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Abstract

Motivated by the simulation of deformable bodies, we propose a
new tetrahedral mesh generation algorithm that produces both high
quality elementsanda mesh that is well conditioned for subsequent
large deformations. We use a signed distance function defined on
a grid in order to represent the object geometry. After tiling space
with a uniform lattice based on crystallography, we identify a sub-
set of these tetrahedra that adequately fill the space occupied by
the object. Then we use the signed distance function or other user
defined criteria to guide a red green mesh subdivision algorithm
that results in a candidate mesh with the appropriate level of detail.
After this, both the signed distance function and topological con-
siderations are used to prune the mesh as close to the desired shape
as possible while keeping the mesh flexible for large deformations.
Finally, we compress the mesh to tightly fit the object boundary
using either masses and springs, the finite element method or an
optimization approach to relax the positions ofboththe interior and
boundary nodes. The resulting mesh is well suited for simulation
since it is highly structured, has robust topological connectivity in
the face of large deformations, and is readily refined if deemed nec-
essary during subsequent simulation.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid and object representations

Keywords: tetrahedral mesh generation, BCC lattice, red green
refinement, finite element method, level set methods

1 Introduction

Tetrahedral meshes are used in a number of areas including frac-
ture [O’Brien and Hodgins 1999; O’Brien et al. 2002], haptics [De-
bunne et al. 2001], solid modeling [Cutler et al. 2002], surgical
simulations [Ganovelli et al. 2000], and the modeling of biologi-
cal tissue including the brain [Grinspun et al. 2002], the knee [Hi-
rota et al. 2001] and even fatty tissue [James and Pai 2002]. Robust
methods for generating these meshes are in high demand. Of partic-
ular interest to us are simulations of highly deformable bodies such
as the muscle and fatty tissues commonly encountered in graphics,
biomechanics or virtual surgery.
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Figure 1:Tetrahedral mesh of a cranium (80K elements).

Mesh generation is not only a broad field, but is in some sense
many fields each concerned with the creation of meshes that con-
form to quality measures specific to the application at hand.The
requirements for fluid flow and heat transfer where the mesh is
not deformed, and for small deformation solids where the mesh is
barely deformed, can be quite different from those for simulating
soft biological tissue that may undergo large deformations.For ex-
ample, while an optimal mesh for a fluid flow simulation should in-
clude anisotropically compressed elements in boundary layers, e.g.
[Garimella and Shephard 1998; Lohner and Cebral 1999], these
highly stretched cells tend to be ill-conditioned when a mesh de-
forms significantly as is typical for soft bodies. Either the mesh
is softer in the thin direction and the cell has a tendency to invert,
or the mesh is stiffer in the thin direction and the simulation be-
comes very costly as the time step shrinks with higher stiffness and
smaller element cross-section. Thus, although our method has been
designed to provide a high degree of adaptivity both to resolve the
geometry and to guarantee quality simulation results, we neither
consider nor desire anisotropically stretched elements. Also, since
highly deformable bodies tend to be devoid of sharp features such
as edges and corners, we do not consider boundary feature preser-
vation.

Our main concern is to generate a mesh that will be robust when
subsequently subject to large deformations. For example, although
we obviously want an adaptive mesh with smaller elements in areas
where more detail is desired, it is even more important to have a
mesh that can be adapted during the simulation since these regions
will change. Motivated by crystallography, we use a body-centered
cubic (BCC) mesh (see e.g. [Burns and Glazer 1990]) that is highly
structured and produces similar (in the precise geometric sense)
tetrahedra under regular refinement. This allows us to adaptively
refine both while generating the mesh and during the subsequent
simulation.

We start with a uniform tiling of space and use a signed dis-



tance function representation of the geometry to guide the creation
of the adaptive mesh, the deletion of elements that are not needed
to represent the object of interest, and the compression of the mesh
necessary to match the object boundaries. This compression stage
can be carried out using either a mass spring system, a finite element
method or an optimization based approach. One advantage of using
a physically based compression algorithm is that it gives an indica-
tion of how the mesh is likely to respond to the deformations it will
experience during simulation. This is in contrast to many traditional
methods that may produce an initial mesh with good quality mea-
sures, but also with hidden deficiencies that can be revealed during
simulation leading to poor accuracy or element collapse. Moreover,
our novel topological considerations (discussed below) were specif-
ically designed to address these potential defects present in most (if
not all) other mesh generation schemes.

2 Related Work

Delaunay methods have not been as successful in three spatial di-
mensions as in two, since they admit flat sliver tetrahedra of negli-
gible volume. [Shewchuk 1998] provides a nice overview of these
methods, including a discussion of why some of the theoretical re-
sults are not reassuring in practice. Moreover, he discusses how
the worst slivers can often be removed. [Cheng et al. 2000] also
discusses sliver removal, but states that their theorem gives an esti-
mate that is “miserably tiny”.

Advancing front methods start with a boundary discretization
and march a “front” inward forming new elements attached to the
existing ones, see e.g. [Schöberl 1997]. While they conform well
to the boundary, they have difficulty when fronts merge, which un-
fortunately can occur very near the important boundary in regions
of high curvature, see e.g. [Garimella and Shephard 1998; Lohner
and Cebral 1999]. In [Radovitzky and Ortiz 2000], the authors start
with a face-centered cubic (FCC) lattice defined on an octree and
use an advancing front approach to march inward constructing a
mesh with the predetermined nodes of the FCC lattice. They choose
FCC over BCC because it gives slightly better tetrahedra for their
error bounds. However, after any significant deformation the two
meshes will usually have similar character. Moreover, since we
keep our BCC connectivity intact (as opposed to [Radovitzky and
Ortiz 2000]), we retain the ability to further refine our BCC mesh
during the calculation to obtain locally higher resolution for im-
proved accuracy and robustness. On the other hand, their approach
is better at resolving boundary features and is thus most likely su-
perior for problems with little to no deformation.

[Shimada and Gossard 1995] packed spheres (or ellipsoids [Ya-
makawa and Shimada 2000]) into the domain with mutual attrac-
tion and repulsion forces, and generated tetrahedra using the sphere
centers as sample points via either a Delaunay or advancing front
method. However,ad hocaddition and deletion of spheres is re-
quired in a search for a steady state, and both local minima and
“popping” can be problematic. This led [Li et al. 1999] to pro-
pose the removal of the dynamics from the packing process, instead
marching in from the boundary removing spherical “bites” of vol-
ume one at a time.

[Debunne et al. 2001] carried out finite element simulations on a
hierarchy of tetrahedral meshes switching to the finer meshes only
locally where more detail is needed. They state that one motivation
for choosing this strategy is the difficulty in preserving mesh quality
when subdividing tetrahedral meshes. [Grinspun et al. 2002] pro-
poses basis refinement pointing out that while T-junctions are easily
removed in two spatial dimensions, it is more involved in three spa-
tial dimensions. Our method alleviates both of these concerns since
subdivision of our BCC mesh leads to a similar (the tetrahedra are
congruent up to a dilation) BCC mesh, and the particular red green
strategy that we use can be implemented in a straightforward man-
ner.

Figure 2:Tetrahedral mesh of a cranium (cutaway view) show-
ing the regularity and coarseness of the interior tetrahedra
(80K elements).

[Cutler et al. 2002] starts with either a uniform grid or a graded
octree mesh and subdivides each cell into five tetrahedra. Then
tetrahedra that cross an internal or external interface are sim-
ply split, which can form poorly shaped elements for simulation.
Neighboring tetrahedra are also split to avoid T-junctions. The
usual tetrahedral flips and edge collapses are carried out in an at-
tempt to repair the ill-conditioned mesh.

Our compression phase moves the nodes on the boundary of our
candidate mesh to the implicit surface providing boundary confor-
mity. Related work includes [Bloomenthal and Wyvill 1990] who
attracted particles to implicit surfaces for visualization, [Turk 1991;
Turk 1992] who used particles and repulsion forces to sample and
retriangulate surfaces, [de Figueiredo et al. 1992; Crossno and An-
gel 1997] who used the same idea to triangulate implicit surfaces,
[Szeliski and Tonnesen 1992] who modeled surfaces with oriented
particles, and [Witkin and Heckbert 1994] who used particle repul-
sion to sample (and control) implicit surfaces.

In some sense, this wrapping of our boundary around the level set
is related to snakes [Kass et al. 1987] or GDM’s [Miller et al. 1991]
which have been used to triangulate isosurfaces, see e.g. [Sadarjoen
and Post 1997]. [Neugebauer and Klein 1997] started with a march-
ing cubes mesh and moved vertices to the centroid of their neigh-
bors before projecting them onto the zero level set in the neigh-
boring triangles’ average normal direction. [Grosskopf and Neuge-
bauer 1998] improved this method using internodal springs instead
of projection to the centroid, incremental projection to the zero iso-
contour, adaptive subdivision, edge collapse and edge swapping.
[Kobbelt et al. 1999] used related ideas to wrap a mesh with sub-
division connectivity around an arbitrary one (other interesting ear-
lier work includes [Hoppe et al. 1993; Hoppe et al. 1994]), but had
difficulty projecting nodes in one step, emphasizing the need for
slower evolution. Similar techniques were used by [Bertram et al.
2000; Hormann et al. 2002] to wrap subdivision surfaces around
implicit surfaces. To improve robustness, [Wood et al. 2000] adap-
tively sampled the implicit surface on the faces of triangles, redis-
tributed the isovalues times the triangle normals to the vertices to
obtain forces, and replaced the spring forces with a modified Lapla-
cian smoothing restricted to the tangential direction. [Ohtake and
Belyaev 2002] advocated moving the triangle centroids to the zero
isocontour instead of the nodes, and matching the triangle normals
with the implicit surface normals.

Although we derive motivation from this work, we note that our



problem is significantly more difficult since these authors move
their mesh in a direction normal to the surface, which is orthogonal
to their measure of mesh quality (shapes of triangles tangent to the
surface). When we move our mesh normal to the surface, it directly
conflicts with the quality of the surface tetrahedra. [de Figueiredo
et al. 1992] evolved a volumetric mass spring system in order to
align it with (but not compress it to) the zero isocontour, but the
measure of mesh quality was still perpendicular to the evolution di-
rection since the goal was to triangulate the zero isocontour. Later,
however, [Velho et al. 1997]did push in a direction conflicting with
mesh quality. They deformed a uniform-resolution Freudenthal lat-
tice to obtain tetrahedralizations using a mass spring model, but
were restricted to simple geometries mostly due to the inability
to incorporate adaptivity. In two spatial dimensions, [Gloth and
Vilsmeier 2000] also moved the mesh in a direction that opposed
the element quality. They started with a uniform Cartesian grid bi-
sected into triangles, threw out elements that intersected or were
outside the domain, and moved nodes to the boundary in the di-
rection of the gradient of the level set function using traditional
smoothing, edge-swapping, insertion and deletion techniques on
the mesh as it deformed.

3 A Crystalline Mesh
We turn our attention to the physical world for inspiration and start
our meshing process with a body-centered cubic (BCC) tetrahedral
lattice. This mesh has numerous desirable properties and is an ac-
tual crystal structure ubiquitous in nature, appearing in vastly dif-
ferent materials such as soft lithium and hard iron crystals, see e.g.
[Burns and Glazer 1990].

The BCC lattice consists of nodes at every point of a Carte-
sian grid along with the cell centers. These node locations may
be viewed as belonging to two interlaced grids. Additional edge
connections are made between a node and its eight nearest neigh-
bors in the other grid. See figure 3 where these connections are
depicted in red and the two interlaced grids are depicted in blue and
in green. The BCC lattice is the Delaunay complex of the inter-
laced grid nodes, and thus possesses all properties of a Delaunay
tetrahedralization. Moreover, all the nodes are isomorphic to each
other (and in particular have uniform valence), every tetrahedron is
congruent to the others, and the mesh is isotropic (so the mesh itself
will not erroneously induce any anisotropic bias into a subsequent
calculation). The BCC lattice is structured and thus has advantages
for iterative solvers, multigrid algorithms, and both computational
and memory requirements.

Figure 3:A portion of the BCC lattice. The blue and the green
connections depict the two interlaced grids, and the eight red
connections at each node lace these two grids together.

There are a number of ways to improve the accuracy of a finite
element simulation. R-refinement relocates existing mesh nodes
to better locations, h-refinement locally refines the mesh to ob-
tain smaller elements where needed, and p-refinement increases the
polynomial order of the interpolating functions—see e.g. [Cheng
et al. 1988]. A significant advantage of the BCC mesh is that it is
easily refined initially or during the calculation. Each regular BCC

tetrahedron can be refined into eight tetrahedra, shown in red in fig-
ure 4, with a one to eight (or 1:8) refinement. When the shortest of
the three possible choices for the edge internal to the tetrahedron is
taken, the newly formed tetrahedra areexactlythe BCC tetrahedra
that result from a mesh with cells one half the size. Thus, these
eight new tetrahedra are geometrically similar to the tetrahedra of
the parent mesh and element quality is guaranteed under this regular
1:8 refinement.

4 Red Green Refinement

Many applications do not require and cannot afford (due to com-
putation time and memory restrictions) a uniformly high resolution
mesh. For example, many graphical simulations can tolerate low
accuracy in the unseen interior of a body, and many phenomena
such as contact and fracture show highly concentrated stress pat-
terns, often near high surface curvature, outside of which larger
tetrahedra are acceptable. Thus, we require the ability to generate
adaptive meshes.

As the BCC lattice is built from cubes, one natural approach to
adaptivity is to build its analog based on an octree. We implemented
this by adding body centers to the octree leaves, after ensuring the
octree was graded with no adjacent cells differing by more than
one level. The resulting BCC lattices at different scales were then
patched together with special case tetrahedra. For more on oc-
trees in mesh generation, see e.g. [Shephard and Georges 1991;
Radovitzky and Ortiz 2000].

However, we found that red green refinement is more econom-
ical, simpler to implement, and more flexible, see e.g. [Bey 1995;
Grosso et al. 1997; de Cougny and Shephard 1999]. The initial
BCC lattice tetrahedra are labeled red, as are any of their eight chil-
dren obtained with our 1:8 subdivision shown in red in figure 4.
Performing a red refinement on a tetrahedron creates T-junctions
at the newly-created edge midpoints where neighboring tetrahedra
are not refined to the same level. To eliminate these, the red tetra-
hedra with T-junctions are irregularly refined into fewer than eight
children by introducing some of the midpoints. These children are
labeled green, and are of lower quality than the red tetrahedra that
are part of the BCC mesh. Moreover, since they are not BCC tetra-
hedra, we never refine them. When higher resolution is desired
in a region occupied by a green tetrahedron, the entire family of
green tetrahedra is removed from its red parent, and the red parent
is refined regularly to obtain eight red children that can undergo
subsequent refinement.

Figure 4: The standard red refinement (depicted in red) pro-
duces eight children that reside on a BCC lattice that is one-
half the size. Three green refinements are allowed (depicted in
green).



A red tetrahedron that needs a green refinement can have be-
tween one and six midpoints on its edges (in the case of six we do
red refinement). We reduce the possibilities for green refinement to
those shown in figure 4, adding extra edge midpoints if necessary.
This restriction (where all triangles are either bisected or quadri-
sected) smooths the gradation further and guarantees higher quality
green tetrahedra. While there can of course be a cascading effect as
the extra midpoints may induce more red or green refinements, it is
a small price to pay for the superior mesh quality and seems to be a
minor issue in practice.

Any criteria may be used to drive refinement, and we experi-
mented with the geometric rules described in the next section. A
significant advantage of the red green framework is the possibility
for refinement during simulation based ona posteriorierror esti-
mates, with superior quality guarantees based on the BCC lattice
instead of an arbitrary initial mesh. Note that the lower quality
green tetrahedra can be replaced by finer red tetrahedra which ad-
mit further refinement. However, one difficulty we foresee is in
discarding portions of green families near the boundary (see sec-
tion 6), since part of the red parent is missing. To further refine this
tetrahedron, the green family has to be replaced with its red parent
which can be regularly refined, then some of the red children need
to be discarded and the others must be compressed to the bound-
ary (see sections 7–8). A simpler but lower quality alternative is
to arbitrarily relabel those green boundary tetrahedra that are miss-
ing siblings as red allowing them to be directly refined. We plan to
address this issue in future work.

5 Representing the Geometry
We represent the geometry with a signed distance function defined
on either a uniform grid [Osher and Fedkiw 2002] or an octree grid
[Frisken et al. 2000]. In the octree case, we constrain values of
fine grid nodes at gradation boundaries to match the coarse grid
interpolated values, see e.g. [Westermann et al. 1999]. When the
signed distance function has a resolution much higher than that of
our desired tetrahedral mesh, we apply motion by mean curvature to
smooth the high frequency features and then reinitialize to a signed
distance function, see e.g. [Osher and Fedkiw 2002] (and [Desbrun
et al. 1999] where curvature motion was applied directly to a trian-
gulated surface).

At any point in space, we calculate the distance from the implic-
itly defined surface asφ which is negative inside and positive out-
side the surface. To obtain a finer mesh near the boundary, one sim-
ply refines tetrahedra that include portions of the interface where
φ = 0. If a tetrahedron has nodes with positive values ofφ and
nodes with negative values ofφ , it obviously contains the interface
and can be refined. Otherwise, the tetrahedron is guaranteed not
to intersect the interface if the minimum value of|φ | at a node is
larger than the longest edge length (tighter estimates are available

Figure 5:Tetrahedral mesh of a sphere (18K elements). The cut-
away view illustrates that the interior mesh can be fairly coarse
even if high resolution is desired on the boundary.

Figure 6: Tetrahedral mesh of a torus (8.5K elements). The
principal curvatures were used to increase the level of resolu-
tion in the inner ring.

of course). The remaining cases are checked by samplingφ appro-
priately (at the level set grid size4x), allowing refinement if any
sample is close enough to the interface (|φ |<4x). Figure 5 shows
a sphere adaptively refined near its boundary. Note how the interior
mesh can still be rather coarse.

The outward unit normal is defined asN = ∇φ and the mean
curvature is defined asκ = ∇ ·N. One may wish to adaptively re-
fine in regions of high curvature, but the mean curvature is a poor
measure of this since it is the average of the principal curvatures,
(k1 + k2)/2, and can be small at saddle points where positive and
negative curvatures cancel. Instead we use|k1|+ |k2|. The principal
curvatures are computed by forming the Hessian,

H =

 φxx φxy φxz
φxy φyy φyz
φxz φyz φzz

 ,

and projecting out the components in the normal direction via the
projection matrixP= I−NNT . Then the eigenvalues ofPHP/|∇φ |
are computed, the zero eigenvalue is discarded as corresponding
to the eigenvectorN, and the remaining two eigenvalues arek1
andk2. See e.g. [Ambrosio and Soner 1996]. To detect whether
a tetrahedron contains regions of high curvature, we sample at a
fine level and check the curvature at each sample point. Figure 6
shows a torus where the inner ring is refined to higher resolution
even though the principal curvatures there differ in sign.

6 Constructing a Candidate Mesh

In the previous three sections we described the BCC lattice, the red
green refinement strategy and the representation of the geometry of
interest with a signed distance function. This section describes how
we tie these ideas together to obtain a candidate tetrahedral mesh of
our object. This candidate mesh will be compressed to the boundary
using one of the methods described in the next two sections.

The first step is to cover an appropriately sized bounding box
of the object with a coarse BCC mesh. Then we use a conservative
discard process to remove tetrahedra that are guaranteed to lie com-
pletely outside of the zero isocontour: tetrahedra with four positive
φ values all larger than the maximum edge length are removed.

In the next step, the remaining tetrahedra are refined according to
any user defined criteria, such asa posteriorierror estimates, indi-
cator variables or geometric properties. We have experimented with
using both the magnitude ofφ and various measures of curvature as
discussed in the previous section. Using simply the magnitude ofφ

produces large tetrahedra deep inside the object and a uniform level
of refinement around the surface, which can be useful since objects
interact with each other via surface tetrahedra. A more sophisti-
cated method uses the surface principal curvatures, better resolving



complex geometry and allowing for more robust and efficient simu-
lation when subject to large deformation. We refine any tetrahedron
near the interface if its maximum edge length is too large compared
to a radius of curvature measure, 1/(|k1|+ |k2|), indicating an in-
ability to resolve the local geometry. We refine to a user-specified
number of levels, resolving T-junctions in the red green framework
as needed.

From the adaptively refined lattice we will select a subset of
tetrahedra that closely matches the object. However, there are spe-
cific topological requirements necessary to ensure a valid mesh that
behaves well under deformation: the boundary must be a manifold;
no tetrahedron may have all four nodes on the boundary; and no
interior edge may connect two boundary nodes. Boundary forces
can readily crush tetrahedra with all nodes on the boundary, or that
are trapped between the boundary and an interior edge with both
endpoints on the boundary. To satisfy the conditions, we select all
the tetrahedra incident on a set of “enveloped” nodes sufficiently in-
terior to the zero isocontour. This guarantees that every tetrahedron
is incident on at least one interior node, and also tends to avoid the
bad interior segments for reasonably convex regions, i.e. regions
where the geometry is adequately resolved by the nodal samples.
We specifically choose the set of nodes whereφ < 0 that have all
their incident edges at least 25% inside the zero isocontour as de-
termined by linear interpolation ofφ along the edge.

Additional processing is used to guarantee appropriate topol-
ogy even in regions where the mesh may be under-resolved. Any
remaining interior edges and all edges incident on non-manifold
nodes are bisected, and the red green procedure is used to remove
all T-junctions. If any refinement was necessary, we recalculate
the set of enveloped nodes and their incident tetrahedra as above.
As an option, we may add any boundary node with surface degree
three to the set of enveloped nodes (if these nodes were to remain,
the final surface mesh would typically contain angles over 120◦).
We also add any non-manifold node that remains and the deeper
of the two boundary nodes connected by a bad interior edge. We
check that these additions do not create more problems, continuing
to add boundary nodes to the set of enveloped nodes until we have
achieved all requirements. This quickly and effectively eliminates
all topological problems, resulting in a mesh that approximates the
object fairly closely (from the viewpoint of an initial guess for the
compression phase of the algorithm) and that has connectivity well
suited for large deformation simulations.

7 Physics Based Compression

We outfit our candidate mesh with a deformable model based on
either masses and springs or the finite element method, and subse-
quently compress the boundary nodes to conform to the zero iso-
contour of the signed distance function. The compression is driven
using either a force or velocity boundary condition on the surface
nodes. Applying forces is more robust as it allows the interior mesh
to push back, resisting excessive compression while it seeks an opti-
mal state. If the internal resistance of the mesh becomes larger than
the boundary forces, the boundary will not be matched exactly. In-
stead of adjusting forces, we switch from force to velocity boundary
conditions after an initial stage that carries out most of the needed
compression. At each boundary vertex, we choose the direction
of the force or constrained velocity component as the average of
the incident triangles’ normals. No force (or velocity constraint)
is applied in other directions so the mesh is free to adjust itself
tangentially. The magnitude of the force or velocity constraint is
proportional to the signed distance from the level set boundary.

For time integration we use the central difference scheme advo-
cated in [Bridson et al. 2002] that treats the nonlinear elastic forces
explicitly and the damping forces implicitly. This allows larger time
steps to be chosen based only on the elastic (and not the damp-
ing) forces. Moreover, since all our damping forces are linear and

Figure 7:Tetrahedral mesh of a model Buddha (800K elements).
The principal curvatures provide refinement criteria that read-
ily allow the resolution of features on multiple scales.

symmetric negative semi-definite, we can use a conjugate gradient
solver for the implicit step as in [Baraff and Witkin 1998]. We also
limit the time step so that no tetrahedron altitude can deform by
more than 10% during the time step as motivated by [Baraff and
Witkin 1998; Bridson et al. 2002]. In addition, we use the velocity
modification procedure discussed in [Bridson et al. 2002] to artifi-
cially limit the maximum strain of a tetrahedral altitude to 50% for
both compression and expansion, and to artificially limit the strain
rate of a tetrahedral altitude to 10% per time step. Since altitudes
do not connect two mesh nodes together, all of these operations are
carried out by constructing a virtual node at the intersection point
between an altitude and the plane containing the base triangle. The
velocity of this point is calculated using the barycentric coordinates
and velocities of the triangle, and the mass is the sum of the trian-
gle’s nodal masses. The resulting impulses on this virtual node are
equally redistributed to the triangle nodes, conserving momentum.

7.1 Mass Spring Models

The use of springs to aid in mesh generation dates back at least to
[Gnoffo 1982]. [Bossen and Heckbert 1996] points out that inter-
nodal forces that both attract and repel (like springs with nonzero
rest lengths) are superior to Laplacian smoothing where the nodes
only attract each other. Thus, we use nonzero rest lengths in our
springs, i.e. simulating the mesh as if it were a real material. All
edges are assigned linear springs obeying Hooke’s law, and the
nodal masses are calculated by summing one quarter of the mass
of each incident tetrahedron.

Edge springs are not sufficient to prevent element collapse. As a
tetrahedron gets flatter, the edge springs provide even less resistance
to collapse. Various methods to prevent this have been introduced,
e.g. [Palmerio 1994] proposed a pseudo-pressure term, [Bour-



guignon and Cani 2000] used an elastic (only, i.e. no damping)
force emanating from the barycenter of the tetrahedron. [Cooper
and Maddock 1997] showed that these barycentric springs do not
prevent collapse as effectively as altitude springs. In this paper,
we propose a novel extension of their model for altitude springs by
including damping forces which are linear and symmetric negative
semi-definite in the nodal velocities. This allows the damping terms
to be integrated using a fast conjugate gradient solver for implicit
integration, which is important for efficiency especially if stiff alti-
tude springs are used to prevent collapse.

Every tetrahedron has four altitude springs each attaching a node
to its opposite face. Consider a particular node labeled 1 with nodes
2, 3, 4 on the opposite face with outward normal ˆn. If the current
perpendicular distance isl and the rest length isl0, then we add the
elastic forceF1 = ke[(l − lo)/lo]n̂ to node 1 and subtract one third
of that from each of the opposite face nodes. If the nodal velocities
are v1, . . . ,v4, we add the damping forces:F1 = f12 + f13 + f14,
F2 =− f12, F3 =− f13 andF4 =− f14 where f1i = kd((v1−vi) · n̂)n̂
for i = 2,3,4. Multiplying the f1i by the barycentric weights of the
triangle that determine the location of the virtual node at the base
of the altitude spring givesf = kd((v1−vB) · n̂)n̂ which is the usual
damping force for a spring. Thus there is nothing special or unusual
about the damping force from the viewpoint of the altitude spring.
However, after calculating this force, it needs to be redistributed to
the nodal locations at the vertices of the triangle. Our formulas do
this so that the Jacobian matrix of damping forces with respect to
the velocities is symmetric negative semi-definite.

[Van Gelder 1998] proposed scaling the spring stiffness as the
sum of the volumes of the incident tetrahedra divided by the length
of the edge. We provide a similar, but much shorter argument for
scaling of this nature. The frequency of a spring scales as

√
k/mlo

(note our “spring constant” isk/lo) so the sound speed scales as
lo

√
k/mlo =

√
klo/m. We simply require the sound speed to be a

material property implying thatk must scale asm/lo. This result is
consistent with [Van Gelder 1998], since the mass and the volume
both scale identically with their ratio equal to the density. However,
the mass is more straightforward to deal with since one can simply
use the harmonic mass of a spring. For example, we set the spring
constant for our altitude springs using the harmonic average of the
nodal mass and the triangle mass.

7.2 Finite Element Method

It is well known that finite element methods are more robust than
their mass spring counterparts, and thus we propose using the fi-
nite element method for mesh generation (as well as simulation).
While any number of constitutive models could be used, an inter-
esting strategy is to use the real constitutive model of the material
when generating its mesh. In this sense, one might hope to pre-
dict how well the mesh will react to subsequent deformation dur-
ing simulation, and possibly work to ensure simulation robustness
while constructing the mesh.

We use the nonlinear Green strain tensor,ε =
1/2[(∂x/∂u)T(∂x/∂u) − I ] where x(u) represents a point’s
position in world coordinates as a function of its coordinates in
object space. Isotropic, linearly-elastic materials have a stress
strain relationship of the formσe = λ tr(ε)I + 2µε whereλ and
µ are the Laḿe coefficients. Damping stress is modeled similarly
with σd = αtr(ν)I +2βν whereν = ∂ε/∂ t is the strain rate. The
total stress tensor is thenσ = σe+σd.

We use linear basis functions in each tetrahedron so that the dis-
placement of material is a linear function of the tetrahedron’s four
nodes. From the nodal locations and velocities we obtain this linear
mapping and its derivative and use them to compute the strain and
the strain rate, which in turn are used to compute the stress tensor.
Finally, because the stress tensor encodes the force distribution in-

Figure 8:Tetrahedral mesh of a model dragon (500K elements).
The final compression stage can be carried out with masses and
springs, finite elements, or an optimization based method.

side the material, we can use it to calculate the force on the nodes as
in for example [O’Brien and Hodgins 1999; Debunne et al. 2001].

In their finite element simulation, [Picinbono et al. 2001] added
a force in the same direction as our altitude springs. But since that
force was the same on all nodes and based on the volume deviation
from the rest state, it does not adversely penalize overly compressed
directions and can even exacerbate the collapse. Moreover, they
do not discuss damping forces. Therefore, we instead artificially
damp the strain and strain rate of the altitudes of the tetrahedra as
discussed above.

8 Optimization Based Compression

As an alternative to physical simulation, one can directly optimize
mesh quality metrics such as aspect ratios. This doesn’t provide the
same feedback on potential problems for subsequent simulation, but
can give better quality measures since they are directly pursued with
each movement of a node. Coupled with our robust connectivity
(see section 6), this produces excellent results.

[Freitag and Ollivier-Gooch 1997] demonstrated that optimizing
node positions in a smoothing sweep, i.e. considering one node at
a time and placing it at a location that maximizes the quality of
incident elements, is far superior to Laplacian smoothing in three
spatial dimensions. We combine this optimization sweeping with
boundary constraints by first moving boundary nodes in the inci-
dent triangles’ average normal direction by an amount proportional
to the local signed distance value. Then the optimization is con-
strained to only move boundary nodes in the tangential direction. It
is important to move boundary nodes gradually over several sweeps
just as with physical simulation, since otherwise the optimization
gets stuck in local extrema. We also found it helpful to order the
nodes in the sweep with the boundary nodes first, their interior
neighbors next, and so on into the interior. Then we sweep in the re-
verse order and repeat. This efficiently transfers information from
the boundary compression to the rest of the mesh. Typically we
do five sweeps of moving the boundary nodes 1/6 of the signed
distance in the mesh normal direction, and then 2/6, . . . ,5/6. Fi-
nally, we perform five more sweeps moving boundary nodes the
full signed distance to ensure a tight boundary fit.



While more efficient gradient methods may be used for the nodal
optimization, we found a simple pattern search (see e.g. [Torczon
1997]) to be attractive for its robustness, simplicity of implemen-
tation, and flexibility in easily accommodating any quality metric.
We implemented the normal direction constraint on boundary nodes
simply by choosing pattern directions orthogonal to the mesh nor-
mal at the node.

It was helpful to combine incident boundary triangle quality with
the incident tetrahedron quality, not just for producing better bound-
ary meshes but also for guiding the optimization away from local
extrema as we compressed the boundary. One promising avenue
of research is to alternate optimization with physical simulation to
further avoid local extrema and to better condition the mesh for the
subsequent physical simulations.

9 Results
We demonstrate several examples of tetrahedral meshes that were
generated with our algorithm. The number of tetrahedra ranges
from 8k to 800K. We used mass spring models, the finite element
method and optimization based techniques on all of our available
data in order to discern some trends. The results are comparable for
all three compression techniques, with the FEM simulations tak-
ing slightly longer (ranging from a few minutes to a few hours on
the largest meshes) than the mass spring methods, but producing a
higher quality mesh. The fastest method, by far, is the optimization
based compression which tends to be about 10 times faster.

We track a number of quality measures including the maximum
aspect ratio (defined as the tetrahedron’s maximum edge length di-
vided by its minimum altitude), minimum dihedral angle, and max-
imum dihedral angle during the compression phase. The aspect
ratios of our candidate mesh start at about 3.5 regardless of the de-
gree of adaptivity, emphasizing the desirability of our combined red
green adaptive BCC approach. This number comes from the green
tetrahedra whereas the red tetrahedra have aspect ratios of

√
2. In

the more complicated models, the worst aspect ratio in the mesh
tends to increase to around 6-7 for the physics based compression
methods and to around 5 for the optimization based compression.
Dihedral angles typically range from 15◦ to 150◦, although one can
often do better, e.g. the optimization based technique obtains angles
between 19◦ and 145◦ for the cranium.

Of course, these results are dependent on the types and strengths
of springs, the constitutive model used in the FEM, and the quality
measures used in the optimization based technique. It is easier to
get good quality with the optimization technique since one simply
optimizes based on the desired measure, as opposed to the physics
based techniques where one has to choose parameters that indirectly
lead to a quality mesh. However, we stress that the measure of mesh
quality is the measure of the worst element at any point of dynamic
simulation. It does little good to have a perfect mesh that collapses
immediately when the simulation begins. For meshes that undergo
little to no deformation (fluid flow, heat flow, small strain, etc.) this
quality measure is either identical to or very close to that of the ini-
tial mesh. However, for large deformation problems this is not the
case, and the physics based compression techniques hold promise
in the sense that the resulting mesh may be better conditioned for
simulation.

The general theme of our algorithm—tile ambient space as regu-
larly as possible, select a subset of elements that are nicely con-
nected and roughly conform to the object, then deform them to
match the boundary—is applicable in any dimension and on gen-
eral manifolds. Figure 9 shows the result of triangulating a two-
dimensional manifold with boundary. We began with a surface
mesh of the dragon actually created as the boundary of a tetrahe-
dral mesh from our method (with additional edge-swapping and
smoothing), and a level set indicating areas of the surface to trim
away. We kept a subset of the surface triangles inside the trim-

Figure 9: Our method is easily extended to create a triangle
mesh of a manifold with boundary. The peeled away regions
of the dragon were modeled with a second level set.

ming level set and compressed to the trimming boundary, making
sure to stay on the surface. Note that quality two-dimensional sur-
face meshes with boundary are important for cloth simulation, es-
pecially when considering collisions.

10 Conclusions and Future Work

Meshes generated using this algorithm have been successfully used
to simulate highly deformable volumetric objects with a variety of
constitutive models, see [Anonymous us 2003a], as well as two di-
mensional shells [Anonymous us 2003b]. This is not surprising
because these meshes have withstood the fairly strenuous defor-
mation of compressing them to the zero isocontour, where every
surface node is subjected to external forces.

We considered discrete ways to improve the final mesh such as
edge-swapping methods where an edge withN adjacent tetrahedra
is replaced with 2N− 4 tetrahedra, see for example [Freitag and
Ollivier-Gooch 1997; Joe 1995]. But in general, we avoid swap-
ping in order to preserve our red green structure. Moreover, swap-
ping tends to have a negligible effect on our mesh quality measures
indicating that we have achieved near optimal connectivity with our
red green adaptive BCC structure.

For simplification of tetrahedral meshes, edge collapse tech-
niques can be used, see e.g. [Staadt and Gross 1998; de Cougny
and Shephard 1999; Trotts et al. 1999; Cignoni et al. 2000] (see
also [Hoppe 1996]), and we plan to pursue combinations of edge
collapse with level set projection techniques as future work.

Boundary features and internal layers (as in [Cutler et al. 2002])
may be matched in our algorithm with additional forces or con-
straints.
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