
A Distributed Graphics System for Large Tiled Displays

Greg Humphreys
�

PatHanrahan
�

ComputerScienceDepartment
StanfordUniversity

Abstract

Recentinterestin largedisplayshasled to reneweddevelopmentof
tiled displays,which arecomprisedof several individual displays
arrangedin an arrayandusedasone large logical display. Stan-
ford’s “InteractiveMural” is anexampleof suchadisplay, usingan
overlappingfour by two arrayof projectorsthatback-projectonto
a diffusescreento form a 6’ by 2’ displayareawith a resolution
of over 60 dpi. Writing softwareto make effective useof thelarge
displayspaceis a challengebecausenormalwindow systeminter-
actionmetaphorsbreakdown. Onepromisingapproachis to switch
to immersiveapplications;anotherapproach,theoneweareinves-
tigating, is to emulateoffice, conferenceroom or studioenviron-
mentswhichusethespaceto displayacollectionof visualmaterial
to supportgroupactivities.

In this paperwe describea virtual graphicssystemthat is de-
signedto supportmultiple simultaneousrenderingstreamsfrom
bothlocalandremotesites.Thesystemabstractsthephysicalnum-
berof computers,graphicssubsystemsandprojectorsusedto create
the display. We provide performancemeasurementsto show that
thesystemscaleswell andthussupportsavarietyof differenthard-
wareconfigurations.Thesystemis alsointerestingbecauseit uses
transparent“layers,” insteadof windows, to managethescreen.

1 Introduction

Very large displaysarean exciting new areaof researchbecause
they have thepotentialto truly changethewaypeopleinteractwith
computers.Large,high resolutiondisplaysmaybehungon walls
andbuilt into tablesto create“smartspaces”thatallow new meth-
odsof collaboration,visualization,andinteraction.Oneadvantage
of thesedisplaysis the increasedresolution,which is particularly
importantfor scientificvisualizationapplicationswherephenom-
enamaybeexploredatmany levelsof detail.Anotheradvantageis
theextra physicaldisplayspace,which maybeusedto surrounda
useror groupwith imagery. Thepowerof immersionis exemplified
by spatially-immersive displayssuchastheCAVE[13]. Thesame
technologymaybeusedin a normaloffice or conferenceroomen-
vironmentto supportdecisionmakingandothergroupactivities.

Thebiggestchallengeof usingsuchsystemsis picking theuser
interfacemetaphor. Althoughonemight betemptedto usea tradi-

�
humper@graphics.stanford.edu�
hanrahan@graphics.stanford.edu

tionalwindow andmousebasedenvironment,it is notclearthatit is
themostappropriatedesignfor thisenvironment.Designingvisual-
izationsfor largedisplaysdiffersfrom designingfor desktopmon-
itors dueto a variety of factors,includingsize,resolution,bright-
ness,contrastandorientation. Designingthe interfaceis equally
cumbersome,sincelarge displaysaredifficult to usewith a teth-
eredmouseor keyboard.Groupapplicationsandtasksarealsovery
differentfrom single-userapplications.

In orderto investigatetheseemerging typesof applications,we
havebuilt atiled,back-projecteddisplaycalledthe“InteractiveMu-
ral”. It is constructedfrom anarrayof 8 projectorsconnectedto a
highperformancegraphicssystem.Eachprojectorhasa resolution
of 1024x768andoutputs900ANSI lumens.Ourdisplayis of mod-
estsize(6 feetwide by 2 feethigh), but high resolution(3796by
1436)andvery bright. Unlike theCAVE, it is bright enoughto be
usedin ordinaryoffice lighting without dimmingtheenvironment.
A photoof oursystemin useis shown in ourcolorplate.

Theprimaryinput device is a laserpointerstylus,which canbe
usedto eitherdraw on the screendirectly or point at objectsfrom
a distance.Thephysicalenvironmentis roughlythesizeof a wide
whiteboard,giving it a “walk up andtouchit” look andfeel. There
is enoughroomfor two or morepeopleto work in front of thesys-
tem. Although similar physically to a computerwhiteboard,the
Mural is designedto supportinteractive visualizationof largehet-
erogeneousdatabases,not just drawing andmarkup[15]. A dia-
gramof thephysicalconstructionof our displayis shown in figure
1.

In thispaperwedescribethevirtualgraphicssystemthatwebuilt
for thisdisplay. Wehadseveralgoalsfor thesystem:

� The low-level graphicssystemis designedto supportflexi-
ble configurationsof small physicaldisplays.A singlelarge
logical displayis createdby overlappingmultiple projectors
andfeatheringalongthe seams.Although technologyexists
for aligningandfeatheringimagesatarbitraryangles[20,24],
we only supportrectangulartiling patterns.We do allow the
individualdisplaysto berotatedby 90degrees.

� The systemis designedto be scalable,supportingvariable
numbersof computers,graphicscards,andvideooutputports.
Although in this paperwe describeour currentsystemfor a
distributedsharedmemorymachinewith two graphicspipes,
wewerealsoableto implementourdesignusingaPCcluster
configuration.

� Thegraphicssystemis designedasadistributedserverto sup-
port multiple remoteclients. Eachclient is a differentappli-
cationandis typically runningon a differentmachine. Un-
like theX window system,which typically hasasingleserver
perdisplay, ourserver is distributedsincethegraphicssystem
maybepartitionedacrossmultiplemachines.Thesystemwas
alsodesignedto supportsimultaneousrenderingfrom multi-
plestreams.

� Thebasicunit of screenrealestateis alayerratherthanawin-
dow. Layersbehave logically much like windows, but they

6

 '

Front ViewSide View

P
�

G G

P
�

P
�

P
�

V
�

V
�

V
�

V
�

V
�

V
�

V
�

V
�

P
�

P
�

P
�

P
�

Figure1: Basiclayoutof theInteractiveMural. An 8-processor[P] sharedmemorycomputer(SGIOrigin) connectedto two graphicssystems
[G] (SGI Infinite Reality),eachwith 8-way videooutputs(SGIDG-8)driveabankof 8 LCD projectors[V] (NEC1030).Eachprojectorhas
a resolutionof 1024by 768andoutputs900ANSI lumens;their projectedimagesoverlapby approximately100pixels. The total display
sizeis 6 ft. by 2 ft. andhasa resolutionof 3796by 1436.

arecompositedusingalphablending.Layersalsosupportge-
ometrictransformations,andthey arenotnormallynestedlike
windows.

We will presenta systemthat virtualizesthe distributedgraph-
ics resourcescontrolling the displayandprovidesan interfacefor
multipleremoteapplicationsto sharethedisplayatonce.Themain
challengesfacing an architectof sucha systemare efficient net-
work utilization and overcomingthe graphicscontext switching
overhead. We addressthesechallengesusingstructuredgraphics
cachingandOpenGLproxies.

2 Related Work

Therearemany ways to virtualize a tiled displaysystemin soft-
ware. MacOSand,morerecently, Microsoft Windows have sup-
port for extendingthedesktopontomultiplemonitorsconnectedto
a singlecomputersystem. In thesecases,the device driver takes
careof managingthe screenrealestateandthe distributedframe-
buffer memory. Similarly, the latestreleaseof theX Window sys-
temcontainstheXINERAMA extension[9], whichallowsmultiple
displaysto becombinedinto onelargevirtual desktop.TheSilicon
GraphicsInfiniteReality[17] systemallows a singleframebuffer to
drivemultipledisplaysthroughonelargelogicalX server.

A more general approach is taken by DEXON Systems’
DXVirtualWall[5], which provides extremely large tiled displays
thatrun eitherX Windows or MicrosoftWindows. Clientsconnect
to a displayproxy thatbroadcaststhedisplayprotocolto multiple
displayservers,eachof whichoffsetsthecoordinatesto displayits
own small portionof the largerdesktop.Anotherusefor protocol
proxiesof this natureis to duplicatea singledisplayacrosssev-
eral remotedisplays,as in Brown University’s XmX[10] project.
Theseproxy-basedsystemsdo not currentlysupportany high per-
formance3D graphicsAPI suchasOpenGLor Direct3D,anddo

not handleoverlappingdisplays. Additionally, as the numberof
displaysgetsvery large, the numberof concurrentredraws exerts
increasingpressureon thenetwork, causingperformanceto suffer.

IRIS Performer[22] provides an API for managingmultiple
graphicspipeswithin a single application. However, Performer
is designedfor a singleapplicationdriving the entiredisplay, and
mostcompellingPerformerdemosarefull screen,immersivewalk-
throughapplications.Runningmultiple Performerapplicationssi-
multaneouslyincursgreatcontext switchingoverhead,resultingin
pronouncedperformancedegradation. In addition, Performeris
designedaroundhierarchicallydefined“scenegraphs”; arbitrary
OpenGLapplicationsdo not receive much of the benefitof Per-
former. Finally, Performermakeslittle attemptto virtualizethecon-
figurationof a multiple-pipesystem;applicationsneedto beaware
of thenumberof pipesavailableto themandusethemexplicitly.

In the areaof remotegraphics,the X Window System[18] has
providedaremotegraphicsabstractionfor many years.Thissystem
hasa heavily optimizednetwork usagemodel,andformsthebasis
for muchof our system’s design. GLX[16] is the dominantAPI
andprotocolusedfor renderingOpenGLremotelyover a network.
GLX providesa seamlessway to display3D graphicson a remote
workstation.However, GLX hasnounderlyingsupportfor sending
the samestreamof commandsto multiple displays. GLX’s wire
protocolfor OpenGLis very compact,andour own wire protocol
is almostidentical.

TheUniversityof Minnesota’s PowerWall[7] usestheoutputof
multiple graphicssupercomputersto drive multiple outputs,cre-
ating a large tiled displayfor high resolutionvideo playbackand
immersive applications.The University of Illinois at Chicagoex-
tendedthis systemto supportstereodisplay andusertracking in
the InfinityWall[14] system. Unlike our system,neitherof these
displaysoverlapsits projectors.Thesesystemsaredesignedto fa-
cilitateasinglefull-screenapplication,whichis oftenanimmersive
virtual reality system.More expensive customhardwaresolutions
areavailableaswell. PanoramTechnologies[3] hasasuiteof hard-

waredevicesdesignedto createlargetiled displays.Their “Integra-
tor”, aspecialanalogfeatheringbox,blendstheoutputsof individ-
ual projectors.Becauseof the increasingperformanceof graphics
systems,it is now practicalto performthis blendingstepin soft-
ware.

Finally, projectssimilarto oursarecurrentlyunderwayatPrince-
tonUniversity[2] andUNC ChapelHill[19].

3 Design Goals and Implications

Our main goalwhile designingthis systemwasto createa graph-
ics systemthateffectively virtualizedthedistributednatureof our
display, without sacrificingfamiliarity or performance. We also
wantedto provide a layeredgraphicsabstractionwhich facilitates
theconstructionof many kindsof applications,andallows for nat-
ural manipulationof inherentlylayereddatasuchasmapsor ani-
mations. In addition, it was importantto usea portablegraphics
API aswell asa traditionalinput processingparadigmso thatex-
isting applicationscouldusethedisplaywith a minimumof effort.
Furthermore,a crucialelementof our designwastheability to fa-
cilitate distributed, remotevisualization. Ratherthan thinking of
largedisplayspacesasan opportunityfor immersive applications,
we insteaddesignedandtunedour systemfor graphicalinforma-
tion sharing,collaboration,andvisualization. Finally, we wanted
oursystemto allow for differenttiling configurations,andto effec-
tively virtualizethetiled displayby eliminatingtheseamsbetween
projectorsbothlogically andvisually.

3.1 Layers

An emerging metaphorin a large numberof graphicssystemsis
the useof layersasa primitive. For example,drawing andimage
editingsoftwaresuchasMacromediaFreehandandAdobePhoto-
shopis basedon layers.Videoediting,specialeffectssystems,and
computeranimationsystemsall uselayers.Finally, gamemachines
havealwaysusedlayers(a.k.a.sprites);theMicrosoftTalismanar-
chitecture[26] is amodernexampleof suchasystem.Moreimpor-
tantly, thedesignof interfacesis changingrapidly in thisdirection,
asexemplifiedby the look andfeel of a web pageversusa tradi-
tional widget-basedapplication.For thesereasonswe think layers,
notconventionalwindows,providethebestfoundationfor theclass
of applicationswearebuilding.

In someways layersare like traditionalwindows; they canbe
moved andresized,shown andhidden. They arerectangularand
have a stackingorderwith respectto eachother. Eachlayeris rep-
resentedasan RGBA image,andthe stackof layersis combined
usingalphacompositingto createthefinal displayedimage.Each
layer is a fully independententity which canbe placedor scaled
arbitrarily, withoutregardto thepositionor sizeof any otherlayers.

Usinglayersinsteadof windowshasseveralconsequences.First,
becausethe visible pixels may be the result of a blend between
many layers,redrawing any layer in a stackmeansthatall thelay-
ersin the stackmustbe recompositedto form the final image. In
orderto scheduleredrawing, we requirethateachlayerhas“frame
semantics”;that is, we requirethatanapplicationindicatewhenit
is finisheddrawing the layer. This is similar to the explicit buffer
swapthatis performedwith adouble-bufferedapplication.Finally,
becauseof thetransparentnatureof layers,they mustbecomposited
in back-to-frontorder, requiringthedrawing commandsassociated
with eachlayerto beserialized.

Our systemalso allows an application to associatearbitrary
nameddata with a layer, so that applicationscan communicate
with eachotherusingtheMural asanintermediary. This is similar
to the conceptof interclient communicationsin X Windows[23].
This capabilityallows applicationsthat are not on the samema-
chineto communicatewithout creatingdirectconnectionsbetween

them.It alsoallowsusto easilybuild userinterfacetoolslikemagic
lenses[11]. For example,an applicationmight associatea display
list describinga complex 3D object with a layer. Whenanother
layer is moved in front of that layer, it would be notified of the
overlapandcoulddraw the3D objectin adifferentstyle.

3.2 OpenGL and Input

It is importantthat the graphicsAPI supportedby our displaybe
widely used,so that applicationscanbe developedusinga stable
andmaturegraphicslibrary that is familiar to mostgraphicspro-
grammers.We thereforesupportOpenGLasthe low-level graph-
ics API. Although thereare several graphicslibraries that could
have served our purposes,we feel that OpenGLbestallows us to
supportvisuallydemanding,highperformance2D and3D applica-
tions. Furthermore,the portability of OpenGLgivesus flexibility
in choosingthesystemsthatdrive our projectors;in particular, we
wantto supportbothUNIX andWindowsoperatingsystems.

ChoosingOpenGLastheonly methodof drawing imposescer-
tain restrictionson the typesof datathat canbe easilydisplayed.
Thereis no directway to displayanexisting X or Microsoft Win-
dows applicationon our display. We have solved this problem
by creatinga client for theVNC systemfrom AT&T Research[8],
whichallowsusto displayaWindowsor X desktopin a layer. The
VNC client runsasa normalremoteapplication,not asan exten-
sion to the server. Another problemwith using OpenGLis that
it provides no supportfor renderingfonts. We have createdour
own systemfor renderingtext from vectorfont descriptions,based
on thegltt library[21]. Onefinal additionwe have madeto the
graphicslibrary is directsupportfor videoplayback— thesystem
is capableof eitherdecodingmultiple MPEG streamsor playing
backnumberedframesfrom disk.

Thesensingandintegrationof new input devices(suchaslaser
pointers,gesturerecognition,headtracking,etc)into our systemis
aseparatetopicof research.Themajorcomplexity is thattheinput
devicesandtheir dataform a distributedsensornetwork thatmust
befusedaswell astransportedacrossa network. We alsoneedto
supportinput from multiple users.However, the interfaceto these
input devices for the applicationprogrammeris the classicinput
loopparadigmand/orregisteredcallbacks.

3.3 Distributed, Scalable Graphics

An importantgoalof oursystemis to allow multipleapplicationsto
sharethedisplayspacewithout overloadingany onesystemcom-
ponent.Therefore,wefind it naturalto allow applicationsto runon
remotecomputers.To achieve this, it wasnecessaryto separatethe
Mural into atrueclient/serverarchitecture,andto defineawire pro-
tocol to transporttheentireAPI andcallbackmechanismbetween
theMural serverandtheMural applications.

Remotegraphicsis akey elementfor collaborationatadistance.
Wewantremotesitesto beableto useoursystemto visualizetheir
datasetsandsharevisualinformation,usingour systemasthecen-
tral point of their collaboration.We mustprovide a framework for
high-performanceremoterendering,andmake every effort to effi-
cientlyusethenetworkingresourcesbetweenthedisplayserverand
theremotesitecontrollingthevisualizationapplication.

3.4 Support for Tiling

In orderfor thesystemto appearasoneseamlessdisplay, it is nec-
essaryto geometricallyand radiometricallycalibratethe bank of
projectors.First, we needto compensatefor thefact that theover-
lappingareabetweenprojectorswill appearbrighterthanthenon-
overlappingarea.Second,seamsin thedisplaywill bevisible un-

lessweaddressthevaryingcolortemperatureandoverallbrightness
between� projectors.

To handletheoverlap,wedraw “feathering”polygonsthatcover
theoverlappingregions. Thesepolygonsaretexture-mappedwith
a onedimensionalalpha-onlyimagethat modulatestheir opacity
from fully opaqueto fully transparent.Adequatelyhandlingthe
differing color characteristicsbetweenprojectorsrequiresa color
calibrationprocedurethatis beyondthescopeof thispaper.

Theuseof softwarefeatheringimposesframesemanticson ap-
plicationsthatusethedisplay, just asdid thelayerabstractionpre-
sentedearlierin thissection.In orderto properlyblendoverlapping
projectorstogether, the systemmust know when all applications
havefinisheddrawing their framesto thescreensothatthefeather-
ing polygonscanbeappliedasthelastoperationin eachframe.

4 System Architecture

The main challengesfacing the architectof a large-scaledisplay
serverareutilizing thenetwork efficiently andminimizinggraphics
context switches.Graphicscontext switchesoccurwhentwo differ-
entapplicationswantto usethegraphicshardwaresimultaneously,
andthehardwareneedsto continuallyswaptheir respective graph-
ics contexts in andout. This is an extremelyexpensive operation
andshouldbe avoidedwhenever possible.We definean OpenGL
wire protocolwhich overcomesthis problemby letting our server
renderall graphicscommandson behalfof eachclient,usingasin-
glecontext for all clients.

Our graphicssystemis implementedas a networked server
whichrunsonaSiliconGraphicsworkstation.Wecreateonethread
perpipe to manageandrenderall graphicscommands,one“mas-
ter” threadto overseeredraw dispatchingandeventredirection,and
oneclientthreadperconnectedapplicationto dispatchotherMural-
relatedcommandslike “move layer”, “resizelayer”, etc. Applica-
tionsrenderusingour implementationof theOpenGLAPI, which
sendsa streamof commandsover thenetwork to the pipe threads
for rendering.A blockdiagramof thissystemis shown in figure2.

Becauseof the compositingbehavior of layers,it is often nec-
essaryto redraw the entirescreeneven thoughonly one layer is
changing. This is a major differencefrom normal window sys-
tems,andmany of thechoicesmadein our implementationreflect
the difficulty of achieving acceptableperformancein light of this
constraint. Our systemmaintainsa per-layer display list so that
non-changinglayerscan be redrawn without generatingany net-
work traffic. X serversprovide a rarely usedoptioncalled“back-
ing store” that lets the server maintaina bitmapfor a window so
redraws of that window do not requirea network round-trip. Our
approachis similar, but morestructured:wemaintainalist of draw-
ing commandsfor eachlayer, so they canbe playedbackon the
server without re-requestingthemfrom the application.This also
meansthatsimply moving a layerwill not generateany new draw
eventsor network traffic, eventhoughotherlayersmaybepartially
obscuredor exposedby the operation.This allows for extremely
efficientuseof network resources,aswell asavery responsivesys-
temevenwhenmultiple complex datasetsarebeingdisplayedand
manipulatedsimultaneously.

We alsoprovide anequivalentfor mostof thetraditionalopera-
tionsperformedonawindow system,suchasmoving layers,resiz-
ing layers,and requestinginput. Although this is a new display
spacemanagementAPI, it is still somewhat similar to managed
windows in a traditionalgraphicaluserenvironment.

The internal structureof our designis very similar to a mul-
tithreadedX server[18]. The key differencesare that structured
backingstoreis a crucial elementto the design,and that several
differentscreensare virtualized in the sameserver (X allows for
multiple screenson a single server, but it nameseachone indi-
vidually). The most importantsimilarity is our heavy relianceon

well-designedwire protocolsandthe emphasison efficient useof
network resources.

4.1 The OpenGL Protocol

Becauseof thedistributednatureof oursystem,weneedto provide
animplementationof theOpenGLAPI thatwill work remotelyover
a network. To achieve this,we definea wire protocolfor OpenGL.
This protocolis usedin conjunctionwith our own implementation
of theOpenGLAPI, which we call theMural Client GraphicsLi-
brary (MCGL). The MCGL protocol is very similar to the GLX
protocol[6], with a few minor changes.Thedecisionto implement
our own protocolratherthanport GLX wasmainly dueto thefact
thatGLX is heavily tied to the X windows modelof displaysand
contexts,andwewantedto extracttheessenceof theprotocolwith-
outworryingaboutfeatureslikepixmaps,contexts,visuals,etc.

In oursystem,anapplicationmakescallsto MCGL, whichsends
packetsto the Mural server’s pipe threads.The pipe threadsthen
executetheOpenGLcommandsontheapplication’sbehalf.MCGL
is a replacementfor the standardOpenGLsharedlibraries,which
givesusextraflexibility in dealingwith pre-built applications.

4.2 Graphics Pipe Threads

The Mural server containsonethreadfor eachgraphicspipecon-
trolledby thesystem.Themainpurposeof thesepipethreadsis to
receive OpenGLcommandsvia thewire protocoldescribedabove,
andto executethosecommandson behalfof theclientapplication.
Eachpipe receivesthe MCGL stream,decodesit, andcompilesit
into adisplaylist for theappropriatelayer. Then,for eachprojector
thatthelayerintersects,thepipethreadsetsupanappropriateview-
portandscissorrectangleto clip thedrawing to thelayer’sextenton
thatprojector, andfinally calls thedisplaylist. Theuseof display
lists is crucial to thesuccessof our system.Display lists alleviate
the overheadof decodingthe wire protocolmorethanonceif the
layeroverlapsmorethanoneprojector. Althoughthesophisticated
displaycontrollersin the InfiniteRealitygraphicsboardwould al-
low usto rendertheentiresceneonceandscanout overlappingre-
gionsdirectly to theprojectors,thiswouldmake softwareblending
betweentheedgesimpossible.

CertainOpenGLcommandscannotnormallybeexecutedinside
a displaylist, like thecreationof additionaldisplaylists. Because
all of our drawing commandsarebeingcompiledinto displaylists
by theserver, mostof theserestrictionsareimposedon all drawing
commandsmadeby theapplication.We provide two workarounds
for this restriction.Whena layeris first created,theapplicationre-
ceivesa special“setup” eventwhichallows theclient to setup any
initial statethatshouldpersistthroughoutthelifetime of thatlayer,
aswell asperformone-timeoperationssuchaspre-loadingtextures
into texturememory. In addition,we allow for thecreationof dis-
play lists within a draw callbackby first stoppingthe compilation
of the currentdisplaylist. We thencreatethe user’s new display
list, andfinally, createa third displaylist for theframe’s remaining
OpenGLcommands.This requiresus to maintainanarrayof dis-
playlistsperlayer, ratherthanasingleone.Thishastheusefulside
effect of beingableto “append”to the list of drawing commands
ratherthanreplacethemduring the next draw callback. This fea-
tureallows theuserto treatthedisplayasa singlebuffereddevice,
relieving someof therestrictionsof framesemantics.

If thereis more than onegraphicspipe thenwe broadcastthe
graphicscommandsto all thepipesatonce.Eachpipethendecodes
andexecutesthe commandsin parallel for eachprojectorthat the
layer overlaps. A simple rectangleintersectiontest lets the pipe
threaddecidewhetheror not to draw a layeroneachprojector.

The pipe threadsalso maintain mirror copiesof eachlayer’s
graphicsstate.Becausethereis only onegraphicscontext for each

Legend

Client Thread

Master Thread

.....

Network

Pipe Thread

Pipe Thread

Graphics Pipe

Graphics Pipe

Client Thread

Mural Protocol

Direct OpenGL

Redraw Commands
Layer Management &

..... Client ApplicationClient Application

OpenGL wire protocol

Projector

Projector

Projector

Projector

Projector

Projector

Projector

Projector

Figure2: Block diagramof ourcurrentsystemarchitecture.Eachapplicationmayberunningonadifferentremotesite.Noticethatgraphics
commandsdonotgodirectly to thegraphicspipes,but ratherthroughthepipethread“proxies”, to avoid context switchingthegraphicspipe.
Thepipethreadwill cachethesegraphicscommandsfor usewhena redraw is required.

pipe, it is necessaryfor us to recordall theOpenGLstatechanges
thataremadeby a layerandresetthegraphicsstatesothat it does
not appearto changebetweendraw callbacks.This relievesappli-
cationprogrammersfrom having to setup the graphicsstateeach
time they receive a draw callbackandis muchcheaperthananac-
tualcontext switch.Theonlyelementof thestatethatis notrestored
is thecurrenttexturemap— we recommendthatapplicationpro-
grammersusethe texture objectAPI to nametheir textures. This
alsoallows themto sharetexturesbetweenapplicationseasily.

Finally, the pipe threadsare responsiblefor “feathering” the
overlappingareasbetweenprojectors. Onceall the layerson the
systemaredrawn, a polygon is drawn on the overlappingregion
whosetransparency is modulatedfrom fully transparentto fully
opaque.Sincethis is doneon two projectorsthatoverlapthesame
space,theadditive effect of theprojectorscausesthe imageto ap-
pearwith a constantbrightnessthroughout.This is, of course,lim-
itedby ourability to radiometricallycalibratetheprojectors.

Thepipethreadsthemselvescontainvery little actuallogic; they
simply respondto commandssentto themby outsidesources.In
additionto makingOpenGLcallson behalfof client applications,
thepipethreadsmustalsobetold whento clearthedisplay, whento
executea buffer swap,whento draw the featheringpolygons,and
whichclientapplicationto listento for OpenGLcommands.These
controllingoperationsaresentto thepipethreadby asinglemaster
threadthatoverseestheentiredisplaysystem.

4.3 The Master Thread

The main controller threadin the systemis responsiblefor tasks
suchaslayermanagementanddispatchingevents.Layermanage-
mentis achievedby maintainingadatabaseof layerpositions,sizes,
owners,associateddisplaylists,andgraphicsstates.Any threadin
thesystemcanqueryany of thesevaluessoit canperformits task.
For instance,whenapipethreadneedsto know how to setits view-
port, it queriesthedatabasemaintainedby themasterthreadfor the
layer’s positionandsize.

Themasterthreadis alsoresponsiblefor noticingwhenaredraw
is requiredandsendingredraw eventsto applications.For example,
sayoneof the applicationshasmoved a layer’s position,andthe
screenmustbe updated.If thereareseveral layerson the system
at the time of a redraw, andtwo of thoselayershave hadexplicit
redraw eventrequests,themasterthreadmustsendonedraw event
to eachof the two layers’creators.Becauseour displayis double

bufferedto allow for smoothanimationin a layer, it is necessaryto
redraw all thelayerson thescreenany time thedisplayneedsto be
updated.

The masterthreadalsocomputesthe stackingorderof all visi-
ble layers,andsendsmessagesto thepipethreadsinstructingthem
whereto listen for MCGL packets,andin what orderto draw the
layers. However, the masterthreadis not responsiblefor actually
updatingthelayerdatabasewhen,for example,a layerhasmoved.
Ratherthanhaving themasterthreadlisten to all connectedappli-
cationsfor commandsandprocessingthemin aserialmanner, tasks
that areperformedon a per-client basisarehandledby a separate
per-client thread.

4.4 Client Threads

EachMural clienthasaseparatededicatedthreadinsidetheserver.
Becausetheseclientsmayberunningon differentmachineson the
network, thelayermanagementAPI (functionssuchasmove layer,
resizelayer, requestinput,etc.)musthave its own associatedpack-
ets,whicharedecodedby theapplication’sassociatedclient thread.
Thesepacketsaremodeledafter the packetsusedin the X proto-
col. They have a similar packet structureto thosedescribedin the
X Protocol Reference Manual[18].

Theotherresponsibilityof theclientthreadsis to notify themas-
terthreadthatanoperationwhichrequiresaredraw hastakenplace.
Operationssuchasa layer move or a redisplayrequestwill cause
theentiredisplayto beredrawn.

5 Performance and Scalability

In order to evaluatehow effectively we have achieved our goals,
we took several setsof detailedperformancemeasurements.Our
testswererun usinga Silicon GraphicsOnyx2 with eightR10000
processorsandtwo InfiniteRealitygraphicspipelines.Our results
demonstrateseveralcritical aspectsof our system:

� Our remoteOpenGLimplementationmakesefficient useof
network resourcesandperformswell with theadditionof mul-
tiple graphicspipes.

� Throughthe judicious useof display lists, applicationscan
overcomethe limitations of indirect renderingand take full
advantageof thegraphicshardware.

local 100Mbit 10Mbit
X window (GLX) 860 110 21
1 Projector 197 170 24
4 Projectors,2 pipes 180 153 20
4 Projectors,1 pipe 150 130 17

Table 1: Thousandsof trianglesper secondfor various remote
graphicsconfigurations.Thesetrianglescoverapproximately5pix-
elseach,eachwith adifferentcolor. ThelocalX window measure-
mentsare usingdirect renderingto write directly to the graphics
hardware. In the othertwo cases,the X window is usingGLX to
renderremotelyover a network. ThedisparitybetweenthelocalX
window ratesandall othermeasurementsillustratesthelargeover-
headassociatedwith remoterenderingandtheneedfor displaylists.
All numbersareanaverageof 100runsof thetestto helpeliminate
discrepanciesfrom oursharednetwork.

� Our strategy for cachingeachlayer’s drawing commandslets
uscreatealargenumberof layerswhile still maintaininggood
performance.

� Avoiding graphicscontext switching is a key componentto
effectivesharingof displayresources.

� Softwarefeatheringis a cheapalternative to hardwareblend-
ing in eliminatingseamsin anoverlappingdisplay.

5.1 Remote Triangle Rate and Network Utilization

Our first testmeasuresthe total triangle rate for applicationsthat
do not usedisplaylists. To measurethis, we wrotea simpleappli-
cationthat generatesa large numberof small triangles,eachwith
a differentflat color, andmeasuredthe total time it took to render
theseOpenGLprimitives.A singletrianglein thisschemerequires
3 bytesof color dataplus36 bytesof geometrydata.Eachtriangle
hasan averageareaof under5 pixels. Table1 shows the triangle
rate measurementscalculatedby this applicationrunning against
differentconfigurationsof theMural, aswell asrunningin a win-
dow in anormalworkstationenvironment.

Becausewe compile the streamof graphicscommandsinto a
displaylist andexecutethat list multiple timesper pipe (onceper
projector),theoverheadof having morethanoneprojectoris usu-
ally dwarfedby theoverheadof anapplicationtransmittinglots of
OpenGLcommands,sincepacking, transmitting,and unpacking
thatcommandstreamis expensive.

We alsomeasuredtotal network utilization in our trianglerate
experiment. We discoveredthat we spentabout5 secondstrans-
mitting 40 megabytesover a network capableof a peakbandwidth
of 100 megabits. This 5 secondsincludesnot only transmission
time,but alsooverheadof decodingtheTCP/IPprotocol.Thiscor-
respondsto a network utilization of about64 percent.Thesetests
wereconductedon anuncontrolledsharednetwork whichwascar-
rying unknown amountsof othertraffic at thetime.

With thesedata,wecanapproximatetheoptimalnumberof pro-
jectorspergraphicspipefor immediatemoderendering.Assuming
thatwehavea100megabitnetwork andthatit takes36bytesto de-
scribeatriangle,wecantransmit233,000trianglespersecondover
thisnetwork. Sinceour measurementsalsoindicatethatourgraph-
ics hardwarecanrender860,000trianglesper second,this means
thatour four projectorsystemis right aroundthecrossingpoint of
network utilizationversusgraphicsperformance.If weupdatedour
systemto usegigabitnetworking,wewouldonceagainbegraphics
limited.

In practice,many of our triangleswill probablybeclippedout-
side the viewport since they will not fall on all four projectors.

Also, wecanonly transmitthisnumberof trianglesif they all have
the samecolor, normals,andtexturecoordinates.Any interesting
scenewill vary theseparameters,andwe will be ableto transmit
many fewer trianglesthanin our idealizedtests.Therefore,westill
havea longway to gobeforegraphicshardwarebecomesthelimit-
ing factor. Althoughgigabitnetworking is now available,graphics
performanceis increasingmuchfasterthannetworking bandwidth,
andwe expectthatour systemwill continueto benetwork limited.
Thismakescleartheneedfor theuseof displaylists or server-side
cachingof displaycommands.

5.2 Graphics Hardware Utilization

Our next test measuresthe maximumutilization of the graphics
hardware usingdisplay lists. To measurethis, we usedthe Data
Explorerportion of theviewperf[4] performancemeasurement
system.This testvisualizesa setof particletracesthrougha vec-
tor flow field. Theobjectbeingvisualizedcontainsabout100,000
triangles,andthevisualizationusestwo lightsandno texturemap-
ping. More information about this particularbenchmarkcan be
foundat theSPECwebsite[1].

A graphof the renderingtime per frame is shown in figure 3.
Whenrenderingdirectly to thegraphicshardwarein anX window,
theapplicationachievedamaximumframetimeof 0.024sec/frame,
comparedto 0.026runningon oneprojectorof the Mural. Using
two pipesto controltwo projectors,theframetime wasstill 0.026,
clearly showing that the Mural canachieve almostthe maximum
framerateif displaylistsareusedproperly.

Whena layeroverlapsthreeprojectors,it mustoverlaptwo pro-
jectorson onepipeandoneon theother. Its renderingtime is lim-
itedby thetime it takesonepipeto renderto two projectors,which
shouldbe exactly thesametime asit takestwo pipesto renderto
four projectors.This relationshipis clearlyshown in themeasure-
mentsfor threeandfourprojectorlayersonatwopipesystemin fig-
ure3. Thefactthatalayeroverlapping� projectorscanberendered
on two pipesasfastasa layeroverlappinghalf asmany projectors
on onepipe is indicative of our efficient useof multiple graphics
pipes.

5.3 Multiple Layers

In thissection,wemeasuretherefreshrateof ourdisplayasafunc-
tion of thenumberof layerscurrentlybeingdisplayed.Thesemea-
surementsweretakenusingtwodifferentconfigurationsto illustrate
theneedfor server-sidedisplaycaching.In thefirst configuration,
displaycommandsarecachedin a displaylist asdescribedabove.
In thesecondconfigurationnocachingis performed,requiringeach
applicationto retransmitits graphicsdataover thenetwork oneach
frame. Eachlayer contained100 randomtriangles,eachhaving
an averageareaof 150 pixels. Finally, a dummy layer was cre-
atedwhichcontainedasinglesemi-transparenttriangleof thesame
size.This dummylayerwasthenmovedacrossthescreen,forcing
the entiredisplay to redraw itself repeatedly. The display server
andthe client applicationwhich createdtheselayerswererun on
thesamemachine.A graphof frametime measurementsis shown
in figure4.

Without cachingthe display commands,creating1000 simple
layersbrings the refreshrate of the display to one frame every
two seconds,while displaycachingletsthedisplayrefreshoversix
timesfaster. As canbeclearlyseenfrom thegraph,thedisparityin
refreshtimesgrows muchlargerwith thenumberof layers,sodis-
playcachingbecomesevenmoreimportantasthenumberof layers
increases.

number of projectors overlapped	

0.00

0.02

0.04

0.06

0.08

0.10

se
co

nd
s

/ f
ra

m
e

One pipe system

Two pipe system
�

1� 2

3
�

4
�

6
�

8
�

Figure3: Frametimesfor theDataExplorerviewperf benchmark.Thelinearscalabilityof our systemwith respectto multipleprojectors
canclearlybeseen.In addition,theresultsfor thetwo pipesystemon � projectorsline upwith theresultsfor theonepipesystemon half as
many projectors(roundedup),demonstratingefficientutilizationof multiplegraphicsaccelerators.

200� 400� 600� 800� 1000�
Number of Layers�

0.5

1.0

1.5

2.0

se
co

nd
s

/ f
ra

m
e

With display list draw caching
Without display list draw caching

Figure4: Frametime measurementsfor multiple layerson a con-
stantly redrawing display. As the number of layers increases,
cachingthedisplaycommandsbecomesmoreandmoreimportant
for maintaininginteractivity. Wehave not yet discoveredthecause
of thesmallkink at 150layers.

5.4 Context Switching

By limiting context switchingoverheadwe areableto achieve an
over40-fold increasein performance.By creatingtwo applications
thattriedto bindandunbindfromasinglecontext asfastaspossible
(withoutdrawinganythingatall), wedeterminedthatwecouldbind
to thecontext almostexactly100timespersecond(i.e.,eachof our
two applicationswasboundto thecontext 50 timesin asecond)on
an InfiniteReality. With 1000layers,the testfrom the lastsection
wouldhavea10secondcontext switchingoverheadperframe.This
is clearly not acceptablefor an interactive system,andhighlights
theneedfor ourOpenGLwireprotocoltowork aroundthisgraphics
systemlimitation.

5.5 Cost of Feathering

Finally, we have measuredthe cost of our softwareapproachfor
featheringthe seamsbetweenoverlappingprojectors. The actual
costof featheringis simply that of drawing at most four textured
polygonsper projector. Thesepolygonsare big, however, and
the fill rate of the graphicshardware shouldbe the limiting fac-
tor. Wefoundthatwespentanaverageof 127microsecondsdraw-
ing thefeatheringpolygons,which is lessthan0.5%of therender-
ing time whenrunninga renderinglimited applicationsuchasthe
viewperf benchmarktest. This is an acceptablepenaltycom-
paredto the expenseof customhardwareblendingsolutions,and
will becomeevenmoreattractiveashardwaregraphicsperformance
increasesin thefuture.

6 Discussion and Future Work

The systemdescribedin this paperis the third generationof our
tiled displaydesign.Theevolution of our systemhasmainly been
motivatedby scalabilityconcernsandotherpracticalissuesthatwe
discoveredalongtheway.

Our first implementationtook an imagebasedapproachto the
problem. Applicationsrenderedinto off-screenbuffers, and the
Mural server simply drew the imagesas textured rectanglesrep-
resentinglayers.Thisapproachwasvery simpleto implement,and
workedwell, but sufferedfrom two majordrawbacks.First, hard-
wareacceleratedoff-screenbuffers (called“pbuffers”) arean ex-
tremelyscarceresource.Oncethe systemran out of pbuffers,we
hadto fall backonnon-hardwareacceleratedGLXPixmaps, which

arebothslow andnotguaranteedto rendertheexactsamepixelsas
theirpbuffer equivalents.Second,weneededto switchthegraphics
contexts for the two pipesbetweentheapplicationsandtheMural
server, averyexpensive operation.Thisapproachdid have thenice
propertythattheMural serverhadacopy of eachlayer’sbitmap,so
redrawing layersthatwerenotanimatingwasverycheap.

Our next implementationallowed applicationsto draw directly
to the screen.Eachapplicationwould bind directly to the context
controlling the projectorsandusedirect renderingto draw itself.
This approachwasa little morecomplex to implement,but it re-
moved the relianceon pbuffers,which meantthatall layerscould
usehardwareacceleratedrendering.However, thecontext switch-
ing overhead,while reducedin this implementation,still crippled
the responsivenessof theMural with only a few applicationsrun-
ning. In this implementation,therewasalsono way for theMural
server to re-rendera layerthatwasnot animating;thatburdenwas
shiftedbackto theapplications,which saturatedour network very
quickly.

Finally, we arrived at the solutiondescribedin this paper. Al-
thoughtheremoterenderingoverheadcanbea limitation, we have
overcomethemoreseriousproblemof context switchingoverhead.
The main drawback of the systemwe have describedis that the
scalability is limited by the numberof graphicspipesthat canbe
attachedto onecomputer.

In order to continueto scaleour systemto larger displays,we
have recentlyextendedthis systemto supporta network of work-
stations,with oneworkstationfor eachprojector. In thisconfigura-
tion, the“pipe threads”in figure2 becomeseparate“pipe servers”
thatcancommunicatewith the“masterthread”overanetwork. The
new versionof thesystemuseseightPC’s driving eightprojectors
andaninthcomputerrunningtheMuralserver, all tiedtogetherona
dedicatedhigh speednetwork. Becauseof theexcellentscalability
of broadcastnetworkingonalocalareanetwork[25], suchasystem
shouldbecost-effective andscalewell.

Toaddresstheremoterenderingoverhead,wewill designaplug-
in architecturefor the Mural server, so that speedcritical render-
ing routinescanbe built into the server andrenderdirectly to the
screen.On the SGI versionof the system,thesepluginscankeep
theirscenesandotherdataconsistentusingasimplesharedmemory
model,but this is amuchmorechallengingtaskon thePCversion.
Wewill beinvestigatingmethodsfor simplifying datamanagement
andconsistency in distributedremoterendering.Speedcritical ap-
plications(suchasapplicationsusingrealtimeheadtracking)may
needto managea largescenedatabaseandproperlyhandleupdates
to thatdatabasein aconsistent,fast,andscalableway.

The systemdescribedin this paperhasbeenin usefor over a
year, and many applicationshave beenbuilt using it. Someap-
plicationshave beendesignedmainly to exerciseandimprove the
graphicslibrary, suchasaQuicktimeVR[12] viewer anda volume
renderingapplication. The moreambitiousprojects,however, are
morefocusedonnew interactiontechniquesandnew waysof using
the large displayspace.For example,we have prototypeda con-
structionplanningscenariowhereourdisplayis sharedby contrac-
torsandbuilding plannersto effectively visualizeandplanachange
in schedule.Wearealsodevelopinghigherlevel toolkitsto easethe
creationof applicationsthatusemultiple largedisplaysaswell as
a variety of input devicesandtechniques.The main directionof
ourgroup’s researchis towardsnew interactionparadigmsfor large
displaysandsmartspaces.

Acknowledgments

Thanksto TerryWinogradfor muchof theoverall visionof the
interactiveworkspacesprojectatStanford;Terryalsosuggested
thatweuselayersinsteadof windows. FrançoisGuimbretìere
designedandled thephysicalconstructionof theMural. Richard

SalvadorandFrançoisalsodevelopedthecalibrationtoolsfor
controllingthefeatheringof theoverlappingprojectors.Thanksto
DianeTangfor herwork on inputandnetworking issues,Tamara
Munznerfor herwork on inputandapplicationdevelopment,and
Mary Baker andBradJohansonfor theirhelpwith networkingand
generaldistributedcomputingissues.Thanksalsoto CindyChen
andJamesDavis for building thelaserpointertrackingsystem,
andto Richardfor integratingit into thesystem.KekoaProudfoot
providedvaluabledatasetsandadviceon performanceanalysis,
andHenryBerg andKarenButlerput a lot of hardwork into the
constructionof theMural. SandyNapelkindly providedthe
radiologyconceptimage.Thiswork wassupportedin partby
grantsfrom Intel, Interval, andDARPA.

References

[1] DataExplorerViewsetDescription.
http://www.spec.org/gpc/opc.static/dx.html.

[2] Immersive InteractiveSystem.
http://www.cs.princeton.edu/omnimedia/index.html.

[3] PanoramTechnologies’Integrator3.
http://www.panoramtech.com/integrator3.htm.

[4] TheOpenGLPerformanceCharacterizationProject.
http://www.spec.org/gpc/opc.static/.

[5] DEXON SystemsLtd. http://www.dexonsystems.com/jdxvir.html.

[6] GLX Specification:OpenGLGraphicswith theX Window
System.http://toolbox.sgi.com/TasteOfDT/documents/OpenGL/.

[7] PowerWall.
http://www.lcse.umn.edu/research/powerwall/powerwall.html.

[8] Virtual Network Computing. http://www.uk.research.att.com/vnc/.

[9] X11R6.4ReleaseNotes.
http://www.x.org/r6.4doc/relnotes/relnotes.htm.

[10] XmX. http://www.cs.brown.edu/software/xmx/.

[11] E. Bier, M. Stone,K. Pier, W. Buxton,andT. DeRose.
ToolglassandMagicLenses:TheSee-ThroughInterface.In
Computer Graphics (SIGGRAPH 93 Proceedings), 1993.

[12] S.E. Chen.QuickTimeVR — An Image-BasedApproachto
Virtual EnvironmentNavigation. In Computer Graphics
(SIGGRAPH 95 Proceedings), 1995.

[13] C. Cruz-Neira,D. Sandin,andT. DeFanti. Surround-Screen
Projection-BasedVirtual Reality:TheDesignand
Implementationof theCAVE. In Computer Graphics
(SIGGRAPH 93 Proceedings), 1993.

[14] M. Czernuszenko, D. Pape,D. Sandin,T. DeFanti,G. Dawe,
andM. Brown. TheImmersaDeskandInfinityWall
Projection-BasedVirtual RealityDisplays.In Computer
Graphics, May 1997.

[15] S.Elrod,R. Bruce,R. Gold,D. Goldberg, F. Halasz,
W. Janssen,D. Lee,K. McCall, E. Pedersen,K. Pier, J.Tang,
andB. Welch. Liveboard:A LargeInteractiveDisplay
SupportingGroupMeetings,PresentationsandRemote
Collaboration.In Proceedings of the Conference on
Computer Human Interaction (CHI), May 1992.

[16] M. Kilgard. OpenGL Programming for the X Window
System. Addison-Wesley, 1996.

[17] J.Montrym,D. Baum,D. Dignam,andC. Migdal.
InfiniteReality:A Real-TimeGraphicsSystem.In Computer
Graphics (SIGGRAPH 97 Proceedings), 1997.

[18] A. Nye,editor. X Protocol Reference Manual. O’Reilly &
Associates,1995.

[19] R. Raskar, G. Welch,M. Cutts,A. Lake,L. Stesin,and
H. Fuchs.TheOfficeof theFuture:A UnifiedApproachto
Image-BasedModelingandSpatiallyImmersiveDisplays.In
Computer Graphics (SIGGRAPH 98 Proceedings), 1998.

[20] R. Raskar, G. Welch,andH. Fuchs.SeamlessProjection
OverlapsusingImageWarpingandIntensityBlending.In
Proceedings of the Fourth International Conference on
Virtual Systems and Multimedia, 1998.

[21] S.Rehel.TheGLTT GraphicsLibrary.
http://services.worldnet.net/˜rehel/gltt/gltt.html.

[22] J.Rohlf andJ.Helman. IRIS Performer:A High
PerformanceMultiprocessingToolkit for Real-Time3D
Graphics.In Computer Graphics (SIGGRAPH 94
Proceedings), 1994.

[23] D. Rosenthal.Inter-ClientCommunicationConventions
Manual.Webversionby ChristopheTronche:
http://tronche.com/gui/x/icccm/.

[24] R. Surati.Scalable Self-Calibrating Display Technology for
Seamless Large-Scale Displays. PhDthesis,Massachusetts
Instituteof Technology, 1999.

[25] A. Tannenbaum.Computer Networks. PrenticeHall, 1996.

[26] J.Torborg andJ.Kajiya. Talisman:CommodityRealtime
3D Graphicsfor thePC. In Computer Graphics (SIGGRAPH
96 Proceedings), 1996.

