A Distributed Graphics System for Large Tiled Displays

Greg Humphre/s*

Pat Hanrahat

ComputerScienceDepartment
StanfordUniversity

Abstract

Receninterestin largedisplayshasled to renaveddevelopmenbf
tiled displays,which are comprisedof several individual displays
arrangedn an array and usedasone large logical display Stan-
ford’s “Interactive Mural” is anexampleof sucha display usingan
overlappingfour by two arrayof projectorsthatback-projeconto
a diffuse screento form a 6’ by 2’ displayareawith a resolution
of over 60 dpi. Writing softwareto male effective useof thelarge
displayspaces a challengebecausaormalwindowv systeminter-
actionmetaphordreakdonn. Onepromisingapproachs to switch
to immersve applicationsanotherapproachthe onewe areinves-
tigating, is to emulateoffice, conferenceoom or studio environ-
mentswhich usethe spaceo displaya collectionof visualmaterial
to supportgroupactities.

In this paperwe describea virtual graphicssystemthatis de-
signedto supportmultiple simultaneougenderingstreamsfrom
bothlocalandremotesites. Thesystemabstractshe physicalnum-
berof computersgraphicssubsystemandprojectorsusedto create
the display We provide performanceneasurement® shav that
thesystemscalesvell andthussupportsavariety of differenthard-
wareconfigurations The systemis alsointerestingbecausét uses
transparentlayers; insteadof windows, to managehescreen.

1 Introduction

Very large displaysare an exciting nev areaof researctbecause
they have thepotentialto truly changeheway peopleinteractwith
computers.Large, high resolutiondisplaysmay be hungon walls
andbuilt into tablesto create*smartspaces'thatallow nev meth-
odsof collaborationyisualizationandinteraction.Oneadwantage
of thesedisplaysis the increasedesolution,which is particularly
importantfor scientific visualizationapplicationswhere phenom-
enamaybeexploredat mary levelsof detail. Anotheradwantagds
the extra physicaldisplay spacewhich may be usedto surrounda
useror groupwith imagery Thepower of immersionis exemplified
by spatially-immersie displayssuchasthe CAVE[13]. The same
technologymaybe usedin a normaloffice or conferenceoomen-
vironmentto supportdecisionmakingandothergroupactiities.
The biggestchallengeof usingsuchsystemsds picking the user
interfacemetaphar Although onemight be temptedto usea tradi-

*humper@graphics.stanford.edu
Thanrahan@graphics.stanford.edu

tionalwindow andmousebasedernvironment,it is notclearthatit is
themostappropriatelesigrfor this ervironment.Designingvisual-
izationsfor large displaysdiffersfrom designingfor desktopmon-
itors dueto a variety of factors,including size, resolution,bright-
ness,contrastand orientation. Designingthe interfaceis equally
cumbersomesincelarge displaysare difficult to usewith a teth-
eredmouseor keyboard.Groupapplicationsandtasksarealsovery
differentfrom single-useapplications.

In orderto investigatetheseemeging typesof applicationswe
have built atiled, back-projectedisplaycalledthe“Interactve Mu-
ral”. It is constructedrom anarrayof 8 projectorsconnectedo a
high performanceraphicssystem.Eachprojectorhasaresolution
of 1024x768andoutputs900ANSI lumens.Our displayis of mod-
estsize (6 feetwide by 2 feethigh), but high resolution(3796 by
1436)andvery bright. Unlike the CAVE, it is bright enoughto be
usedin ordinaryoffice lighting without dimmingthe ervironment.
A photoof our systemin useis shavn in our color plate.

Theprimaryinput device is alaserpointerstylus,which canbe
usedto eitherdrav on the screendirectly or point at objectsfrom
adistance.The physicalervironmentis roughly the sizeof a wide
whiteboardgiving it a“walk up andtouchit” look andfeel. There
is enoughroomfor two or morepeopleto work in front of the sys-
tem. Although similar physicallyto a computerwhiteboard,the
Mural is designedo supportinteractive visualizationof large het-
erogeneouslatabasesyot just draving and markup[15]. A dia-
gramof the physicalconstructiorof our displayis shavn in figure
1

In thispapemve describahevirtual graphicssystenthatwe built
for thisdisplay We hadseveralgoalsfor the system:

e The low-level graphicssystemis designedto supportflexi-
ble configurationsf small physicaldisplays. A singlelarge
logical displayis createdby overlappingmultiple projectors
andfeatheringalongthe seams.Althoughtechnologyexists
for aligningandfeatheringmagesatarbitraryangleq20, 24],
we only supportrectangulatiling patterns.We do allow the
individual displaysto berotatedoy 90 degrees.

e The systemis designedto be scalable,supportingvariable
numberof computersgraphicscards andvideooutputports.
Althoughin this paperwe describeour currentsystemfor a
distributedsharednemorymachinewith two graphicspipes,
we werealsoableto implementour designusinga PCcluster
configuration.

e Thegraphicssystems designedisadistributedsenerto sup-
port multiple remoteclients. Eachclient s a differentappli-
cationandis typically runningon a differentmachine. Un-
likethe X window systemwhichtypically hasa singlesener
perdisplay ourseneris distributedsincethegraphicssystem
maybe partitionedacrossmultiple machinesThesystemwas
alsodesignedo supportsimultaneousenderingfrom multi-
ple streams.

e Thebasicunit of screerrealestatas alayerratherthanawin-
dow. Layersbehae logically muchlike windows, but they

A

o)

mmsmmseethcc s e e e
[e ——

SideView

Front View

Figurel: Basiclayoutof theInteractive Mural. An 8-processofP] sharednemorycompute(SGI Origin) connectedo two graphicssystems
[G] (SGlInfinite Reality),eachwith 8-way videooutputs(SGI DG-8) drive a bankof 8 LCD projectorgV] (NEC 1030).Eachprojectorhas
aresolutionof 1024by 768 andoutputs900 ANSI lumens;their projectedimagesoverlapby approximatelyl00 pixels. Thetotal display

sizeis 6 ft. by 2 ft. andhasaresolutionof 3796by 1436.

arecompositedisingalphablending.Layersalsosupportge-
ometrictransformationsandthey arenotnormallynestedike
windows.

We will presenta systemthat virtualizesthe distributedgraph-
ics resourcegontrolling the display and provides an interfacefor
multiple remoteapplicationgo sharethedisplayat once.Themain
challengedacing an architectof sucha systemare efficient net-
work utilization and overcomingthe graphicscontext switching
overhead. We addresghesechallengesusing structuredgraphics
cachingandOpenGLproxies.

2 Related Work

Thereare mary waysto virtualize a tiled display systemin soft-
ware. MacOSand, morerecently Microsoft Windows have sup-
portfor extendingthe desktoponto multiple monitorsconnectedo
a single computersystem. In thesecasesthe device driver takes
careof managingthe screernreal estateandthe distributedframe-
buffer memory Similarly, the latestreleaseof the X Window sys-
temcontainghe XINERAMA extension[9, which allows multiple
displaysto becombinednto onelargevirtual desktop.The Silicon
GraphicsnfiniteReality[17 systemallows a singleframetuffer to
drive multiple displaysthroughonelargelogical X sener.

A more general approachis taken by DEXON Systems’
DXVirtualWall[5], which provides extremely large tiled displays
thatrun eitherX Windows or Microsoft Windows. Clientsconnect
to a displayproxy that broadcastshe display protocolto multiple
displayseners,eachof which offsetsthe coordinateso displayits
own small portion of the larger desktop.Anotherusefor protocol
proxiesof this natureis to duplicatea single display acrosssev-
eral remotedisplays,asin Brown University’s XmX[10] project.
Theseproxy-basedystemslo not currentlysupportary high per
formance3D graphicsAPI suchasOpenGLor Direct3D,anddo

not handleoverlappingdisplays. Additionally, asthe numberof
displaysgetsvery large, the numberof concurrentredravs exerts
increasingoressuren the network, causingperformanceo sufer.

IRIS Performer[22? provides an APl for managingmultiple
graphicspipeswithin a single application. However, Performer
is designedor a single applicationdriving the entiredisplay and
mostcompellingPerformedemosarefull screenimmersie walk-
throughapplications.Runningmultiple Performerapplicationssi-
multaneouslyincursgreatcontet switchingoverheadyesultingin
pronouncedperformancedegradation. In addition, Performeris
designedaroundhierarchicallydefined“scenegraphs”; arbitrary
OpenGLapplicationsdo not receve much of the benefitof Per
former Finally, Performemaleslittle attempto virtualizethecon-
figurationof a multiple-pipesystem;applicationseedto be aware
of thenumberof pipesavailableto themandusethemexplicitly.

In the areaof remotegraphics,the X Window System[18 has
providedaremotegraphicsabstractiorfor mary years.Thissystem
hasa heaiily optimizednetwork usagemodel,andformsthe basis
for much of our systems design. GLX[16] is the dominantAPI
andprotocolusedfor renderingOpenGLremotelyover a network.
GLX providesa seamlessvay to display3D graphicson a remote
workstation.However, GLX hasno underlyingsupportfor sending
the samestreamof commandgo multiple displays. GLX's wire
protocolfor OpenGLis very compact,andour own wire protocol
is almostidentical.

The University of Minnesotas PaverWall[7] usesthe outputof
multiple graphicssupercomputerso drive multiple outputs,cre-
ating a large tiled display for high resolutionvideo playbackand
immersve applications.The University of Illinois at Chicagoex-
tendedthis systemto supportstereodisplay and usertrackingin
the InfinityWall[14] system. Unlike our system,neitherof these
displaysoverlapsits projectors.Thesesystemsaredesignedo fa-
cilitate asinglefull-screenapplicationwhichis oftenanimmersve
virtual reality system.More expensie customhardwaresolutions
areavailableaswell. PanoraniTechnologies[Bhasa suiteof hard-

waredevicesdesignedo creatdargetiled displays.Their“Integra-
tor”, aspecialanalogfeatheringoox, blendsthe outputsof individ-
ual projectors.Becausef theincreasingoerformancef graphics
systemsijt is now practicalto performthis blendingstepin soft-
ware.

Finally, projectssimilarto oursarecurrentlyundervay atPrince-
ton University[2) andUNC ChapeHill[19].

3 Design Goals and Implications

Our main goal while designingthis systemwasto createa graph-
ics systemthat effectively virtualizedthe distributed natureof our

display without sacrificingfamiliarity or performance. We also
wantedto provide a layeredgraphicsabstractiorwhich facilitates
the constructiorof mary kinds of applicationsandallows for nat-
ural manipulationof inherentlylayereddatasuchas mapsor ani-

mations. In addition, it wasimportantto usea portablegraphics
API aswell asatraditionalinput processingparadigmso that ex-

isting applicationscould usethe displaywith a minimum of effort.

Furthermorea crucialelementof our designwasthe ability to fa-

cilitate distributed, remotevisualization. Ratherthan thinking of

large displayspacesasan opportunityfor immersve applications,
we insteaddesignedandtunedour systemfor graphicalinforma-

tion sharing,collaboration,and visualization. Finally, we wanted
our systento allow for differenttiling configurationsandto effec-

tively virtualize thetiled displayby eliminatingthe seam$etween
projectorshothlogically andvisually.

3.1 Layers

An emepging metaphorin a large numberof graphicssystemss
the useof layersasa primitive. For example,dranving andimage
editing software suchasMacromediaFreehandaind Adobe Photo-
shopis basedon layers.Videoediting, specialeffectssystemsand
computemnimationsystemsll uselayers.Finally, gamemachines
have alwaysusedlayers(a.k.a.sprites);the Microsoft Talismanar-
chitecturg26] is amodernexampleof suchasystem.Moreimpor
tantly, thedesignof interfacess changingrapidly in this direction,
asexemplified by the look andfeel of a web pageversusa tradi-
tional widget-basedpplication.For thesereasonsve think layers,
notconventionalwindows, provide thebestfoundationfor theclass
of applicationswve arebuilding.

In someways layersare like traditionalwindows; they canbe
moved andresized,shavn and hidden. They arerectangulaand
have a stackingorderwith respecto eachother Eachlayeris rep-
resentecasan RGBA image,andthe stackof layersis combined
usingalphacompositingto createthe final displayedimage. Each
layeris a fully independengntity which canbe placedor scaled
arbitrarily, withoutregardto the positionor sizeof ary otherlayers.

Usinglayersinsteacf windows hasseveralconsequenceg:irst,
becausehe visible pixels may be the result of a blend between
mary layers,redraving ary layerin a stackmeanghatall the lay-
ersin the stackmustbe recompositedo form the final image. In
orderto schedulegedraving, we requirethateachlayerhas“frame
semantics”thatis, we requirethatan applicationindicatewhenit
is finisheddrawing the layer This is similar to the explicit buffer
swapthatis performedwith a double-lufferedapplication.Finally,
becausef thetransparematureof layers they mustbecomposited
in back-to-frontorder requiringthedraving commandsssociated
with eachlayerto beserialized.

Our systemalso allows an applicationto associatearbitrary
nameddatawith a layer, so that applicationscan communicate
with eachotherusingthe Mural asanintermediary Thisis similar
to the conceptof interclientcommunicationsn X Windows[23.
This capability allows applicationsthat are not on the samema-
chineto communicatevithout creatingdirectconnectiondetween

them. It alsoallows usto easilybuild userinterfacetoolslike magic
lenses[11l For example,an applicationmight associate display
list describinga complex 3D objectwith a layer Whenanother
layer is moved in front of that layer, it would be notified of the
overlapandcoulddrawv the 3D objectin adifferentstyle.

3.2 OpenGL and Input

It is importantthat the graphicsAPI supportedby our display be
widely used,so that applicationscan be developedusinga stable
and maturegraphicslibrary thatis familiar to mostgraphicspro-
grammers.We thereforesupportOpenGLasthe low-level graph-
ics API. Although there are several graphicslibraries that could
have sened our purposesye feel that OpenGLbestallows usto
supportvisually demandinghigh performanceD and3D applica-
tions. Furthermorethe portability of OpenGLgivesus flexibility
in choosingthe systemghatdrive our projectors;in particular we
wantto supportboth UNIX andWindows operatingsystems.

ChoosingOpenGLasthe only methodof draving imposescer
tain restrictionson the typesof datathat canbe easily displayed.
Thereis no directway to displayanexisting X or Microsoft Win-
dows applicationon our display We have solved this problem
by creatinga client for the VNC systemfrom AT&T Research[B
whichallows usto displaya Windows or X desktopn alayer The
VNC clientrunsasa normalremoteapplication,not asan exten-
sionto the sener. Another problemwith using OpenGLis that
it provides no supportfor renderingfonts. We have createdour
own systemfor renderingtext from vectorfont descriptionsbased
onthegl tt library[21]. Onefinal additionwe have madeto the
graphicdibrary is directsupportfor video playback— the system
is capableof either decodingmultiple MPEG streamsor playing
backnumberedramesfrom disk.

The sensingandintegrationof new input devices(suchaslaser
pointers gestureecognition headtracking,etc)into our systemis
aseparateopic of researchThe majorcompleity is thattheinput
devicesandtheir dataform a distributedsensometwork that must
be fusedaswell astransportedacrossa network. We alsoneedto
supportinput from multiple users.However, theinterfaceto these
input devices for the applicationprogrammetis the classicinput
loop paradigmand/orregisteredcallbacks.

3.3 Distributed, Scalable Graphics

An importantgoalof our systemis to allow multiple applicationdo
sharethe display spacewithout overloadingary onesystemcom-
ponent.Thereforewe find it naturalto allow applicationgo runon
remotecomputersTo achieve this, it wasnecessaryo separatehe
Muralinto atrueclient/sererarchitectureandto defineawire pro-
tocol to transportthe entire APl and callbackmechanisnbetween
theMural senerandthe Mural applications.

Remotegraphicds akey elemenfor collaboratioratadistance.
We wantremotesitesto be ableto useour systento visualizetheir
datasetsindsharevisualinformation,usingour systemasthe cen-
tral point of their collaboration.We mustprovide a framevork for
high-performanceemoterendering.andmale every effort to effi-
cientlyusethenetworkingresourcebetweerthedisplaysenerand
theremotesite controllingthevisualizationapplication.

3.4 Support for Tiling

In orderfor the systemto appeamsoneseamlesslisplay it is nec-
essaryto geometricallyand radiometricallycalibratethe bank of
projectors.First, we needto compensatéor thefactthatthe over
lappingareabetweerprojectorswill appearbrighterthanthe non-
overlappingarea. Secondseamsn the displaywill bevisible un-

lesswe addresshevaryingcolortemperaturandoverallbrightness
betweerprojectors.

To handletheoverlap,we draw “feathering”polygonsthatcover
the overlappingregions. Thesepolygonsaretexture-mappedvith
a one dimensionalalpha-onlyimagethat modulategheir opacity
from fully opaqueto fully transparent.Adequatelyhandlingthe
differing color characteristichetweenprojectorsrequiresa color
calibrationprocedurehatis beyondthe scopeof this paper

The useof softwarefeatheringmposedramesemanticon ap-
plicationsthatusethedisplay justasdid thelayerabstractiorpre-
senteckarlierin this section.In orderto properlyblendoverlapping
projectorstogether the systemmustknon whenall applications
have finisheddrawing their framesto the screersothatthefeather
ing polygonscanbe appliedasthelastoperationn eachframe.

4 System Architecture

The main challengedacing the architectof a large-scaledisplay
senerareutilizing thenetwork efficiently andminimizinggraphics
contet switches Graphicontext switchesoccurwhentwo differ-
entapplicationsvantto usethe graphicshardware simultaneously
andthe hardwareneedgo continuallyswaptheir respectie graph-
ics contets in andout. This is an extremely expensve operation
andshouldbe avoidedwhene&er possible. We definean OpenGL
wire protocolwhich overcomeshis problemby letting our sener
renderall graphicscommand®n behalfof eachclient, usinga sin-
gle contet for all clients.

Our graphicssystemis implementedas a networked sener
whichrunsonaSilicon Graphicsvorkstation.We createonethread
per pipe to manageandrenderall graphicscommandspne“mas-
ter” threadto overseaedrav dispatchingandeventredirectionand
oneclientthreadperconnecteapplicatiorto dispatchotherMural-
relatedcommanddik e “move layer”, “resizelayer”, etc. Applica-
tionsrenderusingour implementatiorof the OpenGLAPI, which
sendsa streamof commandsover the network to the pipe threads
for rendering A block diagramof this systemis shavn in figure 2.

Becauseof the compositingbehaior of layers,it is often nec-
essaryto redrav the entire screeneven thoughonly one layer is
changing. This is a major differencefrom normal window sys-
tems,andmary of the choicesmadein our implementatiorreflect
the difficulty of achieving acceptablgerformancen light of this
constraint. Our systemmaintainsa perlayer display list so that
non-changindayerscan be redravn without generatingary net-
work traffic. X senersprovide a rarely usedoption called“back-
ing store” that lets the sener maintaina bitmapfor a window so
redravs of thatwindow do not requirea network round-trip. Our
approachs similar, but morestructuredwe maintainalist of draw-
ing commanddor eachlayer, sothey canbe playedbackon the
sener without re-requestinghemfrom the application. This also
meanghatsimply moving a layerwill not generateary new drav
eventsor network traffic, eventhoughotherlayersmaybe partially
obscuredor exposedby the operation. This allows for extremely
efficientuseof network resourcesaswell asavery responsie sys-
temevenwhenmultiple complex datasetsarebeingdisplayedand
manipulatedsimultaneously

We alsoprovide an equivalentfor mostof the traditionalopera-
tionsperformedon awindow systemsuchasmoving layers resiz-
ing layers,and requestingnput. Although this is a new display
spacemanagemenfPl, it is still somavhat similar to managed
windows in atraditionalgraphicaluserervironment.

The internal structureof our designis very similar to a mul-
tithreadedX sener[1g. The key differencesare that structured
backingstoreis a crucial elementto the design,andthat several
differentscreensre virtualizedin the samesener (X allows for
multiple screenson a single sener, but it nameseachone indi-
vidually). The mostimportantsimilarity is our heary relianceon

well-designedwire protocolsandthe emphasin efficient useof
network resources.

4.1 The OpenGL Protocol

Becausef thedistributednatureof our systemwe needto provide
animplementatiorof theOpenGLAPI thatwill work remotelyover
anetwork. To achieve this, we definea wire protocolfor OpenGL.
This protocolis usedin conjunctionwith our own implementation
of the OpenGLAPI, which we call the Mural Client GraphicsLi-
brary (MCGL). The MCGL protocolis very similar to the GLX
protocol[g, with afew minor changesThedecisionto implement
our own protocolratherthanport GLX wasmainly dueto the fact
that GLX is heaily tied to the X windows modelof displaysand
contets, andwe wantedto extracttheessencef the protocolwith-
outworrying aboutfeaturedik e pixmaps contexts, visuals,etc.

In oursystemanapplicatiormakescallsto MCGL, whichsends
pacletsto the Mural sener’s pipe threads. The pipe threadsthen
executetheOpenGLcommand®ntheapplications behalf. MCGL
is a replacemenfor the standardOpenGLsharedibraries,which
givesusextraflexibility in dealingwith pre-huilt applications.

4.2 Graphics Pipe Threads

The Mural sener containsonethreadfor eachgraphicspipe con-
trolled by the system.The main purposeof thesepipethreadss to
receve OpenGLcommandwia thewire protocoldescribedabove,
andto executethosecommandsn behalfof the clientapplication.
Eachpipe recevesthe MCGL stream,decodest, andcompilesit
into adisplaylist for theappropriatdayer Then,for eachprojector
thatthelayerintersectsthepipethreadsetsupanappropriateziew-
portandscissorectangleo clip thedrawving to thelayer'sextenton
thatprojector andfinally callsthedisplaylist. The useof display
lists is crucial to the succes®f our system.Display lists alleviate
the overheadof decodingthe wire protocolmorethanonceif the
layeroverlapsmorethanoneprojector Althoughthe sophisticated
display controllersin the InfiniteReality graphicsboardwould al-
low usto rendertheentiresceneonceandscanout overlappingre-
gionsdirectly to the projectorsthis would make softwareblending
betweertheedgesmpossible.

CertainOpenGLcommandsannomormallybe executednside
adisplaylist, like the creationof additionaldisplaylists. Because
all of our drawing commandsrebeingcompiledinto displaylists
by the sener, mostof theserestrictionsareimposedon all drawing
commandsnadeby the application.We provide two workarounds
for thisrestriction.Whenalayeris first createdthe applicationre-
ceivesa special‘setup” eventwhich allows theclientto setup ary
initial statethatshouldpersistthroughouthelifetime of thatlayer,
aswell asperformone-timeoperationsuchaspre-loadingextures
into texture memory In addition,we allow for the creationof dis-
play lists within a drav callbackby first stoppingthe compilation
of the currentdisplaylist. We thencreatethe users new display
list, andfinally, createa third displaylist for the frame’s remaining
OpenGLcommands.This requiresus to maintainan arrayof dis-
playlists perlayer, ratherthanasingleone. This hastheusefulside
effect of beingableto “append”to the list of draving commands
ratherthanreplacethemduring the next draw callback. This fea-
tureallows the userto treatthe displayasa singlebuffereddevice,
relieving someof therestrictionsof framesemantics.

If thereis more than one graphicspipe thenwe broadcasthe
graphiccommandso all thepipesatonce.Eachpipethendecodes
andexecuteshe commandsn parallelfor eachprojectorthat the
layer overlaps. A simplerectangleintersectiontestlets the pipe
threaddecidewhetheror notto draw alayeron eachprojector

The pipe threadsalso maintain mirror copiesof eachlayer’s
graphicsstate.Becausehereis only onegraphicscontext for each

Legend

— OpenGL wire protocol

Mural Protocol Master Thread

Layer Management &
Redraw Commands

I=

Pipe Thread ‘ """"" >{ Graphics Pipe

i 3 Pipe Thread ‘ """"" % Graphics Pipe

Direct OpenGL

‘ Client Thread ‘

‘ Client Thread ‘

]

]

v

v

Network

‘ Client Applicatiu+

‘ Client Application

|

Figure2: Block diagramof our currentsystemarchitecture Eachapplicationmayberunningon a differentremotesite. Noticethatgraphics
commandsio notgodirectly to thegraphicsipes,but ratherthroughthe pipethread‘proxies”, to avoid context switchingthegraphicspipe.
Thepipethreadwill cachehesegraphicccommandgor usewhenaredrav is required.

pipe, it is necessaryor usto recordall the OpenGLstatechanges
thataremadeby a layerandresetthe graphicsstatesothatit does
not appeaito changebetweendrav callbacks.This relievesappli-
cationprogrammerdgrom having to setup the graphicsstateeach
time they receve a draw callbackandis muchcheapethananac-
tual context switch. Theonly elemenof thestatethatis notrestored
is the currenttexture map— we recommendhat applicationpro-
grammerausethe texture object API to nametheir textures. This
alsoallows themto sharetexturesbetweerapplicationseasily
Finally, the pipe threadsare responsiblefor “feathering” the
overlappingareasbetweenprojectors. Onceall the layerson the
systemaredravn, a polygonis dravn on the overlappingregion
whosetranspareng is modulatedfrom fully transparento fully
opaque.Sincethis is doneon two projectorsthat overlapthe same
spacethe additive effect of the projectorscausesheimageto ap-
pearwith a constanbrightnesghroughout.Thisis, of course Jim-
ited by our ability to radiometricallycalibratethe projectors.
Thepipethreadgshemselescontainverylittle actuallogic; they
simply respondto commandssentto them by outsidesources.In
additionto makingOpenGLcalls on behalfof client applications,
thepipethreadsnustalsobetold whento clearthedisplay whento
executea buffer swap, whento drav the featheringpolygons,and
which clientapplicationto listento for OpenGLcommandsThese
controllingoperationsaresentto the pipethreadby a singlemaster
threadthatoverseesheentiredisplaysystem.

4.3 The Master Thread

The main controllerthreadin the systemis responsiblgor tasks
suchaslayermanagemeranddispatchingevents. Layermanage-
mentis achie&zedby maintainingadatabasef layerpositions sizes,
owners,associatedlisplaylists, andgraphicsstates. Any threadin
the systemcanqueryary of thesevaluessoit canperformits task.
Forinstancewhenapipethreadneedgo know haw to setits view-
port,it querieghedatabasenaintainedy themasteithreadfor the
layer's positionandsize.

Themastetthreadis alsoresponsibléor noticingwhenaredrav
is requiredandsendingedrav eventsto applicationsFor example,
sayone of the applicationshasmoved a layer’s position,andthe
screenmustbe updated. If thereare several layerson the system
at the time of a redrav, andtwo of thoselayershave had explicit
redrav eventrequeststhe masterthreadmustsendonedrav event
to eachof the two layers’ creators.Becauseour displayis double

bufferedto allow for smoothanimationin alayer, it is necessaryo
redrav all thelayersonthescreerary time thedisplayneedgo be
updated.

The masterthreadalsocomputeghe stackingorderof all visi-
blelayers,andsendsnessageto the pipe threadsnstructingthem
whereto listenfor MCGL paclets,andin whatorderto draw the
layers. However, the masterthreadis not responsibldor actually
updatingthe layerdatabasevhen,for example,alayerhasmoved.
Ratherthanhaving the masterthreadlistento all connectedppli-
cationsfor commandsndprocessinghemin aserialmannertasks
thatare performedon a perclient basisare handledby a separate
perclientthread.

4.4 Client Threads

EachMural clienthasa separateledicatedhreadinsidethe sener.

Becauseheseclientsmaybe runningon differentmachineson the
network, thelayermanagemenPI (functionssuchasmove layer,

resizelayer, requestnput, etc.) musthave its own associategack-
ets,whicharedecodedy theapplications associatedlientthread.
Thesepaclets are modeledafter the paclets usedin the X proto-
col. They have a similar paclet structureto thosedescribedn the
X Protocol Reference Manual[18].

Theotherresponsibilityof theclientthreadss to notify themas-
terthreadthatanoperatiorwhichrequiresaredrav hastakenplace.
Operationssuchasa layer move or a redisplayrequeswill cause
theentiredisplayto beredravn.

5 Performance and Scalability

In orderto evaluatehow effectively we have achieved our goals,
we took several setsof detailedperformancaneasurementsOur
testswererun usinga Silicon GraphicsOnyx2 with eightR10000
processorandtwo InfiniteRealitygraphicspipelines. Our results
demonstratseveralcritical aspect®f our system:

e Our remoteOpenGLimplementatiormales efficient use of
network resourceandperformswell with theadditionof mul-
tiple graphicspipes.

e Throughthe judicious useof display lists, applicationscan
overcomethe limitations of indirect renderingand take full
adwantageof thegraphicshardvare.

local | 100Mbit | 10Mbit
X window (GLX) 860 110 21
1 Projector 197 170 24
4 Projectors? pipes | 180 153 20
4 Projectors pipe 150 130 17

Table 1: Thousandsof trianglesper secondfor various remote
graphicsconfigurationsTheserianglescover approximatelyb pix-
elseacheachwith adifferentcolor. Thelocal X window measure-
mentsare using direct renderingto write directly to the graphics
hardvare. In the othertwo casesthe X window is usingGLX to
renderemotelyover a network. Thedisparitybetweerthelocal X
window ratesandall othermeasuremenitfiustratesthelarge over-
headassociatewvith remoterenderingandtheneedfor displaylists.
All numbersareanaverageof 100runsof thetestto helpeliminate
discrepanciefrom our sharechetwork.

e Our stratgy for cachingeachlayer’s draving commanddets
uscreatealargenumberof layerswhile still maintaininggood
performance.

e Avoiding graphicscontet switchingis a key componento
effective sharingof displayresources.

e Softwarefeatherings a cheapalternatve to hardwareblend-
ing in eliminatingseamsn anoverlappingdisplay

5.1 Remote Triangle Rate and Network Utilization

Our first testmeasureshe total trianglerate for applicationsthat
do notusedisplaylists. To measurehis, we wrote a simpleappli-

cationthat generates large numberof small triangles,eachwith

a differentflat color, andmeasuredhe total time it took to render
theseOpenGLprimitives.A singletrianglein this schemeequires
3 bytesof color dataplus 36 bytesof geometrydata.Eachtriangle
hasan averageareaof under5 pixels. Table1 shows the triangle
rate measurementsalculatedby this applicationrunning against
differentconfigurationsof the Mural, aswell asrunningin a win-

dow in anormalworkstationervironment.

Becausewe compile the streamof graphicscommandsnto a
displaylist and executethatlist multiple timesper pipe (onceper
projector),the overheadof having morethanone projectoris usu-
ally dwarfedby the overheadof an applicationtransmittinglots of
OpenGL commandssince packing, transmitting,and unpacking
thatcommandstreamis expensve.

We also measuredotal network utilization in our trianglerate
experiment. We discoreredthat we spentabout5 secondgrans-
mitting 40 megabytesover a network capableof a peakbandwidth
of 100 megabits. This 5 secondsncludesnot only transmission
time, but alsooverheadf decodinghe TCP/IPprotocol. This cor-
respondgo a network utilization of about64 percent. Thesetests
wereconductedn anuncontrolledsharedchetwork which wascar
rying unknavn amountf othertraffic atthetime.

With thesedata,we canapproximatehe optimalnumberof pro-
jectorspergraphicspipefor immediatemoderendering Assuming
thatwe have a 100megabitnetwork andthatit takes36 bytesto de-
scribeatriangle,we cantransmit233,00Qtrianglesperseconcbver
this network. Sinceour measurementalsoindicatethatour graph-
ics hardware canrender860,000trianglesper secondthis means
thatour four projectorsystemis right aroundthe crossingpoint of
network utilization versuggraphicgperformancelf we updatecbur
systento usegigabitnetworking, we would onceagainbegraphics
limited.

In practice,mary of our triangleswill probablybe clippedout-
side the viewport sincethey will not fall on all four projectors.

Also, we canonly transmitthis numberof trianglesif they all have
the samecolor, normals,andtexture coordinates.Any interesting
scenewill vary theseparametersandwe will be ableto transmit
mary fewer trianglesthanin ouridealizedtests.Thereforewe still
have alongway to go beforegraphicshardwarebecomeshelimit-
ing factor Althoughgigabitnetworking is now available,graphics
performances increasingnuchfasterthannetworking bandwidth,
andwe expectthatour systemwill continueto be network limited.
This makesclearthe needfor the useof displaylists or sener-side
cachingof displaycommands.

5.2 Graphics Hardware Utilization

Our next test measureghe maximumutilization of the graphics
hardware using display lists. To measurehis, we usedthe Data
Explorerportion of the vi ewper f [4] performanceneasurement
system. This testvisualizesa setof particletracesthrougha vec-
tor flow field. The objectbeingvisualizedcontainsabout100,000
triangles,andthevisualizationusestwo lights andno texturemap-
ping. More information aboutthis particularbenchmarkcan be
foundatthe SPECwebsite[1].

A graphof the renderingtime per frameis shavn in figure 3.
Whenrenderingdirectly to the graphicshardwarein an X window,
theapplicationachizzedamaximumframetime of 0.024sec/frame,
comparedo 0.026runningon one projectorof the Mural. Using
two pipesto controltwo projectorsthe frametime wasstill 0.026,
clearly shawing that the Mural can achieve almostthe maximum
framerateif displaylists areusedproperly

Whena layeroverlapsthreeprojectorsjt mustoverlaptwo pro-
jectorson onepipeandoneontheother Its renderingtimeiis lim-
ited by thetimeit takesonepipeto renderto two projectorswhich
shouldbe exactly the sametime asit takestwo pipesto renderto
four projectors.This relationshipis clearly shavn in the measure-
mentsfor threeandfour projectorlayersonatwo pipesystenin fig-
ure3. Thefactthatalayeroverlappingn projectorscanberendered
ontwo pipesasfastasalayeroverlappinghalf asmary projectors
on one pipe is indicative of our efficient useof multiple graphics

pipes.

5.3 Multiple Layers

In this sectionwe measur¢herefreshrateof our displayasafunc-

tion of thenumberof layerscurrentlybeingdisplayed.Thesemea-
surementsveretakenusingtwo differentconfigurationsoillustrate
the needfor sener-sidedisplaycaching.In thefirst configuration,
displaycommandsre cachedn adisplaylist asdescribedabove.

In thesecondtonfiguratiomo cachings performedrequiringeach
applicationto retransmiits graphicsdataover thenetwork on each
frame. Eachlayer contained100 randomtriangles,eachhaving

an averageareaof 150 pixels. Finally, a dummylayer was cre-
atedwhich containeda singlesemi-transparertiangleof thesame
size. This dummylayerwasthenmoved acrosghe screenforcing

the entire display to redrav itself repeatedly The display sener

andthe client applicationwhich createdtheselayerswererun on

thesamemachine.A graphof frametime measurements shavn

in figure4.

Without cachingthe display commandsgcreating1000 simple
layers brings the refreshrate of the display to one frame every
two secondswhile displaycachingetsthe displayrefreshover six
timesfaster As canbe clearlyseerfrom thegraph,thedisparityin
refreshtimesgrows muchlargerwith the numberof layers,sodis-
play cachingpbecome®venmoreimportantasthenumberof layers
increases.

0.104

0.08-] == One pipe system
mm TWO pipe system

0.06—:

seconds/ frame

o.o4{
0.02- H
0.00-
1 2

3 4

6 8

number of projectorsoverlapped

Figure3: Frametimesfor the DataExplorervi ewper f benchmarkThelinearscalabilityof our systemwith respecto multiple projectors
canclearlybeseen.n addition,theresultsfor thetwo pipesystemon n projectordine up with theresultsfor theonepipe systemon half as
mary projectorgroundedup),demonstratingfficient utilization of multiple graphicsaccelerators.

—— With display list draw caching

2.0) - : ,
| =-=- Without display list draw caching R
7/
7/
7
7
7
1 7
7/
1.5 ,
J 7
7/
) 7
7
IS ’
[s
= 1 ’
- 7
»n 1.0+ ’
ko] 7
c 1 7/
Q 7
7
8 ,
/7
i /
7
0.5 /
7/
B /7
7/
/
/
L 7
T T T T T T T T 1
200 400 600 800 1000

Number of Layers

Figure4: Frametime measurement®r multiple layerson a con-
stantly redraving display As the numberof layersincreases,
cachingthe displaycommandsecomesnoreandmoreimportant
for maintaininginteractvity. We have notyet discoreredthe cause
of thesmallkink at 150layers.

5.4 Context Switching

By limiting context switchingoverheadwe areableto achie/e an

over 40-fold increasen performanceBy creatingtwo applications
thattriedto bindandunbindfrom asinglecontext asfastaspossible
(withoutdrawing arythingatall), we determinedhatwe couldbind

to the context almostexactly 100timespersecondi.e., eachof our

two applicationsvasboundto thecontext 50 timesin asecondpn

anInfiniteReality With 1000layers,the testfrom the lastsection
wouldhave a10secondontet switchingoverheacderframe. This

is clearly not acceptabldor an interactve system,and highlights
theneedfor ourOpenGLwire protocolto work aroundthisgraphics
systenlimitation.

5.5 Cost of Feathering

Finally, we have measuredhe costof our software approachfor
featheringthe seamshetweenoverlappingprojectors. The actual
costof featheringis simply that of draving at mostfour textured
polygonsper projector Thesepolygonsare big, however, and
the fill rate of the graphicshardware shouldbe the limiting fac-
tor. We foundthatwe spentanaverageof 127 microsecondslran-
ing the featheringpolygons whichis lessthan0.5%of therender
ing time whenrunninga renderinglimited applicationsuchasthe
vi ewper f benchmarkiest. This is an acceptableenaltycom-
paredto the expenseof customhardware blendingsolutions,and
will becomesvenmoreattractie ashardwaregraphicgperformance
increasedn thefuture.

6 Discussion and Future Work

The systemdescribedn this paperis the third generationof our
tiled displaydesign. The evolution of our systemhasmainly been
motivatedby scalabilityconcernsandotherpracticalissueghatwe
discoreredalongtheway.

Our first implementatiortook an imagebasedapproachto the
problem. Applicationsrenderedinto off-screenbuffers, and the
Mural sener simply drew the imagesas textured rectanglesep-
resentindayers.This approactwasvery simpleto implementand
worked well, but suferedfrom two majordravbacks. First, hard-
ware accelerateaff-screenbuffers (called “pbuffers”) are an ex-
tremelyscarceresource.Oncethe systemran out of phuffers, we
hadto fall backonnon-hardvareaccelerate@®_XPi xmaps, which

arebothslow andnotguaranteetb renderthe exactsamepixelsas
their pbuffer equivalents.Secondwe neededo switchthegraphics
contets for the two pipesbetweerthe applicationsandthe Mural

sener, avery expensve operation.This approactdid have thenice
propertythattheMural senerhadacopy of eachlayer’s bitmap,so
redraving layersthatwerenot animatingwasvery cheap.

Our next implementatiorallowed applicationsto drav directly
to the screen.Eachapplicationwould bind directly to the context
controlling the projectorsand usedirect renderingto draw itself.
This approachwasa little more comple to implement,but it re-
moved the relianceon phuffers, which meantthat all layerscould
usehardwareacceleratedendering.However, the context switch-
ing overhead while reducedn this implementationstill crippled
the responsienesf the Mural with only a few applicationsrun-
ning. In this implementationtherewasalsono way for the Mural
sener to re-rendeia layerthatwasnot animating;thatburdenwas
shiftedbackto the applicationswhich saturatedur network very
quickly.

Finally, we arrived at the solutiondescribedn this paper Al-
thoughthe remoterenderingoverheadcanbea limitation, we have
overcomethemoreseriougproblemof context switchingoverhead.
The main dravback of the systemwe have describeds that the
scalabilityis limited by the numberof graphicspipesthatcanbe
attachedo onecomputer

In orderto continueto scaleour systemto larger displays,we
have recentlyextendedthis systemto supporta network of work-
stationswith oneworkstationfor eachprojector In this configura-
tion, the “pipe threads”in figure 2 becomeseparatépipe seners”
thatcancommunicatavith the“masterthread”overanetwork. The
new versionof the systemuseseight PC’s driving eight projectors
andaninthcomputerunningtheMural sener, all tiedtogetheiona
dedicatechigh speechetwork. Becausef the excellentscalability
of broadcashetworking onalocalareanetwork[25], sucha system
shouldbe cost-efective andscalewell.

To addressheremoterenderingoverheadye will designaplug-
in architecturefor the Mural sener, so that speedcritical render
ing routinescanbe built into the sener andrenderdirectly to the
screen.On the SGI versionof the system thesepluginscankeep
theirscenesindotherdataconsistentisingasimplesharednemory
model,but thisis amuchmorechallengingaskon the PCversion.
We will beinvestigatingnethodgor simplifying datamanagement
andconsisteng in distributedremoterendering.Speectritical ap-
plications(suchasapplicationsusingrealtime headtracking) may
needto managea large scenadatabasandproperlyhandleupdates
to thatdatabas@n a consistentfast,andscalablevay.

The systemdescribedn this paperhasbeenin usefor over a
year and mary applicationshave beenbuilt usingit. Someap-
plicationshave beendesignednainly to exerciseandimprove the
graphicdibrary, suchasa QuicktimeVR[12] viewer andavolume
renderingapplication. The moreambitiousprojects,however, are
morefocusedon new interactiontechniquesndnew waysof using
the large display space. For example,we have prototypeda con-
structionplanningscenariavhereour displayis sharedby contrac-
torsandbuilding plannergo effectively visualizeandplanachange
in scheduleWe arealsodevelopinghigherlevel toolkitsto easehe
creationof applicationghatusemultiple large displaysaswell as
a variety of input devices andtechniques.The main direction of
ourgroupsresearclis towardsnew interactionparadigmgor large
displaysandsmartspaces.

Acknowledgments

Thanksto Terry Winogradfor muchof the overall vision of the
interactve workspacegprojectat Stanford;Terry alsosuggested
thatwe uselayersinsteadof windows. Franois Guimbretére
designedandled the physicalconstructiorof the Mural. Richard

SahadorandFranwis alsodevelopedthe calibrationtoolsfor
controllingthefeatheringof the overlappingprojectors.Thanksto
DianeTangfor herwork oninputandnetworking issuesTamara
Munznerfor herwork on inputandapplicationdevelopmentand
Mary Baker andBrad Johansoffior their helpwith networking and
generadistributedcomputingissues.Thanksalsoto Cindy Chen
andJamedavis for building thelaserpointertrackingsystem,
andto Richardfor integratingit into the system Kekoa Proudfoot
providedvaluabledatasetsindadviceon performanceanalysis,
andHenryBerg andKarenButler putalot of hardwork into the
constructiorof theMural. SandyNapelkindly providedthe
radiologyconcepimage.This work wassupportedn partby
grantsfrom Intel, Intenal, andDARPA.

References

[1] DataExplorerViewsetDescription.
http://wwspec.og/gpc/opc.static/dx.html

[2] Immersve Interactve System.
http://wwwcs.princeton.edu/omnimedia/indietml.

[3] PanoramTechnologiesintegrator3.
http://wwwpanoramtech.com/irgeator3.htm

[4] TheOpenGLPerformanc&haracterizatiofProject.
http://wwwspec.og/gpc/opc.static/

[5] DEXON Systemd.td. http:/mwwdexonsystems.com/jdxvitml.

[6] GLX SpecificationOpenGLGraphicswith the X Window
SyStem.http://toolbox.sgi.com/a’steOfDT/documents/OpenGL/

[7] PaverWall.

http://wwwlcse.umn.edu/researchiperwall/poverwall.html.
[8] Virtual Network Computing. http://wwwuk.research.att.com/vnc/

[9] X11R6.4ReleaseéNotes.

http://wwwx.org/r6.4doc/relnotes/relnotes.htm
[10] XmX. nhttp:/wwcs.bravn.edu/softare/xmxl

[11] E.Bier, M. StoneK. Pier, W. Buxton,andT. DeRose.
ToolglassandMagic LensesThe See-Throughnterface.In
Computer Graphics (S GGRAPH 93 Proceedings), 1993.

[12] S.E.Chen.QuickTime VR — An Image-Basedpproachto
Virtual ErvironmentNavigation. In Computer Graphics
(9SS GGRAPH 95 Proceedings), 1995.

[13] C.Cruz-NeiraD. SandinandT. DeFanti. Surround-Screen
Projection-BaseWirtual Reality: The Designand
Implementatiorof the CAVE. In Computer Graphics
(9SS GGRAPH 93 Proceedings), 1993.

[14] M. Czernuszerk D. Pape,D. Sandin,T. DeFanti,G. Dawe,
andM. Brown. ThelmmersaDeskandInfinityWall
Projection-BaseWirtual Reality Displays.In Computer
Graphics, May 1997.

[15] S.Elrod,R.Bruce,R. Gold,D. Goldbeg, F. Halasz,
W. JansserD. Lee,K. McCall, E. PederserK. Pier, J. Tang,
andB. Welch. Liveboard:A Largelnteractie Display
SupportingGroupMeetings PresentationandRemote
Collaboration.In Proceedings of the Conference on
Computer Human Interaction (CHI), May 1992.

[16] M. Kilgard. OpenGL Programming for the X Window
System. Addison-\W\ésley, 1996.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

J.Montrym,D. Baum,D. Dignam,andC. Migdal.
InfiniteReality: A Real-Time GraphicsSystem.In Computer
Graphics (S GGRAPH 97 Proceedings), 1997.

A. Nye, editor X Protocol Reference Manual. O'Reilly &
Associates]1995.

R. RaskayG. Welch,M. Cutts,A. Lake, L. Stesinand

H. Fuchs.The Office of the Future:A Unified Approachto
Image-BaseilodelingandSpatiallylmmersie Displays.In
Computer Graphics (S GGRAPH 98 Proceedings), 1998.

R. RaskayG. Welch,andH. Fuchs.Seamles®rojection
OverlapsusinglmageWarpingandintensityBlending. In
Proceedings of the Fourth International Conference on
Virtual Systems and Multimedia, 1998.

S.Rehel. TheGLTT GraphicsLibrary.
http://services.wrldnet.net/"rehel/gltt/gltt.html

J.RohlfandJ.Helman. IRIS Performer:A High
PerformancéJultiprocessingloolkit for Real-Time 3D
Graphics.In Computer Graphics (S GGRAPH 94
Proceedings), 1994.

D. Rosenthallnter-Client CommunicatiorCornventions
Manual. Webversionby ChristopheTronche:
http://tronche.com/gui/x/icccm/

R. Surati. Scalable Self-Calibrating Display Technology for
Seamless Large-Scale Displays. PhDthesis Massachusetts
Instituteof Technology1999.

A. TannenbaumComputer Networks. PrenticeHall, 1996.

J.Torbog andJ. Kajiya. Talisman:CommaodityRealtime
3D Graphicdor thePC. In Computer Graphics (S GGRAPH
96 Proceedings), 1996.

