reconstruction 

is formulated as an inverse problem that we solve using a GPU-accelerated iterative algorithm 

based on Richardson-Lucy iteration ​(Kralj et al. 2011; Gong et al. 2014)​. For more information 

on this algorithm and its implementation, we refer the reader to our previous study ​(Broxton et 

al. 2013)​. 

 

Runtimes for our algorithm depend on the optical parameters used in a given experiment. In this 

study it took ~2 minutes per camera frame for mouse in vivo and in vitro experiments. Between 

3,000-27,000 frames are recorded for each experiment, so up to 1,000 machine hours are 

therefore required to process some data sets. To address this, we developed a distributed 

deconvolution data processing pipeline that runs on the Amazon Elastic Compute Cloud 

(Amazon EC2). Our Amazon EC2 cluster consists of 300 “g2.2xlarge” spot instances, each with 

a Kepler GK104 GPU (NVidia). We run four deconvolution jobs concurrently on each GPU, 
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with jobs scheduled and managed using the Celery distributed task queuing system 

(http://www.celeryproject.org/). This GPU cluster has a theoretical peak computing power of 

1,373 teraflops and is capable of processing all of the frames in a mouse in vivo dataset with 

27,000 frames in 3 hours.  

 

Resolution limits  

 

In light field microscopy, spatial resolution must be sacrificed in order to record different angles 

of light incident on the microscope’s image plane using different camera pixels (it is this angular 

information that permits scanless volumetric reconstruction). As a result, the resolution limit of a 

three dimensional light field reconstruction is higher than the Rayleigh limit encountered in wide 

field imaging. In general, spatial resolution gradually decreases at greater depths relative to the 

microscope’s native plane. We show in ​(Broxton et al. 2013)​ that this fall-off in lateral resolution 

is well approximated by a light field resolution criterion: , where  is 

the pitch of the microlens array,  is the emission wavelength of the sample, M is the 

magnification of the microscope objective, z is the distance relative to the microscope’s native 

image plane, and  is the lateral spatial band limit (in cycles / mm) of a three-dimensional 

reconstruction for a given depth and set of optical parameters. This equation holds where 

. Extended Data Fig. 1f shows this resolution limit plotted for various optical 

recipes used in this study. For a more in-depth discussion of these resolution limits, as well as 

experimental results validating them, we refer the reader to our previous study ​(Broxton et al. 

2013) ​.  

 

Sparse, structured matrix factorization for cell identification  

 

Identification of candidate neurons (sources) required the development of a novel technique 

based on sparse and functional PCA ​(Allen 2013; Allen, Grosenick, and Taylor 2014)​. This 

technique ​(Allen 2013; Allen, Grosenick, and Taylor 2014)​ factors a matrix with columns 

representing time points and rows representing voxels into a sets of spatial coefficients and their 
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corresponding time series where each set of coefficients is constrained to be both smooth and 

sparse---an assumption that has been shown to work well for locally smooth, volumetric neural 

data ​(Jenatton, Obozinski, and Bach 2009; Allen 2013; Grosenick et al. 2013; Pnevmatikakis et 

al. 2016)​. We augmented this technique with an additional connected component constraint that 

ensures that coefficients are non-negative, orthogonal, and restricted to a small region of space. 

This results in non-overlapping sets of coefficients each of which is connected in space. The 

augmented problem is non-convex, so we solved it heuristically using alternating minimization 

between the time series and spatial coefficients ​(Journée et al. 2010)​. We identified sources 

sequentially and initialized the optimization for each source using the highest scoring voxel that 

has not yet been included.  

 

Initialization 

 

Time series for each voxel were preprocessed to discount the effects of bleaching and baseline 

drift. A moving baseline (30 second window) was subtracted from each time series before it was 

standardized to have zero mean and unit norm. Due to the non-convex nature of the technique, it 

is sensitive to initialization. We initialized sources by choosing voxels that exhibit a large 

amount of positive deviation (peak) from a noisy baseline. Peaks were defined as the maximum 

difference between a smoothed time series with width , and a smoothed time series with a 

width of 30 seconds. The noise level was computed as the mean absolute deviation between the 

raw time series and a smoothed time series (30 second window). The final initialization score 

was computed as the ratio of the peak to the noise level. This metric is highly sensitive to 

neurons firing a single spike throughout the entire experiment and is used to initialize, sort and 

screen candidate sources. 

 

Screening 

 

Candidate sources were screened to remove artifacts and other signals that were not likely to 

have originated from cell bodies. The screening criteria on sources were: (1) centroids could not 
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be within 5 voxels (19.28 µm for mouse ex vivo and mouse in vivo datasets; the higher scoring 

source was chosen in the event of violation), (2) centroids could not be within 10 voxels of the 

lateral borders of the volume reconstruction, or within 5 voxels of the axial borders, (3) the 

number of nonzero voxels in a source must be between 2 and 1000, (4) the aspect ratio of the 

source (width / height of bounding box) must be between 0.5 and 2, and (5) the initialization 

score (defined above) must be greater than 2.  

 

Time series and raster plots 

 

For time series plots, Delta F-over-F (dF/F) was computed as  where x was 

the time series, and  is its global mean. In raster plots, baseline and slow drift in baseline 

signal was removed from raw time series using a zero-phase temporal high pass filter 

(Butterworth, 1st order). Spiking events were then determined to be those that exceeded a 95 

median absolute deviation (MAD) confidence interval. Finally, sources were hierarchically 

clustered (i.e. represented as a dendrogram) using the Pearson correlation coefficient a distance 

metric to compare pairs of time series. 

 

Mouse slice experiments  

 

Female or male C57BL/6J mice (The Jackson Laboratory), aged 3–5 months at the time of 

imaging, were used for all experiments. They were housed on a 12-hour light/dark cycle in 

groups of 3–5 for acute slice imaging experiments and 2–3 for in vivo imaging experiments. The 

latter were also housed with a running wheel. All subjects were afforded ad libitum access to 

food and water, except during behavioral training as described below. All experimental protocols 

were approved by the Stanford University Institutional Animal Care and Use Committee. 

 

Cloning of pAAV-CaMKIIa-GCaMP6f. The GCaMP6f was amplified from Addgene Plasmid 

#40755 using primers ccggatccgccaccatgggttctcatcatcatc and gataagcttgtcacttcgctgtcatcatttg , 

digested with BamHI and HindIII, and ligated to a AAV-CaMKIIa backbone cut with the same 
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enzymes. Clones were verified by sequencing, and then the DNA was amplified and packaged as 

AAVdj at the Stanford Neuroscience Genomic Viral and Vector Core.  

 

Stereotactic viral injections 

 

Viral injection was performed in mice anesthetized with 1.5-3.0% isoflurane and placed in a 

sterotaxic apparatus (Kopf Instruments). For in vitro imaging of the prefrontal cortex, mice were 

injected with 1000 nL of AAVdj-CKIIa-GCaMP6f (Stanford Vector Core) into the medial 

prefrontal cortex (coordinates relative to Bregma: AP +1.35 mm, ML –0.35 mm, DV –2.5 mm). 

For in vivo imaging of the hippocampus, mice were injected with 500nL of 

AAVdj-CKIIa-GCaMP6f in both CA1 (AP –1.5mm, ML –1.25mm, DV –1.6mm) and CA3 (AP 

–1.5mm, ML –1.75mm, DV –1.9mm), and injected with 250nL of AAV5-CKIIa-mCherry in the 

dentate gyrus (AP –1.5, ML –0.5, DV –2.15). Injections were performed using a 10 µL syringe 

and a 33 gauge beveled metal needle (Nanofil; WPI). Virus was extruded at a rate of 100nL/min 

using a syringe pump (UMP3; WPI) controlled by a Micro4 pump controller (WPI). Following 

virus injection, the incision was closed using tissue adhesive (Vetbond; Fisher) or sutures. 

 

Acute slice preparation for in vitro imaging 

 

These experiments commenced 3–5 weeks after viral injections. Subjects were deeply 

anesthetized with 5% isoflurane and transcardially perfused with 20 mL of an ice-cold 

carbogenated solution of modified, protective artificial cerebrospinal fluid (composition: 92 mM 

NMDG, 25 mM glucose, 20 mM HEPES, 2.5 mM KCl, 1.2 mM NaH​2​PO ​4​, 30 mM NaHCO ​3​, 

10mM MgSO ​4​, 0.5 mM CaCl​2​, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM sodium pyruvate; 

pH = 7.3–7.4; osmolarity = 295–305 mOsm). By substituting NMDG for sodium, perfusions 

with this solution may enhance slice viability by reducing excitotoxicity ​(Peça et al. 2011; Zhao 

et al. 2011) ​. After perfusion, the brain was removed rapidly and cut into 350 um slices on a Leica 

vibratome using the same ice-cold NMDG-ACSF solution, and prefrontal slices were transferred 

immediately to a warm (32–34​o​C) recovery solution with the same composition. After 15 
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minutes of recovery, the slices were transferred to a modified HEPES-ACSF solution for 15 

minutes (composition as above, except substituting 92 mM NaCl for NMDG), followed by a 

transfer to a second HEPES-ACSF solution to ensure complete washout of the NMDG. After 15 

minutes the slices were transferred one more time to oxygenated ACSF solution and remained in 

this solution until imaging commenced (> 30 minutes later). 

 

Imaging was conducted at a controlled 35°C in oxygenated ACSF (composition: 123 mM NaCl, 

3 mM KCl, 11 mM glucose, 1.25 mM NaH​2​PO ​4​, 26 mM NaHCO ​3​, 1 mM MgCl​2​, 2 mM CaCl​2​) 

delivered to a Warner Instruments Ultra-Quiet Slice Chamber (RC-27LD) holding the slice 

through a in-line heater (Warner) at a constant rate of 8 mL/min through a peristaltic pump 

(Gilson). Standard “wide-field” illumination at 475/30 nm with a Lumencor Spectra X at less 

than 1 mW/mm​2​ was used for all imaging. Slice imaging datasets were acquired using 10X / 0.3 

NA and 10X / 0.6 NA objectives (Olympus).  

 

Hippocampal window implantation for in vivo imaging. These surgeries were performed after 

allowing at least one day of recovery after viral injections. Prior to the surgery, mice were 

injected with 80mg/6mg/kg of ketamine/xylazine intraperitoneally, and 5mg/kg carpofen 

subcutaneously. Mice were kept under 0.5-1.0% isoflurane throughout the surgery. First, a metal 

headplate was centered over the CA1 and CA3 injection sites and adhered to the skull using 

adhesive cement (Metabond; Parkell). A ~3mm craniotomy was made in the center of the 

headplate opening using a trephine (Fisher). The cortex was then slowly aspirated using a 27 

gauge blunt needle attached to a vacuum line while irrigating with lactated Ringer’s solution. 

Once a column of cortex had been removed, a 31 gauge blunt needle was used to peel away the 

white matter lying above the hippocampus. A glass implant was then lowered until the bottom 

coverslip rested against the hippocampus. The implant was constructed from 3.0mm diameter 

glass capillary tubes (Friedrich & Dimmock) custom cut to 1.5-1.75mm length, adhered on one 

end to a 3.0mm diameter coverslip of #0 thickness (Warner Instruments) using optical glue 

(Norland Products). The top of the implant extruding from the brain was then secured to the skull 

using adhesive cement.  
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Virtual Environment  

 

Experiments were performed using a custom-designed virtual environment setup, inspired by 

previous work ​(Harvey et al. 2009)​. A 200mm diameter styrofoam ball (Graham Sweet Studios) 

was fixed on a single rotational axis using a metal rod (6mm diameter cage assembly rods; 

Thorlabs) passing through the center axis of the ball and epoxied into place. The rod rested in 

two 90 deg post holders (Thorlabs), allowing free forwards and backwards rotation of the ball. 

Mice were head-fixed in place above the center of the ball using a headplate mount ​(Niell and 

Stryker 2010)​. Water rewards were delivered to mice through a small animal feeding tube 

(Cadence Science) connected to a 10mL syringe. A motorized syringe pump (Chemyx Inc.) 

delivered small water rewards triggered by a TTL pulse driven by custom control software 

(Python). Odorants were delivered through a multi-solenoid valve system (Parker Hannifin) 

connected to a pressurized air source using parameters from Stettler et al. ​(Stettler and Axel 

2009) ​. Auditory stimuli were uploaded into the virtual environment software and played over 

speakers (Logitech) located 40 cm symmetrically behind the mice. The mouse’s movements on 

the ball were recorded using an optical computer mouse (Logitech) that interfaced with the 

virtual environment software ​(Dombeck et al. 2007; Harvey et al. 2009)​. Virtual environments 

were designed in game development software Unity3d (unity3d.com). The virtual environment 

was displayed by back-projection onto projector screen fabric stretched over a clear acrylic 

hemisphere with a 14 inch diameter placed ~20 cm in front of the center of the mouse. The 

screen encompasses ~220 deg of the mouse’s field of view. The virtual environment was 

back-projected onto this screen using two laser-scanning projectors (Microvision), each projector 

covering one half of the screen. To create a flat image on the 3d screen, we warped the 2d image 

of the virtual environment using video manipulation software (Madmapper). The game engine 

allowed scripts written in Javscript or C# to trigger external events based on the mouse’s 

interactions with the virtual environment by communicating over a TCP socket to custom Python 

control software. A LabJackU6 (http://labjack.com/) was used both to time-lock virtual 

environment events and imaging frame times, and to send TTL pulses to deliver water rewards 
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and odorants. The mouse’s licking behavior was recorded using a high-speed camera (Allied 

Guppy Pro; AVT) and 18mm lens (Edmund Optics), illuminated with an infrared LED 

(Thorlabs). 

 

Behavioral Task 

 

Mice were water restricted for ~5 days, or until reaching 80% of their starting weight, prior to 

the start of behavioral training. The behavioral paradigm consisted of two contexts, each a 

corridor of the same width (15 cm) and length (variable per mouse, see below). Each context 

differed in terms of the visual, olfactory, and auditory stimuli present. Context 1 was a black 

corridor with broad backwards-slanting magenta stripes on the walls. During Context 1 trials, a 

linear-sweeping tone (10 kHz to 25 kHz) was played, and a single puff of octanol was delivered 

at the start of the trial (odor delivery parameters were taken from Stettler et al. ​(Stettler and Axel 

2009) ​. Context 1 was never associated with a water reward. Context 2 was a magenta corridor 

with broad forwards-slanting black stripes on the walls. During Context 2 trials, a 

logarithmic-sweeping tone (between 20 kHz and 22 kHz) was played, and a single puff of ethyl 

acetate was delivered at the start of the trial. Mice were given a water reward in Context 2. For 

each mouse, the lengths of the two contexts were set by adjusting the linear sensitivity of the 

optical mouse so that the non-rewarded Context 1 trials were completed in an average of 4-6 

seconds. This was generally ~120 cm. For a given mouse, the effective lengths of the two 

contexts were equal. Each training session consisted of 20 minutes, during which Context 1 and 

Context 2 trials were pseudo-randomly interleaved, with Context 1 trials occurring 80% of the 

time. Mice were trained on a task in which they were given water rewards 1s after entering 

Context 2.  
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Figure Captions 

 

Fig. 1. Synchronous volumetric functional imaging in mammalian tissue at cellular 

resolution with SWIFT. ​ ( ​A ​) In a conventional fluorescence microscope, a fluorescent point 

source moving away from the plane of focus creates an increasingly blurred image of the source, 

making it difficult to determine its lateral and axial position. (​B​) In a light field microscope 

(Marc Levoy et al. 2006)​, a microlens array (Methods) in the optical path refocuses this light, 

creating a distinctive diffraction pattern that is unique for each position of the point source in the 

volume. This form of optical coding enables synchronous capture of information about a full 

volume in a single image. (​C ​) A physical (“wave”) optics description of light transport through 

the microscope can then be used to solve a three-dimensional deconvolution problem to 

reconstruct a volume from a single two-dimensional light field image ​(Broxton et al. 2013) 

(Methods). ( ​D ​,​E​) Raw and reconstructed light field images from an acute mouse hippocampal 

slice expressing genetically encoded indicator GCaMP6f ​(T. W. Chen et al. 2013)​, showing this 

technique works even in scattering mammalian tissue. (​D ​) A raw, two-dimensional light field 

image acquired by the camera (scale bar 330 camera pixels). (​E​) Maximum-intensity projections 

through the three-dimensional volume reconstructed using the two-dimensional image from ​D ​, 

showing a volume with clearly discernible neurons and apical dendrites in mouse ventral 

hippocampus at one instant in time (50 ms exposure, standard illumination at 475/35nm, 450 

µW/mm​2​ ; scale bar 100 µm; volume is 200 µm deep; see also Suppl. Movie 1).  
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Fig. 2. SWIFT volume imaging across hippocampal subfields in a behaving rodent. ​( ​A ​) 

Mice expressing genetically-encoded calcium indicator GCaMP6f in hippocampal subfields 

CA1, CA2, and CA3 are implanted with a cranial window allowing optical access to the dorsal 

hippocampus ​(Dombeck et al. 2007; Barretto, Messerschmidt, and Schnitzer 2009) ​. Subfields 

CA1-CA3 are present in the imaging field of view. (​B​) Histology from an EYFP animal showing 

cannula placement and location relative to subfields. (​C ​) A head-restrained mouse is imaged 

while running on an axially-fixed spherical treadmill. Mouse movements on the ball are 

measured with an optical mouse as in previous work ​(Dombeck et al. 2007)​. ( ​D ​) Volumes from 

SWIFT imaging acquired synchronously at 50 Hz; each of the 5 time point volumes was taken 

when the mouse was either running or stationary, as labeled. The white arrow points to a neuron 

more than 0.5 mm below the top of the volume (scale bar 200 µm). (​E​) Z-slices through a single 

volume showing cells at different depths in the volume. (​F​) Active neurons across hippocampal 

subfields expressing genetically-encoded calcium indicator GCaMP6f and localized using a 

novel sparse, structured machine learning method appropriate for massive data (Methods; scale 

bar 100 µm). (​G​) 12 estimated calcium traces corresponding to the spatial filters of the same 

number in (​F​), with thresholded spike probability estimates (threshold at 5% percentile) 

(Vogelstein et al. 2010; Pnevmatikakis et al. 2016)​ (Methods, scale bar 30 sec). 
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Fig. 3. SWIFT volume imaging during a rewarded contextual navigation task.​  ( ​A ​) ( ​B) ​Mice 

are trained on a contextual reward task. (​C ​) The mouse encounters two environments, C1 (white) 

and C2 (magenta underlay), which are defined by a distinct visual, olfactory, and auditory 

stimuli. Water-deprived mice receive no water reward in C1 trials (80% of trials), but they will 

receive a water reward 1 sec after entering C2 (20% of trials; blue line; scale bar 30 sec). (​D ​) 

Twenty identified neurons that fire reliably in the rewarded context (highlighted in the horizontal 

red line in panel ​E ​below), and the corresponding activity traces (scale bar 400% dF/F, 30 sec). 

( ​E​; top) Raster plots corresponding to spike likelihood traces (temporally-deconvolved and 

sorted by similarity, Methods); contexts and rewards indicated as in ​C ​ (scale bar: 30 sec).​ ​( ​E​; 

bottom), time histogram of the raster events. (​F​) Reliability of cells that fire within +/- 1 second 

of reward onset during >80% of trials. Cells are ordered vertically by consistency of firing.  A 

bright pixel in the heatmap indicates the cell reliably fires during that time slice relative to 

administration of the reward. There is a temporal ordering to when cells fire reliably that starts 

prior to reward onset. (​G​) A permutation test (999 permutations, red lines) shows the reliability 

of cell firing in a time bin (blue line) to be significantly above chance (p<0.001, uncorrected), 

with divergence from the empirical null distribution beginning before reward onset.  
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Supplementary Fig. 1 Comparison of confocal microscopy and light field microscopy. (A-E​) 

A 250 μm thick volume containing 2 μm uorescent beads suspended in 2% low melting point 

agarose imaged with scanning confocal microscopy (​A,D ​, 20x 0.5NA objective; scale bar 100 

μm) and light eld microscopy (​C,E ​, same objective) ​(Marc Levoy et al. 2006; Broxton et al. 

2013) ​. ( ​B​) A raw light eld image, where the pattern on the sensor generated by a microlens 

array encodes spatial and angular information about light emitted by the sources in the volume. 

Insets show different intensity patterns recorded for beads at (red) or below (blue) the native 

plane of focus of the microscope. (​C,E ​) After reconstruction, the three-dimensional distribution 

of the beads can be distinguished in maximum intensity projections (​C ​) and volume renderings 

( ​E​). ( ​F​) Resolution criterion for the light field microscope showing the maximum resolvable 

spatial frequencies as a function of depth for several microscope objectives used in this study. 

For a fixed 125 μm pitch microlens array, a larger objective magnification results in better peak 

resolution but a more rapid fall-off and hence a diminished axial range over which good 

resolution can be achieved ​(Broxton et al. 2013)​. 
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Supplementary Fig. 2. SWIFT volume imaging and validation in prefrontal cortex in vitro. 

( ​A ​) Injection site for AAVdj-hSyn-GCaMP6f virus in mouse prefrontal cortex. (​B​) 864 active 

neurons identified across cortical layers 1, 2/3, 5, and 6 of an acute mouse cortical slice 

expressing genetically-encoded calcium indicator GCaMP6f in cingulate (Cg), prelimbic (PL), 

and infralimbic (IL) cortex using a novel sparse, structured machine learning method appropriate 

for massive data (Methods; scale bar 200 µm). (​C ​) SWIFT fluorescence time series from twelve 

representative cells (those highlighted in red in ​B​) (scale bar 580 %dF/F, 20 sec). ( ​D ​) 

Fluorescence time series from 12 adjacent cells (highlighted in blue in ​B​) centered on a 

randomly-chosen cell and showing no detectable cross-talk between adjacent identified cells 

(scale bar 580 %dF/F, 20 sec). (​E​) A volume reconstruction of a neuron patched and filled with 

Alexafluor 594 (purple). The red channel shows the identified cell spatial filter which agrees 

well with the filled cell image; black points indicate the centroids of the closest 20 identified 

sources (scale bar 300 µm). ​( ​F​) Example voltage responses to depolarizing and hyperpolarizing 

current steps in two driven cells that were imaged at 25 Hz first using 2PSLM and then SWIFT 

(scale bar 50 mV; 250 ms)​. ( ​G​), signal-to-noise ratio (SNR) for 2PSLM ​(light/dark green 

correspond to cell 1/cell 2)​ and SWIFT ​(light/dark magenta correspond to cell 1/cell 2) ​resulting 

from 5 runs of the protocol shown in ​F​ for each imaging modality (Methods). ​( ​H​) Correlations 

as a function of distance of nearby cells to the patched and driven cells in ​F​; these show no 

consistent cross-contamination with distance in the SWIFT time series even at 

GCaMP6f-saturating levels of stimulation (although some cells at irregular distances show likely 

physiologically connections; nearby cell centroids for cell 1 are shown as black points in ​E​).  
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Supplementary Fig. 3. Structure of SWIFT analysis pipeline. (A) ​Optical model for a light 

field microscope. An epifluorescence microscope can be converted into a light field microscope 

by placing a microlens array at the native image plane. Light from each position in the volume 

produces a unique intensity pattern that can be decoded by solving a large inverse problem, 

thereby reconstructing volumetric information from a single camera image. ​(B) ​Volumes are 

recovered using light field deconvolution ​(Broxton et al. 2013)​, which runs in parallel on 300 

“g2.2xlarge” GPU-enabled Amazon spot instances. A single data set containing 30,000 raw light 

field images (10 minutes of data acquired at 50 Hz) can be processed in roughly 3 hours. ​(C) 

Volumes processed using a robust rigid-body motion correction algorithm (RASL) ​(Peng et al. 

2012) ​, and then sources and their time series are identified using a sparse, structured matrix 

factorization of the volumetric time-series. Time series are further temporally deconvolved and 

potentially thresholded to provide firing likelihoods or spike timing estimates  ​(Vogelstein et al. 

2010; Pnevmatikakis et al. 2016)​. ​(D) ​Time series extracted from a vertical slice (yellow line) 

exhibit high frequency artifacts from tissue motion (top) that remain present in cross-correlation 

based correction (middle) but not RASL-based motion correction (bottom).  
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