
Feature-Based Volume Metamorphosis
Apostolos Lerios, Chase D. Garfinkle, Marc Levoy

�

Computer Science Department
Stanford University

Abstract

Image metamorphosis, or image morphing, is a popular tech-
nique for creating a smooth transition between two images. For
synthetic images, transforming and rendering the underlying
three-dimensional (3D) models has a number of advantages over
morphing between two pre-rendered images. In this paper we con-
sider 3D metamorphosis applied to volume-based representations
of objects. We discuss the issues which arise in volume morphing
and present a method for creating morphs. Our morphing method
has two components: first a warping of the two input volumes,
then a blending of the resulting warped volumes. The warping
component, an extension of Beier and Neely’s image warping
technique to 3D, is feature-based and allows fine user control, thus
ensuring realistic looking intermediate objects. In addition, our
warping method is amenable to an efficient approximation which
gives a 50 times speedup and is computable to arbitrary accuracy.
Also, our technique corrects the ghosting problem present in Beier
and Neely’s technique. The second component of the morphing
process, blending, is also under user control; this guarantees
smooth transitions in the renderings.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism.

Additional Keywords: Volume morphing, warping, render-
ing; sculpting; shape interpolation, transformation, blending;
computer animation.

1 Introduction

1.1 Image Morphing versus 3D Morphing

Image morphing, the construction of an image sequence depicting
a gradual transition between two images, has been extensively in-
vestigated [21] [2] [6] [16]. For images generated from 3D models,
there is an alternative to morphing the images themselves: 3D mor-
phing generates intermediate 3D models, the morphs, directly from
the given models; the morphs are then rendered to produce an image
sequencedepicting the transformation. 3D morphing overcomes the
following shortcomings of 2D morphing as applied to images gen-
erated from 3D models:

�
Center for Integrated Systems, Stanford University, Stanford, CA 94305�

lerios,cgar,levoy � @cs.stanford.edu
http://www-graphics.stanford.edu/

� In 3D morphing, creating the morphs is independent of the
viewing and lighting parameters. Hence, we can create a
morph sequence once, and then experiment with various cam-
era angles and lighting conditions during rendering. In 2D
morphing, a new morph must be recomputed every time we
wish to alter our viewpoint or the illumination of the 3D
model.

� 2D techniques, lacking information on the model’s spatial con-
figuration, are unable to correctly handle changes in illumina-
tion and visibility. Two examples of this type of artifact are:
(i) Shadows and highlights fail to match shape changes occur-
ing in the morph. (ii) When a feature of the 3D object is not
visible in the original 2D image, this feature cannot be made
to appear during the morph; for example, when a singing actor
needs to open her mouth during a morph, pulling her lips apart
thickens the lips instead of revealing her teeth.

1.2 Geometric versus Volumetric 3D Models
The models subjected to 3D morphing can be described either by ge-
ometric primitives or by volumes (volumetric data sets). Each rep-
resentation requires different morphing algorithms. This dichotomy
parallels the separation of 2D morphing techniques into those that
operate on raster images [21] [2] [6], and those that assume vector-
basedimage representations[16]. We believe that volume-basedde-
scriptions are more appropriate for 3D morphing for the following
reasons:

� The quality and applicability of geometric 3D morphing tech-
niques [12] is highly dependent on the models’ geometric
primitives and their topological properties. Volume morphing
is independent of object geometries and topologies, and thus
imposes no such restrictions on the objects which can be suc-
cessfully morphed.

� Volume morphing may be applied to objects represented either
by geometric primitives or by volumes. Geometric descrip-
tions can be easily converted to high-quality volume represen-
tations, as we will see in section 2. The reverse process pro-
duces topologically complex objects, usually inappropriate for
geometric morphing.

1.3 Volume Morphing
The 3D volume morphing problem can be stated as follows. Given
two volumes � and � , henceforth called the source and target vol-
umes, we must produce a sequence of intermediate volumes, the
morphs, meeting the following two conditions:

Realism: The morphs should be realistic objects which have plau-
sible 3D geometry and which retain the essential features of
the source and target.

Smoothness: The renderings of the morphs must depict a smooth
transition from � to � .

From the former condition stems the major challenge in designing a
3D morphing system: as automatic feature recognition and match-
ing have yet to equal human perception, user input is crucial in defin-
ing the transformation of the objects. The challenge for the designer

Volume

Source

Target

Edit Define feature

elements

Volume

Sculpting

Interactive

Procedural

Definition

Sample

convert

Manual, but done once

Warp

Source

Volume

Image

Automatic, repeated for each frame of the morph

render

Segment,

Classify

Volume

Warped

Blend

Warped

Target

Volume

Volume

Morphed

Scan

Scanning

Geometric
Data

Figure 1: Data flow in a morphing system. Editing comprises retouching and aligning the volumes for cosmetic reasons.

of a 3D morphing technique is two-fold: the morphing algorithm
must permit fine user control and the accompanying user interface
(UI) should be intuitive.

Our solution to 3D morphing attempts to meet both conditions of
the morphing problem, while allowing a simple, yet powerful UI.
To this end, we create each morph in two steps (see figure 1):

Warping: � and � are warped to obtain volumes ��� and ��� . Our
warping technique allows the animator to define quickly the
exact shape of objects represented in ��� and ��� , thus meeting
the realism condition.

Blending: � � and � � are combined into one volume, the morph.
Our blending technique provides the user with sufficient con-
trol to create a smooth morph.

1.4 Prior Work
Prior work on feature-based 2D morphing [2] will be discussed in
section 3.

Prior work in volume morphing comprises [9], [8], and [5].
These approaches can be summarized in terms of our warp-
ing/blending framework.

[5] and [8] have both presented warping techniques. [5] exam-
ined the theory of extending selected 2D warping techniques into
3D. A UI was not presented, however, and only morphs of simple
objects were shown. [8] presents an algorithm which attempts to au-
tomatically identify correspondencesbetween the volumes, without
the aid of user input.

[9] and [8] have suggested using a frequency or wavelet repre-
sentation of the volumes to perform the blending, allowing different
interpolation schedules across subbands. In addition, they have ob-
served that isosurfaces of the morphs may move abruptly, or even
completely disappear and reappear as the morph progresses, de-
stroying its continuity. This suggests that volume rendering may be
superior to isosurface extraction for rendering the morphs.

Our paper is partitioned into the following sections: Section 2
covers volume acquisition methods. Sections 3 and 4 present the
warping and blending steps of our morphing algorithm. Section 4.2
describes an efficient implementation of our warping method and
section 5 discusses our results. We conclude with suggestions for
future work and applications in section 6.

2 Volume Acquisition
Volume data may be acquired in several ways, the most common of
which are listed below.

Scanned volumes: Some scanning technologies, such as Comput-
erized Tomography (CT) or Magnetic Resonance Imaging
(MRI) generate volume data. Figures 5(a) and 5(c) show CT
scans of a human and an orangutan head, respectively.

Scan converted geometric models: A geometric model can be
voxelized [10], preferably with antialiasing [20], generating a
volume-based representation of the model. Figures 6(a), 6(b),
7(a), and 7(b) show examples of scan-converted volumes.

Interactive sculpting: Interactive modeling, or sculpting [19] [7],
can generate volume data directly.

Procedural definition: Hypertexture volumes [15] can be defined
procedurally by functions over 3D space.

3 Warping
The first step in the volume morphing pipeline is warping the source
and target volumes � and � . Volume warping has been the subject
of several investigations in computer graphics, computer vision, and
medicine. Warping techniques can be coarsely classified into two
groups: (i) Techniques that allow only minimal user control, con-
sisting of at most a few scalar parameters. These algorithms au-
tomatically determine similarities between two volumes, and then
seek the warp which transforms the first volume to the second one
[18]. (ii) Techniques in which user control consists of manually
specifying the warp for a collection of points in the volume. The rest
of the volume is then warped by interpolating the warping function.
This group of algorithms includes free-form deformations [17], as
well as semi-automatic medical data alignment [18].

As stated in section 1.3, user control over the warps is crucial
in designing good morphs. Point-to-point mapping methods [21],
in the form of either regular lattices or scattered points [13], have
worked in 2D. However, regular grids provide a cumbersome inter-
face in 2D; in 3D they would likely become unmanageable. Also,
prohibitively many scattered points are needed to adequately spec-
ify a 3D warp.

Our solution is a feature-based approach extending the work of
[2] into the 3D domain. The next two sections will introduce our
feature-based 3D warping and discuss the UI to feature specifica-
tion.

3.1 Feature-Based 3D Warping using Fields
The purpose of a feature element is to identify a feature of an object.
For example, consider the X-29 plane of figure 6(b); an element can
be used to delineate the nose of the plane. In feature-based mor-
phing, elements come in pairs, one element in the source volume
� , and its counterpart in the target volume � . A pair of elements
identifies corresponding features in the two volumes, i.e. features
that should be transformed to one another during the morph. For
instance, when morphing the dart of figure 6(a) to the X-29 plane,
the tip of the dart should turn into the nose of the plane. In order
to obtain good morphs, we need to specify a collection of element
pairs which define the overall correspondence of the two objects.
These element pairs interact like magnets shaping a pliable volume:

(a)

Warp

(b)

Warp

Figure 2: 2D warp artifacts (not to scale). (a) shows the result of
squeezing a circle using two feature lines placed on opposite sides
of the circle. The warped circle spills outside the corresponding,
closely spaced, lines. Similarly, in (b), the narrow ellipsoid with two
lines on either side does not expand to a circle when the lines are
drawn apart; we get instead three copies of the ellipsoid.

while a single magnet can only move, turn, and stretch the volume,
multiple magnets generate interacting fields, termed influence fields,
which combine to shape the volume in complex ways. Sculpting
with multiple magnets becomeseasier if we have magnets of various
kinds in our toolbox, each magnet generating a differently shaped
influencefield. The elements in our toolkit are points, line segments,
rectangles, and boxes.

In the following presentation, we first describe individual ele-
ments, and discuss how they identify features. We then show how
a pair of elements guarantees that corresponding features are trans-
formed to one another during the morph. Finally, we discuss how
multiple element pairs interact.

Individual Feature Elements
Individual feature elements should be designed in a manner such
that they can delineate any feature an object may possess. How-
ever, expressivenessshould not sacrifice simplicity, as complex fea-
tures can still be matched by a group of simple elements. Hence, the
defining attributes of our elements encode only the essential charac-
teristics of features:

Spatial configuration: The feature’s position and orientation are
encoded in an element’s local coordinate system, comprising
four vectors. These are the position vector of its origin � , and
three mutually perpendicular unit vectors � , � and � , defining
the directions of the coordinate axes. The element’s scaling
factors � � , � � , and � � define a feature’s extent along each of
the principal axes.

Dimensionality: The dimensionality of a feature depends on the
subjective perception of a feature’s relative size in each dimen-
sion: the tip of the plane’s nose is perceived as a point, the
edge of the plane’s wing as a line, the dart’s fin as a surface,
and the dart’s shaft as a volume. Accordingly, our simplified
elements have a type, which can be a point, segment, rectan-
gle, or box. In our magnetic sculpting analogy, the element
type determines the shape of its influence field. For example, a
box magnet defines the path of points within and near the box;
points further from the box are influenced less as their distance
increases.

The reader familiar with the 2D technique of [2] will notice two
differences between our 3D elements and a direct extention of 2D
feature lines into 3D; in fact, these are the only differences as far as
the warping algorithm is concerned.

First, in the 2D technique, the shape of a feature line’s influence
field is controlled by two manually specified parameters. Instead,
we provide four simple types of influence fields — point, segment,
rectangle, and box — thus allowing for a more intuitive, yet equally
powerful, UI.

Second, our feature elements encode the 3D extent of a 3D fea-
ture via the scaling factors � � , � � , and � � ; by contrast, feature lines

in [2] capture only the 1D extent of a 2D feature, in the direction of
each feature line. These scaling factors introduce additional degrees
of freedom for each feature element. In the majority of situations,
these extra degrees have a minor effect on the warp and may thus
be ignored. However, under extreme warps, they permit the user to
solve the ghosting problem, documentedin [2] and illustrated in fig-
ure 2. For instance, in part (b) of this example, the ellipsoid is repli-
cated because each feature line requires that an unscaled ellipsoid
appear by its side: the feature lines in [2] cannot specify any stretch-
ing in the perpendicular direction. However, in a 2D analogueof our
technique, the user would use the lines’ scaling factors to stretch the
ellipsoid. First, the user would encode the ellipsoid’s width in the
scaling factors of the original feature lines. Then, in order to stretch
the ellipsoid into a circle, the user would not only move the feature
lines apart, but will also make the lines’ scaling factors encode the
desired new width of the ellipsoid. In fact, using our technique, a
single feature line suffices to turn the ellipsoid into a circle.

Element Pairs
As in the 2D morphing system of [2], the animator identifies two
corresponding features in � and � , by defining a pair of elements� 	
 � 	 �

. Thesefeatures should be transformed to one another during
the morph. Such a transformation requires that the feature of � be
moved, turned, and stretched to match respectively the position, ori-
entation, and size of the corresponding feature of � . Consequently,
for each frame of the morph, our warp should generate a volume ���
from � with the following property: the feature of � should possess
an intermediate position, orientation and size in ��� . This is achieved
by computing the warp in two steps:

Interpolation: We interpolate the local coordinate systems � and
scaling factors of elements

	

and

	 �
to produce an interpo-

lated element
	
� . This element encodes the spatial configura-

tion of the feature in � � .
Inverse mapping: For every point in � � of � � , we find the corre-

sponding point � in � in two simple steps (see figure 3): (i) We
find the coordinates of � � in the scaled local system of element	
� by

� ��� � � � � � �
�� � � � � ��� ��� � � � � � �
�� � � � � ��� ��� � � � � � �
�� � � � � �� �
(ii) � is the point with coordinates � � , � � and � � in
the scaled local system of element

	

, i.e. the point��� � � � � � � � � � � � � � � � � � . �

Collections of Element Pairs
In extending the warping algorithm of the previous paragraph to
multiple element pairs, we adhere to the intuitive mental model of
magnetic sculpting used in [2]. Each pair of elements defines a field
that extends throughout the volume. A collection of element pairs
defines a collection of fields, all of which influence each point in the
volume. We therefore use a weighted averaging scheme to deter-
mine the point � in � that corresponds to each point � � of � � . That
is, we first compute to what point ��� each element pair would map� � in the absence of all other pairs; then, we average the ��� ’s using
a weighting function that depends on the distance of � � to the inter-
polated elements

	
�� .

Our weighting scheme usesan inverse square law: ��� is weighted
by
� � � �
 ! � where

�
is the distance of � � from the element

	
�� ; � is a

� The axes directions " , # , and $ are interpolated in spherical coordinates
to ensure smooth rotations.
� % is warped into % � in a similar way, the only difference being that & �

is used in this last step in place of &
 .

Element e Element e’

p’

Volume S Warped volume S’

s

c

p

z

x

y
z’

c’

x’
y’

pxp
y

p
z

p
x

pz

py

Figure 3: Single element warp. In order to find the point � in vol-
ume � that corresponds to � � in � � , we first find the coordinates� � � � � � � � �
 of � � in the scaled local system of element

	
� ; � is then

the point with coordinates
� � � � � � � � �
 in the scaled local system of

element
	

. To simplify the figure, we have assumed unity scaling
factors for all elements.

small constant used to avoid division by zero. � The type of element	
�� determines how

�
is calculated:

Points:
�

is the distance between � � and the origin � of the local
coordinate system of element

	
�� . This definition is identical

to [21].

Segments: The element is treated as a line segment centered at the
origin � , aligned with the local � -axis and having length � � ; �
is the distance of � � from this line segment. This definition is
identical to [2].

Rectangles: Rectangles have the same center and � extent as seg-
ments, but also extend into a second dimension, having width� � along the local � -axis.

�
is zero if � � is on the rectangle,

otherwise it is the distance of � � from the rectangle. This def-
inition extends segments to area elements.

Boxes: Boxes add depth to rectangles, thus extending for � � units
along the local � -axis.

�
is zero if � � is within the box, other-

wise it is the distance of � � from the box’s surface.

The reader will notice that the point, segment, and rectangle ele-
ment types are redundant, as far as the mathematical formulation of
our warp is concerned. However, a variety of element types main-
tains best the intuitive conceptual analogy to magnetic sculpting.

3.2 User Interface
The UI to the warping algorithm has to depict the source and tar-
get volumes, in conjunction with the feature elements. Hardware-
assisted volume rendering [4] makes possible a UI solely based on
direct visualization of the volumes, with the embedded elements
interactively scan-converted. Using a low-end rendering pipeline,
however, the UI has to resort to geometric representations of the
models embedded in the volumes. These geometric representations
can be obtained in either of two ways:

� Pre-existing volumes are visualized by isosurface extraction
via marching cubes [14]. Several different isosurfaces can be
extracted to visualize all prominent features of the volume, a
volume rendering guiding the extraction process.

� For volumes that were obtained by scan converting geometric
models, the original model can be used.

Once geometric representations of the models are available, the
animator can use the commercial modeler of his/her choice to spec-
ify the elements. Our system, shown in figure 6(d), is based on In-
ventor, the Silicon Graphics (SGI) 3D programming environment.
Models are drawn in user-defined materials, usually translucent, in

� Distance measurements postulate cubical volumes of unit side length.
Also, we always set � to � � � � � .

order to distinguish them from the feature elements. These, in turn,
are drawn in such a way that their attributes — local coordinate sys-
tem, scaling factors, and dimensionality — are graphically depicted
and altered using a minimal set of widgets.

4 Blending

The warping step has producedtwo warped volumes ��� and ��� from
the source and target volumes � and � . Any practical warp is likely
to misalign some features of � and � , possibly because these were
not specifically delineated by feature elements. Even if perfectly
aligned, matching features may have different opacities. These ar-
eas of the morph, collectively called mismatches, will have to be
smoothly faded in/out in the rendered sequence, in order to maintain
the illusion of a smooth transformation. This is the goal of blending.

We have two alternatives for performing this blending step. It
may either be done by cross-dissolving images rendered from � �
and ��� , which we call 2.5D morphing, or by cross-dissolving the
volumes themselves, and rendering the result, i.e. a full 3D morph.
The 2.5D approach produces smooth image sequencesand provides
the view and lighting independence of 3D morphing discussed in
section 1.1; however, some disadvantages of 2D morphing are rein-
troduced, such as incorrect lighting and occlusions. Consequently,
2.5D morphs do not look as realistic as 3D morphs. For example,
the “missing link” of figure 5(f) lacks distinct teeth, and the base of
the skull appears unrealistically transparent.

For this reason, we decided to investigate full 3D morphing,
whereby we blend the warped volumes by interpolating their voxel
values. The interpolation weight �

� 	

is a function that varies over

time, where “time” is the normalized frame number

. We have the

option of using either a linear or non-linear �
� 	

.

4.1 Linear Cross-Dissolving

The pixel cross-dissolving of 2D morphing suggests a linear �
� 	

.
Indeed, it works well for blending the color information of ��� and

� � . However, it fails to interpolate opacities in a manner such that
the rendered morph sequenceappears smooth. This is due to the ex-
ponential dependence of the color of a ray cast through the volume
on the opacities of the voxels it encounters. This phenomenon is il-
lustrated in the morph of figure 5. In particular, the morph abruptly
snaps into the source and target volumes if a linear �

� 	

is used: fig-

ure 5(g) shows that at time � � � � , very early in the morph, the empty
space towards the front of the human head has already been filled in
by the warped orangutan volume.

4.2 Non-Linear Cross-Dissolving

In order to obtain smoothly progressing renderings, we would like
to compensate for the exponential dependence of rendered color on
opacity as we blend � � and ��� . This can be done by devising an
appropriate �

� 	

.

In principle, there cannot exist an ideal compensating �
� 	

. The
exact relationship between rendered color and opacity depends on
the distance the ray travels through voxels with this opacity. Hencea
globally applied �

� 	

cannot compensateat once for all mismatches

since they have different thickness. Even a locally chosen �
� 	

cannot work, as different viewpoints cast different rays through the
morph.

In practice, the mismatches between ��� and ��� are small in num-
ber and extent. Hence, the above theoretical objections do not pre-
vent us from empirically deriving a successful �

� 	

. Our design

goal is to compensate for the exponential relation of rendered color

In other words, “time” is a real number linearly increasing from 0 to 1

as the morph unfolds.

Image I’

WarpedImage I

Figure 4: 2D analogue of piecewise linear warping. A warped im-
age � � is first subdividedby an adaptive grid of squares, here marked
by solid lines. Then, each square vertex is warped into � . Finally,
pixels in the interior of each grid cell are warped by bilinearly in-
terpolating the warped positions of the vertices. The dashed arrows
demonstrate how the interior of the bottom right square is warped.
The dotted rectangles mark image buffer borders.

to opacity by interpolating opacities at the rate of an inverse expo-
nential. The sigmoid curve given by

� � � ! � � � � � 	 � � � �

� � � � ! � �
����

satisfies this requirement. It suppresses the contribution of � � ’s
opacity in the early part of the morph, the degree of suppression
controlled by the blending parameter � . Similarly, the contribution
of ��� ’s opacity is enhanced in the latter part of the morph. Fig-
ure 5(h), illustrates the application of compensated interpolation to
the morph of figure 5: in contrast to figure 5(g), figure 5(h) looks
very much like the human head, as an early frame in the morph se-
quence should.
sectionPerformance and Optimization

A performance drawback of our feature-based warping technique
is that each point in the warped volume is influencedby all elements,
since the influencefields never decay to zero. It follows that the time
to warp a volume is proportional to the number of element pairs.
An efficient C++ implementation, using incremental calculations,
needs 160 minutes to warp a single � � � � volume with 30 element
pairs on an SGI Indigo 2.

We have implemented two optimizations which greatly acceler-
ate the computation of the warped volume 	�� , where we henceforth
use 	 to denote either � or � . First, we approximate the spatially
non-linear warping function with a piecewise linear warp [13]. Sec-
ond, we introduce an octree subdivision over 	 .

4.3 Piecewise Linear Approximation
The 2D form of this optimization, shown in figure 4, illustrates its
key steps within the familiar framework of image warping. In 3D,
piecewise linear warping begins by subdividing 	 � into a coarse,
3D, regular grid, and warping the grid vertices into 	 , using the al-
gorithm of section 3.1. The voxels in the interior of each cubic grid
cell are then warped by trilinearly interpolating the warped positions
of the cube’s vertices. Using this method, 	 � can be computed by
scan-converting each cube in turn. Essentially, we treat 	 as a solid
texture, with the warped grid specifying the mapping into texture
space. The expensive computation of section 3.1 is now performed
only for a small fraction of the voxels, and scan-conversion domi-
nates the warping time.

This piecewise linear approximation will not accurately capture
the warp in highly non-linear regions, unless we use a very fine grid.
However, computing a uniformly fine sampling of the warp defeats
the efficiency gain of this approach. Hence, we use an adaptive grid
which is subdivided more finely in regions where the warp is highly
non-linear. To determine whether a grid cell requires subdivision,
we compare the exact and approximated warped positions of several

points within the cell. If the error is abovea user-specified threshold,
the cell is subdividedfurther. In order to reducecomputation, we use
the vertices of the next-higher resolution grid as the points at which
to measure the error. Using this technique, the non-linear warp can
be approximated to arbitrary accuracy.

Since we are subsampling the warping function, it is possible that
this algorithm will fail to subdivide non-linear regions. Analytically
boundingthe variance of the warping function would guarantee con-
servative subdivision. However, this is unnecessary in practice, as
the warps used in generating morphs generally do not possess large
high-frequency components.

This optimization has been applied to 2D morphing systems, as
well; by using common texture-mapping hardware to warp the im-
ages, 2D morphs can be generated at interactive rates [1].

4.4 Octree Subdivision
	 usually contains large “empty” regions, that is, regions which are
completely transparent. The warp will map these parts of 	 into
empty regions of 	 � . Scan conversion, as described above, need not
take place when a warped grid cell is wholly contained within such
a region. By constructing an octree over 	 , we can identify many
such cells, and thus avoid scan converting them.

4.5 Implementation
Our optimized warping method warps a � � � � volume in approxi-
mately 3 minutes per frame on an SGI Indigo 2. This represents
a speedup of 50 over the unoptimized algorithm, without notice-
able loss of quality. The running time is still dominated by scan-
conversion and resampling, both of which can be accelerated by the
use of 3D texture-mapping hardware.

5 Results and Conclusions
Our color figures show the source volumes, target volumes, and
halfway morphs for three morph sequences we have created.

The human and orangutan volumes shown in figures 5(a) and 5(c)
were warped using 26 element pairs to produce the volumes of fig-
ures 5(b) and 5(d) at the midpoint of the morph. The blended middle
morph appears in figure 5(e).

Figures 6 and 7 show two examples of color morphs, requiring 37
and 29 element pairs, respectively. The UI, displaying the elements
used to control the morph of figure 6, is shown in 6(d).

The total time it takes to compose a 50-frame morph sequence
for � � � � volumes comprises all the steps shown on figure 1. Our
experience is that about 24 hours are necessary to turn design into
reality on an SGI Indigo 2:

Hours Task

10 CT scan segmentation, classification, retouching
1 Scan conversion of geometric model

8 Feature element definition (novice)
3 Feature element definition (expert)

5 Warping

3 Blending: 1 hour for each � : 2, 4, 6; retain best

4 Hi-res volume rendering (monochrome)
12 Hi-res volume rendering (color)

We have presented a two step feature-based technique for realis-
tic and smooth metamorphosis between two 3D models represented
by volumes. In the first step, our feature-based warping algorithm
allows fine user control, and thus ensures realistic morphs. In addi-
tion, our warping method is amenable to an efficient, adaptive ap-
proximation which gives a 50 times speedup. Also, our technique

 We always use an error tolerance of a single voxel width and an initial
subdivision of � � � cells.

corrects the ghosting problem of [2]. In the second step, our user-
controlled blending ensures that the rendered morph sequence ap-
pears smooth.

6 Future Work and Applications
We see the potential for improving 3D morphing in three primary
aspects:

Warping Techniques: Improved warping methods could allow for
finer user control, as well as smoother, possibly spline-based,
interpolation of the warping function across the volume. More
complex, but more expressive feature elements [11] may also
be designed.

User Interface: We envision improving our UI by adding
computer-assisted feature identification: the computer sug-
gesting features by landmark data extraction [18], 3D edge
identification, or, as in 2D morphing, by motion estimation
[6]. Also, we are considering giving the user more flexible
control over the movement of feature elements during the
morph, i.e. the rule by which interpolated elements are
constructed, perhaps by key-framed or spline-path motion.

Blending: Blending can be improved by allowing local definition
of the blending rate, associatingan interpolation schedule with
each feature element.

Morphing’s primary application has been in the entertainment
industry. However, it can also be used as a general visualization
tool for illustration and teaching purposes [3]; for example, our
orangutan to human morph could be used as a means of visualizing
Darwinian evolution. Finally, our feature-based warping technique
can be used in modeling and sculpting.

Acknowledgments
Philippe Lacroute helped render our morphs, and designed part of
the dart to X-29 fly-by movie shown on our video. We usedthe horse
mesh courtesy of Rhythm & Hues, the color added by Greg Turk.
John W. Rick provided the plastic cast of the orangutan head and
Paul F. Hemler arranged the CT scan. Jonathan J. Chew and David
Ofelt helped keep our computer resources in operation.

References
[1] T. Beier and S. Neely. Pacific Data Images. Personal communication.
[2] T. Beier and S. Neely. Feature-based image metamorphosis. In Computer Graph-

ics, vol 26(2), pp 35–42, New York, NY, July 1992. Proceedings of SIGGRAPH
’92.

[3] B. P. Bergeron. Morphing as a means of generating variation in visual medical
teaching materials. Computers in Biology and Medicine, 24(1):11–18, Jan. 1994.

[4] B. Cabral, N. Cam, and J. Foran. Accelerated volume renderingand tomographic
reconstruction using texture mapping hardware. In A. Kaufman and W. Krueger,
editors, Proceedings of the 1994 Symposium on Volume Visualization, pp 91–98,
New York, NY, Oct. 1994. ACM SIGGRAPH and IEEE Computer Society.

[5] M. Chen, M. W. Jones, and P. Townsend. Methods for volume metamorphosis.
To appear in Image Processing for Broadcast and Video Production, Y. Paker and
S. Wilbur editors, Springer-Verlag, London, 1995.

[6] M. Covell and M. Withgott. Spanning the gap between motion estimation and
morphing. In Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, vol 5, pp 213–216, New York, NY, 1994. IEEE.

[7] T. A. Galyean and J. F. Hughes. Sculpting: An interactive volumetric modeling
technique. In Computer Graphics, vol 25(4), pp 267–274, New York, NY, July
1991. Proceedings of SIGGRAPH ’91.

[8] T. He, S. Wang, and A. Kaufman. Wavelet-based volume morphing. In D. Berg-
eron and A. Kaufman, editors, Proceedings of Visualization ’94, pp 85–91, Los
Alamitos, CA, Oct. 1994. IEEE Computer Society and ACM SIGGRAPH.

[9] J. F. Hughes. Scheduled Fourier volume morphing. In Computer Graphics, vol
26(2), pp 43–46, New York, NY, July 1992. Proceedings of SIGGRAPH ’92.

[10] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Computer, 26(7):51–64,
July 1993.

[11] A. Kaul and J. Rossignac. Solid-interpolating deformations: Construction and
animation of PIPs. In F. H. Post and W. Barth, editors, Eurographics ’91, pp
493–505, Amsterdam, The Netherlands, Sept. 1991. Eurographics Association,
North-Holland.

[12] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation for polyhedral
objects. In Computer Graphics, vol 26(2), pp 47–54, New York, NY, July 1992.
Proceedings of SIGGRAPH ’92.

[13] P. Litwinowicz. Efficient techniques for interactive texture placement. In Com-
puter Graphics Proceedings, Annual Conference Series, pp 119–122, New York,
NY, July 1994. Conference Proceedings of SIGGRAPH ’94.

[14] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3-D sur-
face construction algorithm. In Computer Graphics, vol 21(4), pp 163–169,New
York, NY, July 1987. Proceedings of SIGGRAPH ’87.

[15] K. Perlin and E. M. Hoffert. Hypertexture. In Computer Graphics, vol 23(3), pp
253–262, New York, NY, July 1989. Proceedings of SIGGRAPH ’89.

[16] T. W. Sedeberg, P. Gao, G. Wang, and H. Mu. 2-D shape blending: An intrinsic
solution to the vertex path problem. In Computer Graphics Proceedings, Annual
Conference Series, pp 15–18, New York, NY, Aug. 1993. Conference Proceed-
ings of SIGGRAPH ’93.

[17] T. W. Sederberg and S. R. Parry. Free-formdeformationsof solid geometric mod-
els. In Computer Graphics, vol 20(4), pp 151–160, New York, NY, Aug. 1986.
Proceedings of SIGGRAPH ’86.

[18] P. A. van den Elsen, E.-J. D. Pol, and M. A. Viergever. Medical image match-
ing — a review with classification. IEEE Engineering in Medicine and Biology
Magazine, 12(1):26–39, Mar. 1993.

[19] S. W. Wang and A. Kaufman. Volume sculpting. In Proceedings of 1995 Sympo-
sium on Interactive 3D Graphics, pp 151–156, 214, New York, NY, Apr. 1995.
ACM SIGGRAPH.

[20] S. W. Wang and A. E. Kaufman. Volume sampled voxelizationof geometricprim-
itives. In G. M. Nielson and D. Bergeron, editors, Proceedings of Visualization
’93, pp 78–84, Los Alamitos, CA, Oct. 1993. IEEE Computer Society and ACM
SIGGRAPH.

[21] G. Wolberg. Digital Image Warping. IEEE Computer Society P., Los Alamitos,
CA, 1990.

Figure 5: Human to orangutan morph.

(g) Volume morph at time 0.06 using linear interpolation of
warped volumes. Due to the exponential dependence
of rendered color on opacity, the empty space towards the
front of the human head has already been filled in by the
warped orangutan volume (red arrows).

(f) Cross−dissolve of figures 5(b) and 5(d) illustrating a
drawback of 2.5 D morphing. The base of the skull
(indicated by red arrows) appears unrealistically
transparent, and the teeth are indistinct, compared to
the full 3D morph shown in figure 5(e).

(h) Volume morph at time 0.06 using non−linear
interpolation of warped volumes to correct for the
exponential dependence of color on opacity. The result
is now nearly identical to the human (see section 4.2).

(e) 3D volume morph halfway between human head and orangutan head.

(b) Human head warped to midpoint of morph.

(d) Orangutan head warped to midpoint of morph.(c) Original CT orangutan head.

(a) Original CT human head.

Figure 6: Dart to X-29 morph.

Figure 7: Lion to leopard-horse morph.

(d) User interface showing elements used to establish
correspondences between models. Points (not shown),
segments, rectangles, and boxes are respectively drawn
as pink spheres, green cylinders, narrow blue slabs, and
yellow boxes. The x, y, and z axes of each element are
shown only when the user clicks on an element in order
to change its attributes; otherwise, they remain invisible
to prevent cluttering the work area (see section 3.2).

(a) Dart volume from scan−converted polygon mesh. (c) Volume morph halfway between dart and X−29.(b) X−29 volume from scan−converted polygon mesh.

(a) Lion volume from scan−converted
polygon mesh.

(b) Leopard−horse volume from scan−
converted polygon mesh.

(c) Volume morph halfway between lion and leopard−horse.

