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Abstract

In the last decade there have been significant technological advances in the design of tools

for digitizing 3D shape of objects, leading to large repositories of 3D data, and the need to

develop efficient algorithms to process and analyze scanned 3D shapes.

Most 3D scanners produce as their output a set of point samples corresponding to the shape

of the digitized object as seen from a single viewpoint. To digitize the entire shape, sev-

eral scanning passes are required, with either the scanner or the object being re-positioned

between the scans. The problem ofshape registrationdeals with computing the relative

transformations between the scans to bring all scans into a common coordinate system. In

this thesis we present several algorithms for registration of scanned surfaces. Our algo-

rithms are based on analyzing local and global surface properties of the input shapes to

improve the convergence of registration and the quality of the computed alignment.

First, we present an algorithm for automatic approximate alignment of two partially over-

lapping 3D shapes (data and model) without any assumption about their initial positions.

The algorithm uses the distribution of values of a robust shape descriptor to select a set

of feature points on the data shape and compute their potential corresponding points on

the model shape. The resulting correspondence search space is explored using an effi-

cient branch and bound algorithm based on distance matrix comparisons, and the best set

of corresponding point pairs is used to compute the aligning transformation. The result-

ing alignment algorithm is used for registration of partially overlapping scanned surfaces,

for simple symmetry detection, and for matching and segmentation of shapes undergoing

articulated motion.
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Next, we develop a surface descriptor based on surface self-similarity under continuous

rigid motion, calledsurface slippage. We show that by analyzing a certain matrix computed

from the point positions and surface normals of a pointset, one can differentiate among

pointsets that correspond to planes, spheres, surfaces of revolution and surfaces of linear

extrusion. We use the slippage descriptor to develop a segmentation algorithm for reverse

engineering surfaces of mechanical parts, a problem that is frequently encountered in the

field of Computer Aided Design.

Finally we apply surface slippage in the context of the Iterated Closest Point (ICP) algo-

rithm, which is a widely used method for local registration of two 3D shapes. The quality

of the alignment obtained by this algorithm depends heavily on choosing good correspond-

ing points from the two datasets. If too many points are chosen from featureless regions

of the data, ICP can converge slowly or find the wrong pose, especially in the presence of

noise. Performing slippage analysis on the input shapes allows us to select a set of features

on the input that minimizes the uncertainty in the final pose and improves the algorithm’s

convergence.
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Chapter 1

Introduction

”Before beginning, plan carefully.”

–Marcus Tullius Cicero

1.1 Shape Similarity in Geometry Processing

In the last decade there have been significant technological advances in the design of tools

for digitizing and modeling 3D shape of objects. Commercial laser range finders, available

from companies such as Minolta, Cyberware, and others, are able to capture the geometric

shape of existing objects at resolutions of up to 0.25mm. Alternatively, 3D shapes can be

created virtually by using a 3D modeling or CAD tools such as zBrush or 3D Studio.

As a result, 3D content creation and use have become almost routine, leading to large

repositories of 3D data. 3D geometry is now emerging as a new form of digital content and

taking its place along side more traditional digital media such as sound, images, and video.

The area of digital geometry processing aims to develop effective and efficient algorithms

for the problems of reconstruction, representation, modification, retrieval and analysis of

3D models.

1



CHAPTER 1. INTRODUCTION 2

A fundamental problem that is commonly encountered is many digital geometry appli-

cations is shape matching, or determining which shapes or parts of shapes are similar.

Examples of shape processing problems which make use of shape similarity analysis are:

Figure 1.1: Shape retrieval from a database. The shapes in the database are compared to
a query model, and the most similar shapes are displayed to the user. (Image courtesy
http://shape.cs.princeton.edu)

• Database shape retrieval.3D content generated by 3D scanning and modeling tools

are often stored in basic online 3D shape repositories. Some, such as 3D Cafe [15],

TurboSquid [100], and the like are collections of general 3D objects, usually cre-

ated by a modeling tool. Others are specialized databases, such as the Protein Data

Bank [6], the CAESAR dataset of human shapes, and repositories of mechanical

parts [83, 81]. Others still are repositories of scanned data, such as Stanford’s 3D

model archive [82].
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Most of these repositories are accessed just by browsing through images captured

from the stored 3D geometry. Retrieving models from such databases in an intelli-

gent way is the quintessential shape matching task. Given a query model, its shape

is compared to the shape all models stored in the database, and the results are ranked

and returned to the user in order of decreasing similarity. Of particular note is the

development of a search engine for 3D models at Princeton [35], which aims at pro-

viding a tool for searching 3D content similar to text search engines for the WWW.

An example shape retrieval application is shown in Figure 1.1.

• Shape segmentation.Shape segmentation deals with decomposing a single object

into a set of meaningful components, usually represented by surface patches. What

constitutes a component is often application specific, but frequently the goal is to

create a set of patches where points within a patch are similar to each other. This

is the case when we want to approximate the shape by a set of planes [21], devel-

opable surfaces [76], quadric surfaces [57], etc. Shape segmentation can be viewed

as a problem in shape similarity, where the shape comparisons are performed among

different parts of a single shape, instead of among several different shapes.

• Model repair. Often digitized 3D models contain artifacts such as noise and holes,

which are the result of difficulties during the capture process, such as scanner limita-

tions or unfavorable surface properties of the acquired objects. Post-processing such

data to obtain pleasing 3D models requires de-noising [32, 51] to smooth out the ac-

quisition noise and hole-filling [24] to interpolate across the missing surfaces. Most

of the early methods for model repair and improvement aimed at creating a smooth

manifold surface in the areas of noisy or missing data by using local information

around the damaged area to produce the new geometry. Recently, several new ap-

proaches to model repair have been proposed that improve the quality of the model

in a given area by using information from similar 3D shapes identified by a shape

matching algorithm. The de-noising method of Yoshizawa et al. [109] performs sur-

face smoothing by both classic point averaging over a local neighborhood, as well as

averaging the noisy surface with other similar parts of the same model. This method

successfully removed scanner noise while preserving more true model features than
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earlier methods based on just local operations. Recent hole filling methods have also

benefited from shape similarity analysis by copying geometry from similar looking

areas of the same model [92], or of other similar looking shapes [73, 56] to create a

hole filling surface.

• Range image registration.Most scanning devices produce as their output a raw set

of point samples. Due to self-occlusions of the scanned object, and the field of view

limitations of the scanning device, only a partial view of the object can be acquired

at a time. To digitize the entire shape, several scanning passes are required with ei-

ther the scanner or the object being moved in between the scans. Scanalignment

or registrationalgorithms bring a set of scans into a common coordinate system so

that a shape reconstruction algorithm can be applied to produce the complete digi-

tized object as shown in Figure 1.3. The majority of registration algorithms operate

by identifying similar areas in different scans and computing a transformation that

positions the scans such that the matching areas overlap with each other.

Figure 1.2: An example of an object recognition problem. Given a scan of a cluttered
scene (left) and a database of car models (right), the goal is to identify which model of car
is present in the scene and identify its location. (Images courtesy of [8])

• Object recognition. Recognizing specific objects in noisy and cluttered scenes is a
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challenging problem encountered in computer vision. Given scan of a scene and a

database of candidate 3D models (e.g. people, cars), the goal is to identify if any of

the models in the database is present in the scene, and to identify their position and

orientation (Figure 1.2).

The last two applications described above have a more restricted structure than a general

shape matching problem. Instead of looking for approximate similarity of entire objects,

as we would do in a shape retrieval application, we instead know that the shapes (or parts

of shapes) are related by a transformation from a certain transformation class (e.g. rigid,

affine, or articulated). The goal is to discover the parts of the input shapes that are the same,

and to recover the transformation that positions the objects such that the distance between

the overlapping parts is minimized.

Shape registration is both easier and harder than the general shape matching problem. On

the one hand, we have extra information available to us in a registration problem. For

example, we can use the knowledge that the overlapping scans have to create an approxi-

mately manifold surface, and that matching a scan into the space that was seen as unoccu-

pied from some other view is very unlikely, to discard erroneous matches between pairs of

scans [47, 104]. On a more local scale, we know that pairwise distances between points on

one shape and their matching points on the other shape need to be preserved. Therefore,

when looking for overlapping areas of two input shapes, we can discard from consideration

areas which do not satisfy the rigidity preservation constraint.

On the other hand, shape registration is a problem inpartial matching, since the inputs

generally do not overlap over their entire extents. Partial matching is more difficult than the

global total matchingproblem, since we cannot use the usual global shape properties such

as center of mass, principal axes orientation, moments etc, which have been very successful

in helping solve the general shape matching problem. Again, shape segmentation can be

also thought of as a partial matching problem, where the matching parts both come from

the same shape.

In this thesis, we focus on developing and analyzing local and global surface measures that

are helpful in solving the problems of partial matching and range image registration under
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rigid transformations. In the rest of this chapter, we examine in more detail the various

sub-problems encountered in range image registration and related partial shape similarity

problems, and give an overview of our contributions.

1.2 Range Image Registration

Figure 1.3: Range image registration. Left: a scan is acquired from a single viewpoint.
Middle: To cover the entire object, multiple viewpoints are necessary. Right: views regis-
tered into final model. (Images courtesy Digital Michelangelo Project [58])

Most shape acquisition devices produce a set of discrete samples that give the depth infor-

mation about the given object as seen from a single viewpoint. The resulting set of depth

samples is called arange image, which is similar to a regular image, in that every sample

represents depth (instead of color as in a regular image) at a given point on the object. Due

to limited field of view of most scanners, and the self-occlusions that occur in most objects,

several scans (also called views) are required to capture the entire object surface. Either the

object or the scanner is moved between successive views. Since the points in each range

image are usually given in the local coordinate system of the scanning device, a transfor-

mation of each view into the world coordinate system needs to be computed to build the

complete model of the scanned object (Figure 1.3).

One way to recover the transformation for each range image is to track the motion of

the object as it is being scanned. This can be done, for example, by placing it onto a

calibrated turntable, or tracking the motion of the scanner’s head as it scans different sides
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of the object. However, this either restricts the scanning to small objects that can fit onto a

turntable, or requires a complicated scanner design. Another approach, then, is to include

a certain amount of overlapping area between successive views of the object. After the

object has been completely scanned, these overlapping areas are used to recover the relative

transformation between pairs of views. By applying this process for all pairs of overlapping

scans, the entire object is built up. Range image registration algorithms find the overlapping

areas between pairs of scans, compute a transformation that best aligns the overlapping

areas, and bring all the scans into a common coordinate system.

A registration algorithm that computes a relative transformation between a pair of shapes,

usually called themodeland thedata, should have the following properties:

• Initialization invariance. We would like to be able to find the optimal alignment

between two shapes independently of their initial position. This will allow for auto-

matic positioning of the scans are they are acquired.

• Tolerance to partial matches.Most of the time, only a subset of points in the model

will match to a subset of points in the data. The overlap area is usually unknown,

although we may have an estimate of what percentage of the surfaces overlap each

other. Determining the actual areas of overlap is one of the goals of a pairwise regis-

tration algorithm.

• No user input. Many matching and algorithms rely on the presence of user-specified

markers on the objects, or on an initial rough manual positioning of the surfaces. We

would like our algorithms to be completely automatic.

• Fast convergence.Although not necessarily real-time, it is useful to be able to find

the alignment between the objects quickly. This way, a feedback can be provided to

the user about the progress of the scanning.

Existing range image registration algorithms focus most of their efforts in analyzing the in-

put shapes to find the best set of corresponding points, which are then used to bring the two

shapes into alignment (see Chapter 2 for an overview of registration techniques). Search

for correspondences implicitly means that all of the heavy processing is done on pairs of
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shapes. Although registration requires two inputs, we will show that it is often helpful

to analyze each input shape separately first. The motivation of this approach is two-fold.

First, in a complete range image registration system for a given set of scans, many pairs of

scans are matched using a pairwise registration algorithm, in fact several early registration

pipelines [47, 58] have been brute-force and performed a pairwise matching between all

pairs of scans. Since each scan participates in several pairwise matches, performing ex-

pensive analysis of each scan is less expensive than performing analysis of pairs of scans,

especially if it simplifies the pairwise matching problem. Second, we can make use of the

simple observation that since the model and data shapes in each pairwise registration prob-

lem are similar over some part of their extent, we can gain insight on how the data shape

will behave during registration with some model shape, without actually having to look at

the model.

In the first part of the thesis, we develop an algorithm for registration of overlapping scans

that is independent of the scans’ initial pose. Under some reasonable assumptions about the

shape of the input scans and the amount of overlap between them, our algorithm is guar-

anteed to find a close estimate of their correct relative pose, without any use of markers or

user guidance. The shape properties used to make registration effective include the distrib-

ution of shape descriptors on the data shape, and the matrix of pairwise point distances of

the data and model shapes.

In the second part of this thesis, we examine how a given shape behaves under a rigid

motion, namely whether there exist certain rigid motions under which a given shape is

invariant. This will allow us to develop an intrinsic surface property which is useful for

detecting small features in otherwise featureless areas of the input scans. By adapting a

well known local registration algorithm to sample points from constraining features, we

obtain an algorithm which is able to match such difficult to register shapes effectively.
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Figure 1.4: Finding corresponding points using shape descriptors. Since it’s usually too ex-
pensive to compute correspondences for each point, a set of features (shown as red points)
are selected from both shapes. A hypothetical shape descriptor (shown as a plot of the
values) is computed for each point, and points whose shape descriptors are similar are said
to be in correspondence (shown as red lines).

1.3 Shape Descriptors

Shape registration can be related to the classic problem in computer vision: a search for

correspondences. Given two views of the same object, the goal is to find correspondences

between the views and find a transformation that brings the two views into alignment (Fig-

ure 1.4).

In computer vision the correspondence problem is commonly solved using descriptors and

feature tracking [105]. Similar approaches are applied in 3D shape processing. Given a

point of the input shape, a descriptor is a quantity computed based on the surface around

this point that captures the local geometric information in a way that allows for easy com-

parison. Usually, a geometric shape descriptor represents the local surface around each

point by a fixed dimensional vector. Determining the similarity between two points on a

shape amounts to computing the Euclidean distance between two descriptor vectors. Points

in the two views with similar descriptors are potentially in correspondence (Figure 1.4). To

be useful for computing correspondences in registration algorithms, geometric descriptors
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need to have the following properties:

• Transformation invariance. The shape descriptor should not change when a trans-

formation is applied to the input shape. There is a large number of shape descrip-

tors that are invariant under rigid transformations (reviewed in more detail in Sec-

tion 2.3.3), while invariance under affine and articulated deformations is harder to

achieve.

• Locality. The shape descriptor should not rely on global properties of the shape,

such as center of mass, principal axes orientation etc. In registration, two views

usually overlap only over part of their extent, which precludes the use of global shape

properties as it is often done in shape matching. Instead, shape descriptors should be

computed based on local neighborhood information around each point.

Examples of shape descriptors include low-dimensional properties such as curvatures, and

curvature-based quantities such as shape index [54] and curvedness [55], and high-dimensional

descriptors such as spin images [50] and shape contexts [8]. Low dimensional descriptors

are usually easier to compute and compare, while higher dimensional descriptors provide

more discriminating power.

We develop a new shape descriptor, related to local mean curvature, based on integration of

a spatial function over a kernel centered at each surface point. As opposed to the differential

invariants such as curvature, our integration-based descriptor is more robust to noise. This

descriptor is used in a registration algorithm to help pick potential feature points on the

input surfaces and identify corresponding points for those features.

1.4 Feature Point Selection

In most real-world scanning applications the size of the input data is too large to search for

a corresponding point on the model shape for each point on the data shape, especially if this

search process is expensive. To simplify the problem, a subset of points on the input shapes

are chosen to be used for correspondence computation, these points are calledfeatures
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(Figure 1.4). Feature points are usually chosen in some way that will make correspondence

computation easier, such as from some salient or unique areas of the input shapes.

The ”feature analysis” part of this thesis will focus on examining various characteristics of

3D shapes when they are used as inputs for pairwise registration. In particular, we will try

to identify the properties and points on each input shape that will make it easier (or harder)

to process it in a registration algorithm. By performing such feature analysis the actual

pairwise registration algorithms can remain fairly simple but still effective in achieving

good alignment results.

Feature point selection usually requires analyzing both local surface properties around each

point, such as shape descriptors, and also more global properties of the whole shape. Most

of the time features are selected independently on the data and model shapes, since select-

ing them on both shapes together requires the solution to the underlying correspondence

problem. Therefore, a major challenge for feature selection algorithms is to pick a con-

sistent or canonical set of points on each shape. Since only the selected feature points are

used for computing the alignment of the model and data, if the two sets are inconsistent

it will be impossible to find correspondences between them. The consistency requirement

often results in algorithms that either have to over-sample the two shapes to guarantee that

some corresponding points will be included in both sets or perform complicated analysis

to identify the salient points on the two shapes and rely on the assumption that the same

point will be salient in all inputs [60, 67]. Other approaches such as [99] analyze the model

and data together and pick consistent pairs of feature points, which is an expensive method

since it implicitly has to solve the correspondence problem.

We present two feature selection methods in this thesis that are aimed at simplifying the

underlying correspondence and registration problems. The first method analyzes the dis-

tribution of shape descriptors on the surface of a shape and selects points whose descriptor

values are rare. This results in a set of salient feature points in the data which are likely

to have only few correspondences in the model, making it easy to find the best set of cor-

respondences. The second feature selecting method is based on analyzing invariance of

the surface under rigid motion. We select feature points on the data shape which will best
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constrain its alignment to the model shape, which results in improved convergence of reg-

istration algorithms.

1.5 Self-Similarity and Segmentation

Until now, the shape similarity problem under consideration always involved two shapes

which were matched to each other. We can also think of studying how a shape is similar

to itself, for example whether there exists more than one way to register a shape to a copy

of itself, or whether a shape is composed of several similar components. Understanding

how a shape matches to a copy of itself can help us understand how it matches to another

different shape. We can draw an analogy here with well known string matching algorithms

such as Knuth-Morris-Pratt or Boyer-Moore [22], where the pattern string is first matched

against itself to understand its structure, and only then is matched against the text string.

Shape self-similarity can be used to determine whether a shape possesses any symmetries.

If a shape is symmetric, there will be several transformations or groups of transformations

under which the distance between a shape and its transformed copy is small. Therefore,

a global registration algorithm can be used to determine whole-object symmetries. Re-

cently, more sophisticated algorithms for determining partial symmetries (effectively self-

similarity of parts of the same shape) have also been developed by Podolak et al. [74] and

Mitra et al. [65].

Object segmentation can also be thought of as a self-similarity problem, where the goal is to

decompose an object into a set of components such that points within each component are

similar to each other with respect to some measure. Therefore studying feature detection for

pairwise matching problems such as registration also results in a set of shape properties that

can be directly applied in a useful segmentation algorithm. It is not surprising, therefore,

that many segmentation algorithms are descriptor based, and in fact the same descriptors

that are used for registration have been successfully applied to segmentation problems. For

example curvature based measures have been used in [55] for segmentation of general

shapes along sharp edges.
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One of the surface properties which allows us to develop a better registration algorithm,

namely the distribution of points and normals across the surface of an object, can also re-

sult in an effective segmentation algorithm for decomposing the input into a set of surfaces

corresponding to planes, spheres, surfaces of revolution and surfaces of linear extrusion.

This approach can be particularly useful for reverse-engineering of mechanical-type ob-

jects, a problem that is frequently encountered in the field of Computer Aided Design.

1.6 Overview of Thesis

1.6.1 Contributions

In this dissertation we explore the use of local shape descriptors and intrinsic shape proper-

ties to develop more efficient and robust algorithms for shape registration and segmentation.

The contributions of this works are as follows:

• We describe a new surface descriptor calledintegral volume invariantwhich is re-

lated to mean curvature but computed by performing integral instead of differential

operations on the surface.

• We develop a feature selection method based on persistence [27] and distribution

of values of the integral volume invariant values across the surface of a 3D shape.

The feature selection method effectively captures a small set of geometrically salient

points on the input surface.

• The feature selection method is used in a global registration algorithm for aligning

two shapes without a prior estimate of their relative transformation. The algorithm

explores the space of potential alignments using an efficient branch and bound tech-

nique, and is guaranteed to find the best set of correspondences for the selected fea-

ture points.

• We develop a new shape descriptor based on surface invariance under a rigid motion,

calledsurface slippage. Using this shape descriptor in a feature selection algorithm,
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we improve the performance of a well known local registration method, and achieve

good registration results in cases that have been problematic for previous methods,

namely when two shapes are largely self-similar with only a few constraining fea-

tures.

• The surface slippage descriptor leads to a way to describe local continuous self-

similarity of a surface. Since shape segmentation can be though of as grouping areas

of a surface into similar patches, we can apply the slippage shape descriptor in a

segmentation algorithm. This results in a segmentation algorithm for decomposing a

shape into pointsets that correspond to kinematic surfaces (planes, cylinders, surfaces

of revolution and surfaces of linear extrusion). The new segmentation algorithm is

applied to reverse engineering of models of mechanical parts.

1.6.2 Outline

The rest of this thesis is organized as follows:

• In Chapter 2, we review the current literature on shape registration. We will pay

particular attention to the various uses of shape descriptors for feature selection and

correspondence computation.

• In Chapter 3, we describe our global registration algorithm based on fast combinato-

rial search of the space of all corresponding points [39].

• In Chapter 4, we study local self-similarity of the surface and develop the slippage

shape descriptor. We take a short aside from the registration problem to describe the

application of slippage to reverse engineering of models of mechanical parts [37].

• We return to registration in Chapter 5, and describe the use of the slippage property

in a local registration algorithm to register inputs which have only a sparse set of

feature points [38].

• Chapter 6 presents a summary and directions for future work.



Chapter 2

Prior Work

”If you want to make an apple pie from scratch, you must first create the universe.”

–Carl Sagan

2.1 Overview

This chapter provides a survey of previous work on shape registration and its use in 3D

scanning applications. A survey of more general shape matching techniques can be found

in [103]. As described in the previous chapter, while shape matching addresses the problem

of general shape similarity, shape registration is a partial matching problem and has an

additional requirement of finding the best transformation that aligns (or superimposes) the

shapes.

Broadly speaking, there are two classes of registration problems.Pairwise registration

deals with finding a transformation that best aligns two scans, whilemultiview registration

processes larger groups, in most cases all the scans for the object. The general pairwise

registration problem is usually stated as follows. Given two input shapesP andQ, usually

15
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called the data and the model, and a transformation classA , we are looking for a transfor-

mationα ∈ A that, when applied toP, minimizes the distance betweenα(P) andQ (see

Figure 2.1):

E (P,Q) = min
α

d2(α(P),Q) (2.1)

In range image registrationA is usually the group of rigid transformations andd2 is a

measure of distance between a pair of surfaces. Since the model and data scans overlap

only partially, the distance should be computed only over this initially unknown overlap

area. The quality of the registration is measured as the residual distance after applying the

best transformation.

It is possible to assemble the entire object out of several scans by just applying a pairwise

registration algorithm. The first scan is used as an anchor and each new scan can be reg-

istered to some existing scan that is already part of the assembled group. This process,

however, tends to produce poor results since pairwise errors tend to accumulate. For exam-

ple, given a ”ring” of scans registered pairwise in sequence, the first and last scan usually

do not match up well. To address this problem,multiview registrationalgorithms have been

developed. GivenK partial scans of an objectP1,P2, . . . ,PK, the goal is to findK transfor-

mationsα1,α2, . . . ,αK (whereα1 is usually the identity) such that the following residual is

minimized:

E (P1, . . . ,PK) = min
α1,...,αK

K−1

∑
i=1

K

∑
j=i+1

d2(αi(Pi),α j(P j)). (2.2)

That is, we want to minimize total distance between all overlapping scans after applying

all the transformations (we assume that if a pair of scans do not overlap, their contribution

to the total alignment error is 0). The additional challenge in multi-view registration is

to decide which pairs of scans to include in the system in Equation 2.2. Most multi-view

registration algorithms first pre-align the scans pairwise as described above and then try to

adjust the resulting transformations to minimize the total registration error over all pairs
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Data Shape (P) Model Shape (Q)

(a) (b)

Figure 2.1: Pairwise registration problem. (a) Data shape (P) and Model shape (Q) in some
arbitrary initial positions. (b) Result of registration: model and data are positioned so that
matching parts overlap (as seen from the gray and blue surfaces inter-penetrating in the
area of the overlap).

of scans. Pairwise registration has received more attention in the literature than multiview

registration, since a good pairwise alignment results in a better-behaved multiview system.

Below, we give a detailed review of existing techniques for pairwise registration, and a

short overview of multiview registration algorithms.

2.2 Pairwise Registration

Pairwise shape registration can be decomposed of two subproblems:correspondenceand

alignment. The correspondence problem in shape registration is similar to correspondence

problem in computer vision [105], we want to identify parts ofP andQ that represent the

same physical part of the scanned object. The alignment problem then is to minimize the

distance between the corresponding parts.

In the rest of this section, we will assume that the input shapes are point-sampled, withP

consisting onN points{p1, . . . ,pN} andQ consisting ofM pointsq1, . . . ,qM. We indicate

that a pair of points fromP andQ are in correspondence by assigning topi a corresponding
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point qci in Q. The goal of a pairwise registration algorithm is to find a set of correspon-

dence variables{c1,c2, . . . ,ck} and parameters of a rigid transformationR, t, that minimize:

E = min
R,t,c1,...,ck

k

∑
i=1

d2(Rpi + t,qci). (2.3)

Correspondence and alignment suffer from a ”chicken and egg” relationship. If the cor-

respondences{c1, . . . ,ck} are given, it is usually trivial to find the correct alignment. In

particular, it is well known that given a set of corresponding point-pairs(pi ,qci), we can

find a rigid transformation(R, t) that minimizes the sum of squared distanced between

eachqci and its corresponding transformed pointRpi + t [28]. In cases when other distance

measures between pointsets are used, this computation is more difficult, but still possible

(we will discuss the different distance measures in Section 2.4.1). On the other hand, if the

two shapes are aligned, a correspondence for a given point inP is usually just its closest

point inQ.

At its core, registration is an optimization problem, which can either be stated as opti-

mization in the space of the parameters of the optimal transformationα ∈ A , or as an

optimization in the space of all possible correspondence assignments between points inP

andQ, the correspondence variables{ci}. As a result, many of the proposed solutions for

registration of shapes are based on different function optimization methods.

Solutions to the pairwise registration problem generally fall into two categories, based on

the type of optimization that they perform.Global registrationrefers to algorithms that

seek to find the best alignment between model and data shapes without any prior assump-

tions about their initial positions. In effect, they are looking for the global minimum of the

distance function. These algorithms are usually based on a correspondence search using

local shape descriptors, as reviewed in Section 2.3.Local registrationalgorithms assume

that the relative transformation between the input shapes is approximately correct, i.e. the

closest local minimum of the distance function is the correct alignment, and seek to lo-

cally improve the registration. These methods are almost exclusively based on function

optimization using local search.
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2.3 Global Pairwise Registration

Global registration algorithms are applied when the input scans start in arbitrary positions,

and no estimate of the aligning transformation is available. Solutions to the global registra-

tion problem fall into two general classes, based on whether they search over the space of

all point correspondences or over the space of all aligning transformations.

2.3.1 Transformation Search Methods

Transformation search methods make use of the fact that the rigid transform is low dimen-

sional and exhaustively search for the small number of parameters needed to specify the

optimal transform. One class of approaches, known as voting methods, quantize the trans-

formation space into a six-dimensional table and accumulate votes in each cell of the table

based on the geometry of the input shapes. Generalized Hough transform [44], geometric

hashing [108], and pose clustering [102] compute a transformation that aligns each triplet

of points in the model shape to each triplet of points in the data shape and record a vote in

the corresponding cell of the table. The entry with the most votes gives the optimal align-

ing transform. Another variant of this scheme, the alignment method [48], tallies for each

transform proposed by two triplets of points how many points of the data are brought by the

transform close to a point in the model. The transform which brings the most data points

within a threshold of a point in the model is chosen as the optimal aligning transform.

Voting methods, in general, explore the entire set of transformations or alignments (up to

some quantization error), and therefore are likely to find the optimal alignment between the

data and model shapes, independently of the initial position of the input shapes. However,

these methods can be costly, having complexity of at leastO(n3), and therefore they are

not usually used directly for global registration of scanned data. Voting methods are often

preceded by simplification of the input shapes or feature extractions steps. Additionally,

their storage requirements for quantizing the transformation space make voting methods

more useful when the pre-processing costs can be amortized over many shape matching

queries, such as in object recognition and shape retrieval applications, as opposed to more
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on-line nature of scan data registration problems.

A second class of transformation search methods are based on exploring the error landscape

of the function in Equation 2.3. Since the minimization over all transformations is a com-

plicated non-linear function, its error landscape contains many local minima. Therefore

many of the methods for escaping from local minima have been applied to transformation

search. These include evolutionary search [30], genetic algorithms [19, 98] and simulated

annealing [69]. Although sometimes effective, these methods can be slow, are not guaran-

teed to converge to the correct alignment, and their performance is difficult to analyze and

highly depends on the kind of input given to the algorithm.

2.3.2 Correspondence Search Methods

Correspondence search methods, as the name implies, search for the globally best set of

corresponding points and compute the aligning transformation in the process of evaluating

potential correspondences. The unknowns that are optimized over are all potential corre-

spondences in the model for the points in the data, which results in a problem with a very

large number of free variables. However, the geometric constraints given by the transfor-

mation class that is considered for registration (e.g. rigid, affine, etc.) results in a set of

constraints that need to be satisfied for the corresponding points. The constrained opti-

mization approach has been used by Anguelov et al. [3] develop a method for registration

of deformable objects which optimizes the joint probabilistic model over all point-to-point

correspondences under a set of constraints that preserve local and global geodesic distances

between corresponding point pairs. The resulting problem has the structure of a Markov

Random Field, and the best assignment of corresponding point-pairs is then found using

Belief Propagation.

Of particular interest is the class of correspondence search methods known as interpretation

trees, which were originally used for matching features extracted from 2D images. We

will review this method here, since it can be directly applied for 3D registration, and it

forms the basis of our global registration algorithm in Chapter 3. The algorithm, as it was
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originally proposed, deals with finding legitimate and consistent pairings between two sets

of features extracted from 2D images: points, line segments, and curved segments. This

problem can be stated as one of constrained search over an interpretation tree. Each node

of the tree describes a partial pairing of the model and data primitives, and the node with

the best possible pairing, as measured by a matching function, is chosen as the result of the

search. The advantage of these search methods is that they explore all possible assignments

between model and data primitives, and are guaranteed to find the best possible alignment

globally.

Basic interpretation tree search is an inherently exponential process, making it infeasible for

all but the simplest shape matching problems. The same observation as for the constrained

optimization case helps here: the transformation that aligns the model and data primitives

provides geometric constraints among sets of primitives, which can significantly reduce

the search space. For example, a rigid transformation has to preserve pairwise distances,

therefore distances between pairs of data points have to be the same as distances between

their corresponding model points.

The constrained interpretation tree search was used by Grimson and Lozano-Perez for

matching polygonal [41] and curved [43] objects in 2D, and later extended to matching

sparse range or tactile sensor data to an image [42]. The geometric constraints employed

by the matching system are preserving the angle between pairs of segments, and preserving

the range of distances between pairs of segments. These approaches have worked well for

recognizing planar and laminar objects, but have not yet been extended to matching more

general 3D shapes.

2.3.3 Shape Descriptors

Both the voting schemes for transformation search and the correspondence search algo-

rithms can be improved by using geometric descriptors. A geometric descriptor is a quan-

tity computed for each point of the model and the data, based on the shape of the local
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neighborhood around the point. Points whose descriptors are similar potentially corre-

spond. High-dimensional, or rich, descriptors such as spin images [50] and shape con-

texts [8] provide a fairly detailed description of the shape around each point in transformation-

independent manner. The advantage of rich descriptors is that given a point in the data

shape, it is likely that only a few points in the model shape will have a similar descriptor,

and the point with the best-matching descriptor is likely to be the correct corresponding

point. Incorrect correspondences are few and can be removed using outlier detection meth-

ods [31], which means that rich descriptors can be used to directly solve the correspondence

problem.

In global registration, rich shape descriptors are often used to solve the correspondence

problem directly: i.e. choose for each point in the data the point in the model with the

best matching shape descriptor. Huber [47] uses spin images computed from subsampled

input data for automatic global registration of range data. Rich descriptors are particularly

popular for object recognition and shape retrieval, where the computation of descriptors

can be amortized over large number of comparison queries [8, 35].

Low-dimensional descriptors, on the other hand, usually compute only a few values per

point. Examples of such descriptors include curvature and various curvature-based quanti-

ties such as shape index [54] and curvedness [55]. Low-dimensional descriptors are typi-

cally much easier to compute, store, and compare than high-dimensional rich descriptors.

However, for a given point in the data shape, there may be many points in the model shape

with the same descriptor value. Therefore, low-dimensional descriptors are usually used in

conjunction with a voting scheme [7] to reduce the size of the search space and the number

of point-to-point comparisons. A more common use for low-dimensional descriptors is in

local registration by iterative refinement, where they can improve the funnel of convergence

(set of starting positions which result in correct alignment) of the algorithm [93, 40].



CHAPTER 2. PRIOR WORK 23

2.4 Local Pairwise Registration

Local registration methods start with an estimate of the best aligning transformation be-

tween the model and data shapes. This estimate can come from a global alignment algo-

rithm, from tracking the scanner position, or from user input. The algorithm then refines

this estimate to better register the two shapes.

Most local registration algorithms are based on the Iterated Closest Point algorithm (ICP)

developed by Besl and McKay [11] and Chen and Medioni [18]. We give a basic overview

of ICP here, since it is used in later parts of this thesis. A detailed survey of ICP is provided

in [85]. ICP algorithms solve Equation 2.3 by alternating the following steps:

1. Find correspondences.For each pointpi ∈ P, assign the correspondence variableci

to be the index of the point inQ that is closest topi . Usually, some thresholding on

the distance betweenpi andqci is performed, and points which are too far away from

their correspondences are discarded as being outside the overlap area [73].

2. Compute transformation parameters. Given the set of corresponding point-pairs

(pi ,qci) compute the transformation(R, t) that minimizes sum of squared distances

between the corresponding points. If the distance measure is Euclidean distance

between points, then the rigid transform can be found in closed form [28], otherwise

an approximation to the transform [64] or local search [18] can be used.

3. Move P and iterate.Apply the computed transformation to the points ofP and iter-

ate the process. The algorithm terminates when the change in residual in Equation 2.3

is sufficiently small.

The ICP algorithm converges to a local minimum of Equation 2.3, hence an estimate of

the aligning transform that is fairly close to the correct alignment is required. ICP and

other local search algorithms are evaluated using two criteria. Thefunnel of convergence

(Figure 2.4) of a given local registration algorithm is a set of points in transformation space

which when used as an initial position forP result in the algorithm correctly aligning it to

Q. If (R∗, t∗) is the global minimum of Equation 2.3 in transformation space, the funnel
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Figure 2.2: Influence of distance metric on the convergence funnel of ICP. (a) Visualization
of initial positions. Each circle represents to a translation inxy-plane, and arcs in the circle
represent rotations aroundz-axis. (b) Positions from which a ICP with a point-plane error
metric was able to converge to the correct alignment for a particular registration problem
are shaded. Notice that as the transformations get larger, the funnel of convergence gets
smaller. (c) Same visualization but for ICP using the second order approximation to the
squared distance function. This is a better approximation to the true point-surface distance,
and therefore results in a wider funnel of convergence.

of convergence is the area of transformation space around(R∗, t∗) for which the global

minimum is also a local minimum. Clearly, we would like local registration algorithms

like ICP to have wide funnels of convergence. In addition to having a wide funnel of

convergence we would also like the algorithm to converge to the correct alignment quickly,

i.e. within a small number of iterations.

It has been shown both experimentally [85] and theoretically [64] that the speed and fun-

nel of convergence of ICP heavily depends on the choice of corresponding points and the

distance metric that is minimized when computing the aligning transformation.

2.4.1 Distance Metrics

Two distance metrics are commonly used in ICP and its variants. The point-to-point dis-

tance of Besl [11] uses the sum of Euclidean distances between the corresponding points.

This allows the aligning transformation to be computed exactly in closed form [28], but

also leads to an algorithm that converges only linearly for certain types of input, and initial

positions whenP andQ are already close to a correct alignment.



CHAPTER 2. PRIOR WORK 25

Another common distance metric is the point-to-plane distance of Chen and Medioni [18],

which uses the distance between a pointpi and the planar approximation to the surface

defined byQ and the corresponding pointqci . In this case, it is possible to solve for the

transformation in closed form using the small-angle approximation for rotations. When the

initial positions of the data is close to the model, and when the input has relatively low

noise, ICP with point-to-plane error metric can have quadratic rate of convergence. When

the shapes start far away from each other, or for noisy point clouds, point-to-plane error

metric can lead to an ICP algorithm that fails to converge [38].

Mitra et al. [64] show that the combination of point-to-point and point-to-plane error metric

weighted by the local curvature and the distance between the points gives a second-order

approximation to the squared distance function between the pointpi and the surface defined

by Q. Using the approximation to the squared distance function results in an ICP algorithm

with quadratic rate of convergence when the data and model shapes are close, and with

linear rate of convergence, but a wide convergence funnel when the shapes are farther away

(see Figure 2.4).

2.4.2 Closest Point Search

Although originally named Iterated Closest Point, it is now more appropriate to call ICP the

IteratedCorrespondingPoint algorithm [85], since many different strategies for choosing

corresponding points have been proposed.

We again refer the reader to the survey of ICP variants by Rusinkiewicz and Levoy for

the different variants of closest point computations. In this section, we discuss how shape

descriptors can be incorporated into the local search framework of ICP.

Assume we have a set of scalar-valued descriptor functionsf1, . . . , fm which are computed

for each point ofP andQ. We can treat the points on the model and data as lying in a

(m+3)-dimensional Euclidean space:pi = (pix, piy, piz, f1(pi), . . . , fm(pi)) and similarly

for points ofQ. Closest points are computed in this(m+3)-dimensional space, which now

includes not only distances between points but also their similarity [93]. Figure 2.3 shows
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Figure 2.3: Closest point search in point and descriptor space. (a) Closest points using
point positions only. (b) Closest point search in 4 dimensions, using point positions and
a curvature-based shape descriptor. Notice that the corresponding points now come from
similar-looking areas of the shapes. (c) Comparison of the rate of convergence of regular
ICP and ICP with descriptor-based closest point search. Regular ICP does not converge
from this starting position, while ICP with descriptor-based closest point search finds the
correct alignment.

how the corresponding points change when local descriptors are included in the closest

point computation, and the resulting improvement in the rate of convergence of ICP.

2.5 Multi-View Registration

There is relatively less work dealing with multi-view registration as compared to the pair-

wise registration literature.

Multi-view registration also has local and global sub-problems. GivenK scans of an object
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P1, . . . ,PK, global multi-view registration deals with deciding which pairs of scans contain

overlapping areas and can be aligned together using a pairwise registration algorithm. Most

of the global multiview registration methods are graph based, with the scans representing

the nodes of the graph, and an edge connecting nodesPi andP j if they can be aligned

using a pairwise algorithm. The weight of the edge is related to the residual error after the

alignment. The goal of multi-view global registration is to pick a set of edges from the

graph which will result in the best possible reconstruction of the object. The first system

for multi-view registration of range images was developed by Huber [47], which picks the

best set of pairwise matches by computing a best weight spanning tree in the graph. Huber

also proves that the general multi-view global registration problem is NP-hard.

Given a set of graph edges (corresponding to matches between pairs of scans) and a set of

K initial transformations produced by a global multi-view registration algorithm, the goal

of local multi-view registration is to refine the transformations to minimize Equation 2.2.

Only the pairs of scans that correspond to the graph edges computed by global multi-view

registration are included in the minimization. This problem is closely related to the well-

known bundle adjustment problem in photogrammetry [62].

Krishnan et al. [86] propose a numerical optimization technique which directly optimizes

Equation 2.2 over theK sets of transformation parameters. Other methods include doublet-

based heuristics, which perform repeated pairwise registrations of groups of scans to spread

out the accumulated matching error. Pulli [80] proposes a method in which the accumulated

error is distributed among theK scans by repeatedly picking a single scan and aligning it to

the group formed by the otherK−1 scans using ICP. This heuristic has good performance

when the scans are already in good alignment, but tends to diverge when the initial align-

ments have errors or outliers. A more sophisticated heuristic has been proposed by Sharp

et al. [94] where the accumulated error is spread out along loops of edges in the matching

graph.
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2.6 Summary

Despite the large amount of work on local and global registration described above, there

are still several unsolved problems that remain. Pairwise methods based on local search

often suffer from slow convergence and shallow local minima in the presence of ”diffi-

cult” geometry, such as scans which contain relatively few features that can constrain the

alignment.

Global pairwise registration methods that are based on matching corresponding points by

using high dimensional shape descriptors, such as the spin images [50], although they

often perform well in practice, are not guaranteed to find the correct alignment, since they

do not necessarily explore the entire search space of correspondences.

Voting methods, such as the Hough transform, are guaranteed to find the correct alignment,

but are expensive for anything other than small inputs. A common speedup technique is to

pick a set of feature points on the model and data shapes, often based on computed descrip-

tor values. The alignment is then performed only with respect to these features [60, 67]

Feature extraction methods, however, can suffer from the problem of picking inconsistent

points on the model and data, since the two shapes are process separately. The resulting

set of feature points, therefore, may not have a good alignment. Because of possible errors

in feature selection, existing global registration techniques have to oversample their inputs,

reducing their efficiency.



Chapter 3

Global Registration Using

Combinatorial Search

”Never stop exploring.”

–North Face logo

As described in Chapter 2, global registration is the problem of optimal alignment of two

three-dimensional shapes in arbitrary initial positions. The problem is usually encountered

in the first part of the registration pipeline, when range images coming from the scanner

need to be roughly aligned into a common coordinate system. However, this problem is

not exclusive to shape acquisition, optimally positioning two shapes is also encountered in

shape retrieval [35], shape modeling [34], segmentation [4], object reassembly [45, 70] etc.

In this chapter, we present a new global registration algorithm that combines the aspects of

both descriptor-based alignment to compute an initial correspondence set and of function

optimization to compute the best alignment. We use the integral invariants framework [61]

to robustly compute a multi-scale descriptor based on local geometry at each point. A small

number of feature points are automatically picked from the data shape according to the

uniqueness of the descriptor value at the point. We use the descriptor values of each feature

point to find its potential correspondences in the model. The best set of corresponding

29
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points is chosen from this initial set by a fast combinatorial method based on distance

matrix comparisons. The main contributions of our method are as follows:

• Our algorithm makes use of the fact that the aligning transform is low-dimensional to

robustly find a small set of matching point-pairs that specify the optimal alignment.

• We focus on identifying a small number of feature points on the data shape, and

then searching the entire model shape for correspondences. This approach avoids

the problem of selecting incompatible features that is common in other feature-based

registration methods.

• We use a novel shape descriptor, based on performing integral operations on the

underlying shape, for identifying features in the data and selecting potential corre-

spondence points in the model. Our feature selection algorithm picks points on the

data shape which have uncommon descriptor values across a range of scales.

• For each feature point, the correspondence search algorithm examines the entire

model shape to identify the optimal corresponding point. The search is made ef-

ficient by using a measure of quality of correspondences based on computing only

intrinsic quantities of the model and data shapes. This allows us to avoid computing

an aligning transformation, and results in an efficient branch-and-bound algorithm.

Additionally, we use the rigid transform constraints for efficient pruning of the search

space.

• Since our algorithm only uses descriptor values, which are invariant under rigid trans-

forms, and intrinsic geometric properties of the input shapes, we are able to align the

model and data shapes without any assumptions about their initial position.

The results of our global alignment are sufficiently close to the correct registration pose

to be used as a starting pose for automatic refinement with ICP. In addition to using the

results for registration, we show several other shape processing applications that use global

alignment based on our algorithm.

The integral volume invariant described in this chapter has been developed jointly with
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Helmut Pottmann, who also describes a general framework for 3D integral invariants in

[77]. The matching algorithm and its applications are the result of a close collaboration

with Niloy Mitra, and are additionally described in his thesis [63].

3.1 Integral Invariants

Let P be the input shape, consisting ofN points p1 . . .pN. The input can be specified

as a mesh or as a point cloud. Anm-dimensional geometric descriptor is a function that

assigns to each pointp ∈ P a vector f (p) ∈ IRm. To be useful in registration algorithms,

a descriptor should be invariant under rigid transformations, robust to noise, and based on

local geometry aroundp (since the input shapes may be only partially overlapping). We

will restrict our attention to low-dimensional descriptors, since they are cheaper to compute,

store, and compare than rich descriptors.

Most of the common low-dimensional shape descriptors are based on differential quantities

of the shape, since they are invariant under rigid transformations. The main limitation of

differential descriptors, which has made them unpopular in registration algorithms, is that

any noise present in the input gets amplified when derivatives are computed. As a result,

algorithms that rely on differential descriptors need to perform careful smoothing of both

data and model shapes.

An alternative approach, that has yielded promising results in object recognition and fea-

ture classification, is to use local shape invariants that are based on integration instead of

differentiation [61, 20]. Integral descriptors retain the desirable properties of differential

invariants such as locality and invariance under rigid transformations, but are more robust

to noise. Manay et al. [61] showed that integral invariants have descriptive power compa-

rable to curvature-based descriptors, but are more effective in 2D object recognition in the

presence of noise. In this section, we extend the integral invariants of [61] to 3D.

Integral invariants are defined by integrating a function over a moving domain (usually a



CHAPTER 3. GLOBAL REGISTRATION USING COMBINATORIAL SEARCH 32

ball of certain radius) centered at each surface point.

f (p) =
∫

Br (p)
f (x)dx.

HereBr(p) is defined as the interior of the ball of radiusr centered atp. Different choices

of f (x) give rise to different descriptors, while changing the radius ofBr gives descriptors

computed at different scales. Pottmann et.al present a comprehensive study of various

integral invariants in [77]. Here, we derive a simple multi-scale invariant which is related

to mean curvature atp.

3.1.1 Integral Volume Invariant

Assuming the point setP is sampled from some surfaceΦ, the simplest functionf (x) that

gives rise to an integral invariant is the indicator functionχ, which is one for points that

lie on the interior ofΦ and zero elsewhere. Using the indicator function we can define the

integral volume invariantas

Vr(p) =
∫

Br (p)
χdx. (3.1)

The quantityVr(p) is the volume of the intersection of the ballBr(p) with the interior of

the object defined by the input point set. The invariant is illustrated in 2D in Figure 3.1(a).

Assuming the intersection of the interior ofΦ andBr(p) is simply-connected, the volume

descriptor is related to mean curvature atp as follows,

Vr(p) =
2π

3
r3− πH

4
r4 +O(r5). (3.2)

The leading term is the volume of the half-ball of radiusr, and the correction term in-

volves the mean curvatureH at the pointp. The full derivation of Equation 3.2 is given in

Appendix A.

To show that this descriptor is robust to noise, letP be the patch that bounds the surface
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Figure 3.1: Illustration of the volume integral descriptor in 2D. (a) We take the intersection
of a ball of radiusr centered at pointp with the interior of the surface. (b) Discretization
of the volume descriptor as computed by our algorithm. The cell size of the grid isρ.

where it intersects the ballBr(p). Noise causes a perturbation that movesp to p′ and thus

the kernel ballBr(p) undergoes a translation toBr(p′). The latter intersects the perturbed

surface in a patchP ′. TranslatingBr(p′) back toBr(p) movesP ′ to a patchP∗. Apart

from a negligible part along the intersection with the ballBr(p), the change of the value

of the volume descriptor is given by the oriented volume∆V betweenP andP∗. Let us

assume thatP can be expressed as a parametric surfaces(u,v). We express the perturbation

towardsP∗ using a displacement fieldτ(u,v) in normal direction of each point ofP.

Then, the change in volume descriptor atp due to the perturbation can be shown to be

∆V =
∫
P

τ(u,v)dA−
∫
P

τ
2(u,v)H dA+

1
3

∫
P

τ
3(u,v)K dA, (3.3)

whereK is the Gaussian curvature atp (full derivation is given in Appendix A). We assume

the perturbation noise is independently, identically distributed with mean zero and variance

σ2. Let Hmaxbe the maximum mean curvature over the patchP, andA be the area of the

patch, then the expected change in the volume descriptor can be bounded by|E [∆V] | ≤
Hmaxσ

2A . The change in descriptor value relative to the volume of the integration kernel

is proportional toσ2/r2, which shows the robustness of the descriptor to noise.
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3.1.2 Implementation

We compute the integral volume invariant on a voxel grid, as shown in figure 3.1(b). For a

given grid sizeρ, we build the occupancy gridGΦ, whereGΦ(c) = 1 if the voxelc lies on

the interior ofΦ or intersects its boundary, and is zero otherwise. Additionally, we build

the ball gridGB which contains the scan-converted ball of radiusr placed at the center of

the grid. We compute the integral volume invariant by convolution:

V(c) = (GB∗GO)(c).

The above expression can be evaluated efficiently by using the Discrete Fourier Transform

of the ball and occupancy grids. The occupancy gridGΦ can be computed using scan con-

version algorithms for meshes [68] or ray shooting algorithms for point clouds [1], which

work for generally well behaved surfaces with few holes. If the inputs are range images,

which often contain many holes and disconnected patches, the above scan conversion algo-

rithms may fail to distinguish between inside and outside voxels. However, in this case we

can use the scanning direction usually available with a range image (i.e. most range images

are oriented towards the scanner), to perform the occupancy grid computation. We set the

grid sizeρ to be large enough to account for the perturbation of the vertices due to noise.

Once the convolution is computed, the value of the volume descriptor at each vertex of the

input shape is given by the value of the descriptor at the voxel containing the vertex.

Boundaries and holes in the input surfaces affect the value of the volume descriptor of all

cells that lie within distancer of the hole, since they result in gaps in the occupancy grid

(Figure 3.2). We fill small holes in the input by performing a dilation of the occupancy

grid by several (up to 5) voxels, followed by a contraction. This method is effective for

filling holes that are the result of noise in the scanning process or very small occlusions,

but it does not work for holes that are the result of major self-occlusions on the object.

Although we can fill larger holes by a more expensive method such as [24, 68], we found

that just discarding points which are within radiusr of a boundary still leaves enough area

for the algorithm to pick feature points, so in most cases more expensive processing is not
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Figure 3.2: Computing the integral volume invariant in the presence of holes. (a) Holes in
the input create errors in the occupancy grid (b) This causes all points within radiusr of a
hole or boundary to become invalid (in blue). (c) Small holes in the occupancy grid were
filled by dilation and contraction, removing some of the invalid points. The inside/outside
voxel classification was computed using the scanning direction.

necessary.

Integral descriptors are particularly suited for multiscale representation since the scale is

given by the radius of the kernelBr . Figures 3.3 (a) and (b) show the volume descriptor

computed for the Stanford Bunny model for two different ball radii. In Section 3.2.2 we

describe an algorithm that uses the multiscale representation of the volume descriptor to

robustly identify persistent features.

3.2 Feature Point Selection

As is common for many global alignment algorithms (see Section 2.3), our approach is

based on computing a set of corresponding points between the model and data shapes.

There are two main components to the algorithm: we select features and find correspon-

dences by using the integral volume invariant (although the process would work for any

low-dimensional descriptor) and we use distances between pairs of points to verify par-

tially built correspondence sets. In this section, we describe our feature selection process,
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Figure 3.3: Values of the normalized volume descriptor computed for the bunny model (a)
for small and (b) large integration kernels. We normalize the descriptor value with respect
to the volume of the ballBr and use the full blue-red scale for the range of values to ease
visualization. The radius of the integration kernel, the color scale of the values, and the
minimum (blue) and maximum (red) value of the descriptor are shown on the left of each
figure.

which is based on analyzing the distribution of descriptor values on the data shape.

The overall structure of the feature selection and correspondence search steps is similar to

other global aligners. We select a small number of points from the data shape as features,

and we use the descriptor values at those points to find their potential correspondences

in the model. The main novel property of our feature selection process is to select those

points as features that will make the search for correspondences particularly simple. To

this end, feature points are selected from the areas of the data shape which have uncom-

mon descriptor values. Since the data and the model shapes are similar over the matching

region (underlying assumption of registration), and we use descriptor values to select cor-

responding points in the model for each feature point in the data, points with rare descriptor

values are likely to have only a few corresponding points. Thus, the feature selection al-

gorithm specifically picks points such that the resulting search for correspondences will be

fast. Additionally, we do not need to select many points as features, since a rigid transform

can be specified using only a small number of points. Selecting a small number of feature
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points, such that each will have only a small number of potential correspondences results

in a tractable search problem.

3.2.1 Basic Algorithm

We will present the feature selection algorithm in terms of a general descriptor, since it does

not rely on any particular properties of the integral volume invariant. In the next section,

we will use the fact that it is easy to compute scale-space representation of the integral

invariants to develop a scale-sensitive feature selection algorithm.

Let f be the geometric descriptor which associates with each pointpi a value f (pi). The

descriptor can be of any dimension, although in this section we assume that the descriptors

are one-dimensionalf (pi) ∈ IR. A point p is defined to be a feature if its descriptor value

is rare among all descriptors computed for the data shapeP. The feature point selection

proceeds as follows:

1. Compute a histogram of descriptor values,f (pi) for all points inP. The number of

binsb in the histogram is computed using Scott’s rule,b = 3.49σ f N−
1
3 , whereσ f is

the standard deviation of theN descriptor values [90].

2. To select feature points, we identify thek least populated bins such that the total

number of points in these bins is smaller than some maximum thresholdsmax. The

points that belong to these bins are the potential features. Intuitively, features are

those points which are dissimilar from the rest of the shape, which is captured by the

low occurrence of their descriptor values. The parametersmax controls the tradeoff

between accuracy of the transform (more correspondences) and running time of the

algorithm. In our implementation, we setsmax= 0.01N.

3. Since nearby points are likely to belong to the same feature, we want to prevent the

algorithm from picking points that are too close to each other. We also want the

points to cover the whole shape since in case of partial matching we do not know a

priori which part of the data shape will overlap with the model. When a pointpi is
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picked, we mark all points that fall into a ball of radiusRe aroundpi as unavailable

for selection. Enforcing the minimal separation distance between the feature points

also results is more stable configurations in the correspondence search stage of the

algorithm (Section 3.4).

Notice that this process is not invariant to the order of points inP. This means that it cannot

be used to pick a set of canonical points on the data and model shapes. This is in contrast

to many other global aligners, which reduce the size of the correspondence space by first

subsampling the model and data by picking some canonical features, and then search for

optimal correspondence assignment among the points in the feature sets. In contrast, our

correspondence search algorithm does not need canonical points, since it will search the

entire model shape for correspondences. This means, as long as a feature point lies in the

overlap region between the model and data, it will have a correspondence assigned to it by

the matching stage of our registration algorithm.

The above algorithm works with any kind of descriptor which can be represented as a vector

in IRm. Since we are picking as features those points ofP that have uncommon descriptor

values, we need a descriptor that is robust to noise, making integral descriptors particularly

well suited for this kind of approach. Figure 3.5 shows the feature points selected on the

dragon model corrupted with zero-mean Gaussian noise.

3.2.2 Scale-space Representation and Persistent Features

The concept of a points being a feature is usually scale-dependent. For example a small

”bump” may be a feature if we are considering the object at a small scale, but should be

ignored when we are looking at the object’s overall shape. For this reason, many descriptors

and feature selection algorithms employ the notion of a scale-space [67, 72], where each

potential feature point is considered at several scales simultaneously.

Integral invariants are particularly well suited for scale-space representation, since the scale

on which the invariant is computed is naturally controlled by the radius of the integration

kernelBr . The main problem that we need to solve is to determine what is the appropriate
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descriptor scale that should be considered at each pointpi . It is expected that this scale

should be different for different features, and we would like to be able to determine the

scale automatically.

We make use of the following observation: If a pointp is an actual feature point, it should

be present over a set of consecutive scales of the descriptor. A point that is an outlier, on the

other hand, is likely to disappear as a feature as the scale is varied. Therefore, we use the

persistence [16] of a feature point in the scale-space representation to identify true features

and discard outliers.

Most shapes contain features at different scales, so we do not expect a point to be a feature

over the entire scale-space of the descriptor. Instead, we define as a feature a point whose

descriptor value is rare over a set of consecutive kernel radii of the volume descriptor. Small

scale features will be persistent for small radii of the descriptor and large-scale features

over large radii, and outliers may look like features for some radii but are not persistent. In

addition to identifying a point as a feature, our algorithm automatically identifies the scale

of the feature.

To implement the persistence algorithm, we sample the scales of the volume descriptor at

discrete intervals. We divide the rangermin≤ r ≤ rmaxof possible ball radii intok intervals

(k= 5 in our implementation) and convolve the occupancy grid with the different ball grids.

To avoid discretization errors,rmin is set to 10ρ, whereρ is the resolution of the voxel grid.

We also limitrmax to some fraction (usually set to 0.1) of the diameter of the input shape

to preserve the locality property of the shape descriptor. We also normalize the magnitude

of the volume descriptor for each radiusr by the volume of the ballBr . For a pointp to be

a feature, it should be selected as a feature for a set of continuous scales. We use the basic

algorithm described in Section 3.2.1 to identify feature points for each radius of the volume

descriptor, and then select only those points that are a feature for at least two consecutive

radii. Figure 3.4 shows feature points selected using the scale-space algorithm.
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(a) (b)

Figure 3.4: Persistent feature selection. Feature points selected using the scale-space al-
gorithms on the (a) bunny and (b) David models. Features in red are persistent over larger
radii of the descriptor, while features in yellow are persistent over smaller radii.

3.3 Distance Metric Based on Intrinsic Shape Properties

We now come to the second part of the global alignment algorithm: the search for cor-

responding points for the set of feature points. Given a set ofn feature points selected

from data shapeP, the goal of the correspondence search algorithm is to find, for each

feature pointpi , a pointqi ∈ Q, that is the best match topi . In order to determine if a set

of points(pi ,qi) form a good corresponding set, we need to develop a distance metric for

correspondences. In Section 2.4.1, we introduced the point-to-point distance metric as a

way of evaluating distance between two point sets in correspondence. It is also known as

coordinate root mean squared error, or cRMS, in fields such as structural biology, since it

measures how close each pointpi comes to corresponding pointqi after an optimal rigid

aligning transform is computed for the entire set of corresponding points. LetP′ andQ′ be

two point sets, with correspondences given as(pi ,qi). As defined in Section 2.4.1, cRMS

is given by:

cRMS2(P′,Q′) = min
R,t

1
n

n

∑
i=1
||Rpi + t−qi ||2, (3.4)

The drawback of this distance metric is that the aligning transformation cannot be computed
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incrementally. Being able to update the distance measure without having to re-compute it

is a desirably property, since our matching algorithm will build up the correspondence set

(pi ,qi) incrementally.

The assumption that the data and model are related by a rigid transform allows us to develop

a measure of quality of the proposed correspondences without having to compute the actual

aligning transformation. This new distance metric is based on the observation that any rigid

transform has to preserve inter-point distances. Namely, if the set of points inQ′ is a good

match for the points inP′, the distances between all pairs of points inP′ should be the same

as between their corresponding points inQ′.

The metric based on internal intra-point distances ofP′ andQ′ is known as thedistance

root mean squared error, or dRMS. This metric is commonly used in computational mole-

cular biology for comparing the similarity of two protein shapes [53]. The dRMS error is

computed by comparing all internal pairwise distances of the two point sets:

dRMS2(P′,Q′) =
1
n2

n

∑
i=1

n

∑
j=1

(||pi−p j ||− ||qi−q j ||)2. (3.5)

Same as the cRMS error, this metric assumes that the correspondences between the two

point sets are known, with the pointpi having a corresponding pointqi .

The triangle inequality and the property that the optimal transform aligns the centroids of

P′ andQ′ allows us to upper bound dRMS using cRMS as follows,

dRMS(P′,Q′)≤
√

2 cRMS(P′,Q′). (3.6)

To compute the lower bound, we need to examine bothQ′ and its reflection around any

arbitrary planeQ′ (since dRMS is invariant under reflection, but cRMS is not). The lower

bound can be shown to be

1
k
√

n
min(cRMS(P′,Q′),cRMS(P′,Q′))≤ dRMS(P′,Q′). (3.7)
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Heren is the number of corresponding point pairs andk is a small constant, depending on

ratio of the diameter of the data shape to the feature exclusion radius used in Section 3.2.

The full derivation of the bounds is given in Appendix B. These bounds mean than when

the dRMS of two point sets is small, their cRMS will also be small (when there is no

reflection), indicating that the point sets are in good alignment. Therefore, we can use

dRMS instead of cRMS to evaluate how well two point sets correspond.

dRMS has the advantage that it does not require computation of the aligning transform

before the quality of the correspondence can be evaluated. It is, in fact, only comparing

intrinsic properties of the two sets of corresponding points, namely the internal pairwise

distances of each pointset, as opposed to comparing the distances between the two point

sets. This means that, given the set of feature pointsP′, its pairwise distance matrix needs

to be computed only once, and then compared to pairwise distance matrices of the potential

correspondence setsQ′. Additionally, since only intrinsic properties of the point sets are

examined in dRMS computation, we will be able to efficiently prune correspondence sets

that contain wrong matches without having to compare the entire setsP′ andQ′. This will

allow us to develop an efficient branch-and-bound algorithm described in the next section.

3.4 Matching Algorithm

We now have all the ingredients to develop a matching algorithm. Given a set ofn feature

pointsP′ picked from the data, we want to select a set of best matching pointsQ′ from the

model. We treat this problem as a search over all possible sets ofn points in the model, and

present an efficient way to explore this search space.

3.4.1 Initial Correspondence Set

We first narrow down the potential correspondences for eachpi by performing a range

query over the descriptor values inQ. For each feature pointpi we have the scale-space

representation of the volume descriptor(Vr1(pi), . . . ,Vrk(pi)), and the valuesr i
a, r

i
b, which



CHAPTER 3. GLOBAL REGISTRATION USING COMBINATORIAL SEARCH 43

are the minimum and maximum radii of the kernel of the volume descriptor for whichpi is

a persistent feature.

To perform the descriptor query, we compute the same scale-space representation of the

volume descriptor on the model shape by computing volume descriptors for radiir1, r2, . . . , rk

for each point on the model shape. Letp be a feature point selected from the data shape,

and letrb be the largest feature radius. We perform a range query in the model, and select

all pointsq such that|Vrb(p)−Vrb(q)| < ε. We can also perform the range query for any

radius betweenra andrb of p, however we prefer the largest possible radius since it gives

the most stable descriptor. The variation of the descriptor valuesε can be related to the

grid sizeρ and the radius of the volume descriptorr asε ≈ 3ρ

4r (which is the difference in

volume of two balls whose centers are one voxel apart). This accounts for the variation in

the value of the volume descriptor due to discretization using the voxel grid. Since we pick

ρ to be large enough to account for noise in the data, thereforeε also absorbs the noise

term in Equation 3.3.

The range query results in the set of pointsCinitial (p) whose volume descriptor for the given

radius is similar to the descriptor value atp. Similar to the approach in the feature selection

algorithm, we want to pick a set of points that represent distinct areas of the model. We

cluster all points inCinitial (p) into clusters of radiusRc and pick from each cluster the point

q that minimizes|Vrb(p)−Vrb(q)|. This gives the final set of correspondences forp, C(p).

We repeat this procedure for each point in the feature set.

Using a range search instead of exact match of the descriptor values ensures that the correct

correspondence ofp is included in the setCinitial (p) (under a reasonable noise model).

After clustering, we are guaranteed that the correct correspondence is withinRc of a point

in C(p). It follows that the correct set of corresponding points ofP′ has cRMS at mostRc,

and dRMS is bounded by
√

2Rc. The value ofRc, therefore, is a knob that controls the

quality of the resulting registration.

After performing the range query and clustering for each feature point, we obtain the

correspondence search space, where we need to selectn matching points from the set

C(p1)×C(p2)× . . .×C(pn). Although this is a smaller search space than searching over
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all of Q, since we chose the feature points such that eachC(pi) is small, it’s still too large to

explore exhaustively. We compute an initial set of correspondences using the hierarchical

greedy algorithm of Mitra [63] described below. Other heuristics for selecting a set of cor-

responding point-pairs given a correspondence search space can be used here also. While it

does not guarantee the optimal assignment, the greedy algorithm often produces the correct

correspondence set in practice, and it is quite fast. Since we want to guarantee that we fully

explore the correspondence search space and find the optimal assignment of correspon-

dences, we also develop a combinatorial search algorithm based on branch and bound. The

initial heuristic algorithm can then be used to produce a good initial estimate for the branch

and bound algorithm, resulting in efficient pruning of incorrect correspondence sets.

3.4.2 Initial Bound

We initialize the correspondence set and matching error using a greedy algorithm developed

by Mitra and described also in [63]. As with all branch and bound approaches, a tight initial

bound helps make the algorithm more efficient, since more incorrect branches are pruned

by the bound during the search. Any heuristic for selecting a set of point pairs from a

correspondence search space can be used to obtain the initial bound. For example, recently

Huang et al. [45] presented a matching algorithm based on forward search, which is more

expensive than the method described here, but provides very tight bounds in practice. While

several iterations of Huang’s algorithm are required to explore the entire correspondence

search space, a single iteration is often enough to find a correspondence set that is close to

the correct matching configuration, which can then be verified and refined using the branch

and bound method.

For completeness, we include Mitra’s greedy algorithm here. The algorithm is based on

selecting sets of matching point-pairs hierarchically. At each step, we select a set of match-

ing points that best optimizes the current dRMS error. The algorithm is greedy, since it

never backtracks even if a better choice for a given correspondence becomes available at

later steps.
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1. Form pairs: For each pair of feature points(pi ,p j) ∈ P′, choose the best pair of cor-

responding points(qk
i ,q

l
j) in their associated potential correspondence sets. The best

matching pair of correspondences is one that minimizes the distance metric penalty∣∣∣||pi−p j ||− ||qk
i −ql

j ||
∣∣∣. This gives us the setE2 of O(n2) two-point correspon-

dences. We sortE2 in order of increasing distance discrepancy.

2. Combine pairs: Combine two-point correspondences into four-point correspon-

dences. Given a two-point correspondencee∈E2, find the two-point correspondence

in E2 that does not contain any of the points ofe, and that minimizes the dRMS er-

ror of the resulting four-point correspondence. Remove fromE2 all correspondences

that have the same endpoints as the new four-point correspondence, and continue un-

til the setE2 becomes empty. Call this setE4, and again sort it by increasing dRMS

error.

3. Build hierarchy: We continue merging in this manner, merging pairs of elements

of a setEk to form the setE2k. We typically stop at eitherE8 or E16.

4. Assign the rest of the points: We pick the correspondence from the resulting setEk

that has the smallest dRMS error. We use this partial (8 or 16 point) correspondence

to compute the rigid transform(R, t) that minimizes the cRMS error (Equation 3.4)

and apply it to the entire feature point setP′. For all points inpi ∈ P′ that do not yet

have correspondences, we assign the pointq j
i ∈C(pi) that is closest toR(pi)+ t. We

use this as the initial correspondence(P′,Q′) and initializeEmin to dRMS(P′,Q′) in

the algorithm described in Section 3.4.

This approach is greedy because each step picks the best correspondences to merge together

and never backtracks. Therefore is it possible that an incorrect correspondence is found for

P′. However, as long as some points are matched to their correct corresponding points

in Step 1, the algorithm tends to produce a tight bound that greatly speeds up the basic

branch-and-bound algorithm. In practice, this approach often results in a very good guess

of the correct alignment, resulting in effective pruning in the branch-and-bound algorithm.
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3.4.3 Branch-and-bound Search

The greedy algorithm above does not guarantee that we find the optimal correspondence.

Therefore, we need an algorithm that will efficiently explore the space of all possible cor-

respondence assignments and either verify the result of the greedy search, or find a better

alignment. The key observation that will allow us to develop a fast algorithm is that we can

use the rigidity constraints of the aligning transform to efficiently eliminate a large set of

potential correspondences.

Given a set of feature pointsP′ = (p1, . . . ,pn) selected from the data shape, and a set of

potential correspondences for each point in the model shape(C(p1), . . . ,C(pn)), we want

to select a set of pointsQ′ such thatqi ∈ C(pi) and the error metric of Equation 3.5 is

minimized over all sets of such correspondences. Since we will only be considering points

in Q that belong to some potential correspondence set, we will change the notation slightly

in this section to simplify the explanation of the algorithm. Given a feature pointpi , we

will designate thej-th member of the potential correspondence setC(pi) asq j
i .

Consider a pair of feature points(pi ,p j). According to their descriptor values, any pair of

points(qk
i ,q

l
j) can be used as corresponding points. Rigid transform constraints tell us that

the distance betweenpi andp j needs to be the same as the distance between their corre-

spondences in the model. Since we are using correspondences that are only approximate

within the clustering radiusRc, the correspondence pairs need to satisfy the relationship∣∣∣||pi−p j ||− ||qk
i −ql

j ||
∣∣∣ < 2Rc. (3.8)

We apply this thresholding rule in a branch-and-bound algorithm for finding the best set of

correspondences. LetQ′ = (q∗1, . . . ,q
∗
n) be the current best set of correspondences for the

set of feature pointsP′, and letEmin = dRMS(P′,Q′) be the error of the current best corre-

spondence set. We initialize the set of correspondences using a greedy algorithm described

in Section 3.4.2. The branch-and-bound correspondence search proceeds as follows:

1. Assume corresponding points have been assigned for the firstk− 1 feature points,

which gives us a partial correspondence set(qc1
1 , . . . ,qck−1

k−1). We are looking for the
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correspondence for thek-th feature point.

2. Threshold: For each potential correspondence ofpk, apply the thresholding test of

Equation 3.8 with respect to all previously selected points. That is we verify that

Equation 3.8 holds for all pairs(pi ,pk),(q
ci
i ,q j

k) for i = 1, . . . ,k− 1. If one of the

tests fails, we can prune the branch that includes the correspondence pair(pk,q
j
k).

3. Prune: For eachq j
k that passes the thresholding test, form the partial correspondence

(qc1
1 , . . . ,qck−1

k−1 ,q j
k) and evaluate the dRMS error of this partial correspondence. If the

partial error is greater than the error of the current best estimateEmin, discardq j
k as a

correspondence.

4. Branch: For each of the remainingq j
k that pass both the thresholding and the pruning

tests, assignck = j, and recursively invoke Step 1. Once all correspondences for

pk have been examined, we backtrack and assign the next correspondence to the

previous pointpk−1.

5. Bound: If all feature points have been assigned correspondences, compute the error

of the matchE. If the dRMS error is less thanEmin, we potentially have a better

correspondence set, and a new bound, unless the current assignment is actually a

reflection. We can rule out reflection by making sure the cRMS error of the current

correspondence set is also small. If the cRMS error check passes, we assignEmin = E

andQ′ = (qc1
1 , . . . ,qcn

n ).

The branch-and-bound algorithm is possible because we are using the dRMS error metric,

which can be computed for partial correspondences without the need for the optimal align-

ing transform. The only time when the aligning transform in computed is in the last step,

and only if we need to update the bound.

3.4.4 Partial Matching

When the model and data shapes overlap only over part of their extent, not all the feature

points picked on the data will have corresponding points in the model. Therefore, we
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modify our matching algorithm to handle such partial matches.

In addition to performing the search over all correspondences, we also need to find the

subset of the feature points that are the same in the model and data. We augment the set

of potential correspondences for each point,C(pi), with the not present value /0. When a

point is assigned /0 as a correspondence, it does not contribute to the computed dRMS error.

We want to maximize the number of feature points that get assigned a valid corresponding

point in the model, while still keeping the dRMS error of the correspondence set low.

Suppose we know thatk feature points are missing from the model, but do not know which

k. We can run our correspondence search algorithm, but prune away any branch that has

more thank points assigned the /0 correspondence. This will select the bestn− k feature

points that have the best correspondences. Since we do not knowk, we can run the same

algorithm for k ranging from 0 ton− 3 (since only three points are needed to specify

a rigid transform). For robustness, we actually require at least 5 points to have a valid

correspondence. We can detect the maximumk since the error will sharply decrease once

n−k reaches the correct number of common feature points. Figure 3.6(d) shows the dRMS

error vs. the number of matched feature points for the David model.

3.5 Results

3.5.1 Object Registration

We show the results of applying our algorithm to a number of pairwise registration prob-

lems. Although the data and model shapes are shown to be in similar positions in the

figures, the input was actually given to the algorithm in arbitrary orientation. Table 3.1

gives the data size and timing results for the experiments.

The first example demonstrates than the integral invariants can be used for alignment in

the presence of noise. We align the dragon model to a copy of itself corrupted by zero-

mean gaussian noise. No explicit smoothing was performed for descriptor computation
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model selection num corr num
size time features time corr

Dragon 29,455 6.3 38 2.2 9
David 68,480 84.5 15 35.7 6
Bunny 35,000 21.8 11 13.9 4
Part 20,002 5.9 13 15.7 8
Hinge 45,311 19.0 30 1.2 12

Table 3.1: Input size, running time (in sec), and number of feature points for the registration
experiments. In all cases the model size and data size are similar, so we only give the size
of the model. The feature selection time includes descriptor computation for both data
and model. We also indicate the number of selected feature points and average number of
potential correspondences (|C(p)|) for each point.

and matching. The results are shown in Figure 3.5. Our alignment brings the data (noisy)

shape close enough to the model (smooth) shape that applying one iteration of standard

ICP with point-to-point error metric brings the shapes into exact alignment.

Figure 3.6 shows the results of applying our algorithm to register partially overlapping

range data. We take two raw scans of the David’s face, uniformly subsample them, and

convert to a mesh representation. We do not perform any other smoothing or surface re-

construction. The scans are given in arbitrary initial positions (scanner coordinates) and

brought into close alignment by our algorithm. The pose computed by our algorithm is

refined by running three iterations of ICP. Fifteen feature points were picked on the data

shape, eight of which were assigned correspondences and used to compute the alignment.

Finally, we use our algorithm to build a complete model out of constituent range scans.

Given as input ten range scans of the Stanford bunny taken from different view points, we

bring all scans to a common coordinate frame using our algorithm. The rough alignment

accumulates errors since we align each scan only to one other, and do not perform any bun-

dle adjustment. However, the scans are now close enough to refine the pairwise matches

using ICP, and diffuse the accumulated error over all scans using a global adjustment algo-

rithm [80]. This gives us a completely automatic model construction pipeline. The result

is shown in Figure 3.7.
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(c) (d)

Figure 3.5: Dragon example. (a) Input to the matching algorithm: Smooth dragon (the
model) and noisy dragon (the data) with descriptor values shown at each point. Even under
noise the descriptor values at feature points look similar. (b) Feature points picked on the
data shape. (c) Registration after applying our algorithm. (d) Registration after refinement
the resulting pose by ICP.

3.5.2 Symmetry Detection

The global registration algorithm presented above can be used for several geometry process-

ing applications. In [63] Mitra presents an algorithm for detecting simple symmetries in an

object by matching it to a copy of itself. Instead of returning the best matching orientation,

all matches with small error are returned. Since the feature points picked by our algorithm

are spaced far apart, the difference between the symmetry configurations and other matches

will be large. Figure 3.8 shows the results of detecting symmetries of a mechanical part.

Notice that the graph of error in Figure 3.8 shows eight configurations with small error,

which corresponds to the eight-way symmetry of the model.



CHAPTER 3. GLOBAL REGISTRATION USING COMBINATORIAL SEARCH 51

Data Shape (P) Model Shape (Q)

(a) (b)

3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

40

45

Number of Matched Feature Points

d
RM

S 
Er

ro
r

(c) (d)

Figure 3.6: (a) Two scans of the David’s face. Feature points picked on the data shape are
shown in red.(b) Registration after applying our algorithm. (c) Registration after refinement
by ICP. Points actually used to compute alignment in (b) are shown in red. (d) Graph of
dRMS error as the function of the number of matched features. Notice the significant
increase in error for more than 8 points, which is the correct number of common features.

Clearly, this method works only for whole-object translational and rotational symmetries.

Recently, more sophisticated methods based on local point matching [65, 74] have been

developed for detecting richer classes of total and partial symmetries.

3.5.3 Articulated Matching

Our global registration algorithm can be used to discover rigid parts in objects that undergo

articulated deformation. In this case,P andQ are two positions of the object. We want to
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(a)

(b) (c)

Figure 3.7: (a) 10 input scans (shown here in good position for visualization, the actual
input positions are arbitrary). (b) Registration after applying our algorithm to overlapping
pairs of scans. (c) Registration after applying ICP and error relaxation to the initial pose
produced by our algorithm.

decompose the shapeP into the minimum set of partsP1 . . .Pk, such that eachPi can be

aligned to a part ofQ using a rigid transform. Here, we present a simple proof of concept

implementation developed in collaboration with Niloy Mitra [63].

We perform articulated decomposition by partial matching ofP andQ. This gives the trans-

form (R1, t1). We apply the transform to the data shape, and classify all points of the data

that fall within a threshold of the model as belonging to componentP1. We then separateP1

and the correspondingQ1 from the input shapes and repeat the partial matching algorithm

with P−P1 andQ−Q1. We repeat the process until the size of the residual set becomes

too small. Figure 3.9 shows the result of segmenting a shape into rigid components using
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Figure 3.8: Symmetry detection using registration. (a) Feature points picked by our algo-
rithm, when the shape is aligned to a copy of itself. (b) Graph of the error for different
correspondence sets. The eight correspondences with small error indicate the eight-way
symmetry of the shape.

(a) (b)

Figure 3.9: Simple articulated matching. (a) Two input positions of the shape. Feature
points picked by our algorithm are shown in red. (b) Using repeated partial matching, the
algorithm discovers two rigid components.

this algorithm.

The features picked on the data shape in Figure 3.9 also point one of the advantages of the

non-canonical nature of our feature selection and correspondence search. If a linear feature

is present in the input, such as the long edge of the hinge model, our feature selection

algorithm discretely samples the edge at intervals given by the exclusion radiusRe. If we

were picking and matching features on both data and model shapes, this discrete sampling

could potentially result in two sets of points which do not match each other. However, since
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we only pick features on one shape, the data, and then search the entire model, we always

find a compatible set of points (to within the error given by the clustering radiusEc) with

which to align the features.

The shapes in Figures 3.8 and 3.9 also show that the integral volume invariant is only an

approximation to the mean curvature at a point given by Equation 3.2, when the radius of

the integration kernel is smaller than the local feature size at that point. For example, for

thin structures such as the hinge, the integration kernel can be too large, which can result

in integrating across to the other side of the hinge. In general, this is not a problem, since

although we will not get quite a correct value of the invariant (which, for a planar object

like the hinge in Figure 3.9 should be 1/2), it will be consistent for the two hinge positions

since the integration kernels are the same in the data and the model shapes. This can

also be solved using more sophisticated methods for computing integral invariants such

as explicit intersection of the voxels with the integration kernels, which can incorporate

normal information into the computation [46].

3.6 Summary

We presented a global registration algorithm that aligns two three-dimensional shapes with-

out any assumptions about their initial positions. Our algorithm is able to align whole and

partially overlapping shapes, and is robust to moderately noisy data. The main insights

of our approach were the method for selecting as features points with uncommon shape

descriptors, evaluating a potential alignment between two sets of points without actually

computing an aligning transformation by comparing distance matrixes of the two point

sets, and an efficient branch-and-bound algorithm for exploring the entire correspondence

search space. Since our algorithm explores all possible correspondences for the selected

features, it is guaranteed to find the best assignment of correspondences to the feature

points. Due to the nature of the feature selection process, our algorithm works particularly

well in the presence of strong point-like features in the input data.

The limitations of our approach are two fold. First, when the input shapes do not have
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strong point-like features, the correspondence search space examined by the algorithms

can become quite large and the algorithm will be slow. Second, since we represent the data

shape with a small set of feature points, we are guaranteed to only find the best set of cor-

respondences for the selected features, not for all points on the data shape. In general, we

assume that the selected feature points represent the underlying shape well, so the correct

alignment of the feature points in the data to the model will lead to the correct alignment

of the whole data and model shapes. However, in case of particularly specialized input, it

is possible that the features do not faithfully represent the entire model, in which case our

algorithm may find the wrong alignment. It is important, therefore, to check the correct-

ness of the alignment after executing the global registration algorithm, which can be done

by checking the sum of squared distances of all points in the data shape and their closest

points in the model shape.

A significant improvement on our method has been developed recently by Huang et al. [46,

45]. The algorithm is based on feature selection and correspondence search using the in-

tegral invariants presented in this chapter, however instead of performing a clustering of

descriptor values to select feature points, as described above, entire patches of similar de-

scriptor values are selected as features. This addresses the problem of feature detection in

the input data which lacks strong point-like features. In the correspondence search stage,

corresponding patches in the model are selected for feature patches in the data based on

both the value of the descriptor, and the shape of the patch. Similar to our approach, the

algorithm also builds the entire correspondence search space, and then explores it using

forward search, which is a particularly effective heuristic method for outlier detection.



Chapter 4

Local Surface Slippage

”If he had been as you and you as he,

You would have slipped like him.”

–William Shakespeare

In the previous chapter we used an intrinsic property of a point set, namely the matrix

of pairwise distances among its points, to develop a global registration algorithm. Under

the assumption that two point sets are related by a rigid transformation, we were able to

estimate their similarity without computing the actual alignment, just by comparing those

intrinsic properties. We continue the theme of analyzing the intrinsic properties of shapes

in this chapter, and develop the notion of local surface self similarity based on how the

surface behaves under uniform rigid motions. We call this property local surface slippage.

We take a short digression from the topic of registration, and show how the local slippage

property can be used to segment a surface of a mechanical part into meaningful compo-

nents. Since slippage deals with the behavior of a surface under a rigid motion, it is clearly

relevant to the topic of rigid registration. We return to registration in the next chapter,

where we use the slippage of a surface to improve point sampling for a local registration

algorithm.

56
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4.1 Rigid Motions

A rigid motionM(t) consists of two time-varying components:R(t) ∈ SO(3), which deter-

mines the rotational part of the motion anda(t) which is the translational component. At

time t, position of a pointx moving according toM is given by

x(t) = R(t) ·x+a(t). (4.1)

The first derivative of Equation 4.1 is the velocity vector of the pointx at timet, which we

designate byv(x). It is well known that the velocity vector of each pointx at a given time

t can be written as [13]:

v(x) = c×x+c, (4.2)

wherec andc are 3-vectors. At a given timet all velocity vectors are zero only ifc= c= 0.

This case is called the stationary instant of the motion. It has been shown that at every

non-stationary instantt, the velocities of the points agree with the velocities of a uniform

helical motion, a uniform rotation, or a uniform translation [79]. We differentiate among

the three cases as follows:

• If c = 0, the motionM is a translation with constant velocity along the directionc.

• If c·c = 0, M is a rotation with constant angular velocity.

• If c·c 6= 0, M is a uniform helical motion.

4.2 Surface Slippage

Given a surfaceSwe call a rigid motionM aslippable motion of Sif the velocity vector of

each pointx∈Sis tangent toSatx. If the instantaneous motion of each point is tangential, it

means that the distance between the transformed surface and the original does not change,

to first order. If we imagine two copies of the surface, one that is moving according to

M and one that is stationary, then the surface can be thought of as sliding against itself,
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without forming any gaps between the moving surface and the stationary copy. That is, the

surfaceS is invariant under its slippable motions. Surfaces which are invariant under one

of the types of rigid motions described above are known as kinematic surfaces [79]. One

can differentiate among kinematic surfaces that are generated by rotational, translational or

helical motions [78, 101].

A kinematic surface can be slippable in more than one way. The simplest example is a

plane. Any translational motion along the plane is slippable, as is rotational motion around

the plane’s normal. A more interesting kinematic shape is a cylinder, for which slippable

motions include rotations around the cylinder’s axis and translations along the axis. Other

kinematic shapes include spheres, helical surfaces, surfaces of revolution and surfaces of

linear extrusion (translationally slippable surfaces).

Most surfaces are not slippable in their entirety. However, they often contain slippable

components, or are composed of several different slippable surfaces. In registration, we

often encounter surfaces which are almost slippable, i.e. they come from objects which are

largely symmetric, but have small features. Special care is often needed to register scans

that come from such objects, a problem that we will address in the next chapter. In the rest

of this chapter, we will focus on how to compute local surface slippage for a pointset.

4.3 Computing Slippable Motions

Let x be a point belonging to the surfaceS, and letn be the vector normal toS at x. We

will examine howx is affected by an instantaneous motion whose parameters are given by

the 6-vector[c c]. The amount of non-tangential motion is given by the dot product of the

velocity vector with the normal at the pointx:

vperp = (c×x+c) ·n. (4.3)

Kinematic surfaces are those for which there exists a rigid motion whose velocity vector
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field is tangential to the surface at each point. We can write this condition as∫
S
((c×x+c) ·n)2dS= 0. (4.4)

Now, we assume that the input data is given by a pointsetP of n points that have been

sampled from some underlying surfaceS. Our goal is to determine ifS is a kinematic

surface and find its slippable motions. Each pointpi ∈ P is given by a 3-vector of its

coordinatespi = [pix, piy, piz]. We also assume that at each pointpi we have a corresponding

normalni = [nix,niy,niz] that approximates the normal vector to the surfaceS. If the input

pointset is given as a mesh, we can use the triangles aroundpi to estimate the normal. If

no connectivity information is given with the input, the normals can be estimated by plane

fitting using the technique described in [66].

We can find the slippable motions ofP (and correspondinglyS) by posing Equation 4.4 as

a minimization problem. We want to find the parameters[c c] of a velocity vector field that,

when applied toP minimizes the motion along the normal direction at each point.

min
[c c]

n

∑
i=1

((c×pi +c) ·ni)2. (4.5)

Not surprisingly, the same minimization problem arises in the context of pointset registra-

tion [18, 85]. If we think of the pointsetP as having two copies, a moving versionPT and a

stationary versionPO, Equation 4.5 minimizes the point-to-plane error metric of Chen and

Medioni [18] between the transformed and stationary pointset. A slippable motion is the

one where the point-to-plane distance betweenPT andPO is zero [38]. We analyze this case

more in the next chapter.

Equation 4.5 is a least-squares problem whose minimum is the solution of a linear system

Cx = 0, whereC is a (covariance) matrix of partial derivatives of the objective function
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with respect to the motion parameters.

C = FFT =

[
p1×n1 ... pk×nk

n1 ... nk

]
(p1×n1)T nT

1

... ...

(pk×nk)T nT
k

 (4.6)

= ∑n
i=1



cixcix cixciy cixciz cixnix cixniy cixniz

ciycix ciyciy ciyciz ciynix ciyniy ciyniz

cizcix cizciy cizciz ciznix cizniy cizniz

nixcix nixciy nixciz nixnix nixniy nixniz

niycix niyciy niyciz niynix niyniy niyniz

nizcix nizciy nizciz niznix nizniy nizniz


wherecik = (pi ×ni)k. Therefore, the slippable motions ofP are those that belong to the

null space ofC. To compute the actual motion vectors, we compute the eigenvalue decom-

positionC = XΛXT . Eigenvectors ofC whose corresponding eigenvalues are 0 correspond

to the slippable motions of the pointsetP. In practice, due to noiseC is likely to be full

rank. In this case, the slippable motions are those eigenvectors ofC whose eigenvalues are

sufficiently small. We can determine the type of slippable motion that each eigenvector

corresponds according to the classification in Section 4.1. Table 4.1 shows examples of

slippable shapes and their corresponding slippable motions.

While we used the equation of rigid motion to classify point sets into kinematic surfaces,

the same classification has also been obtained by Pottmann et al. by considering the line

complex formed by the points and normals ofP as shown in [79]. This results in the same

covariance matrix as Equation 4.7. Looking at invariance of surface under rigid motion,

which resulted in the slippage property, was motivated by studying the behavior of local

registration algorithms, which will be described in the next chapter.
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Num. small Type of eigenvectors Type of Surface
Eigenvectors

3 3 rotations sphere

3 2 translation, 1 rotation plane

2 1 translation, 1 rotation cylinder

1 translation linear extrusion

1 rotation surface of revolution

1 helical motion helix

Table 4.1: Kinematic surfaces. For each surface, we indicate the number of small eigenval-
ues of the covariance matrix in Equation 4.7 and the type of the corresponding eigenvectors.
Notice, that the eigenvectors given are only one possible set of slippable motions for that
shape. Any motion that is a combination of the slippable eigenvectors is also slippable (see
Section 4.2). Translational motions are indicated by blue arrows, rotational motions by red
arrows, and helical motions by green arrows.
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Figure 4.1: Examples of mechanical parts composed of kinematic surfaces.

4.4 Application: Shape Segmentation Using Local Slip-

page Analysis

The above computation for determining slippable motions can be performed for any set of

points. In particular, we may be interested in computing the slippage of an entire point set

or of some of its components. A case when it is interesting to decompose a point set into

slippable components is in reverse engineering of scans of mechanical parts, which often

consist of surfaces shown in Table 4.1. The problem, therefore, is as follows: given a set

of pointsP, we want to decompose it into a number of subsetsP1,P2, . . . ,Pk such that each

Pi is large, connected, and slippable. We first introduce some background work in segmen-

tation and reverse engineering, and then present a simple algorithm for finding slippable

subsets in an input pointset. The approach will be based on developing a descriptor for a

set of points based on the number and type of slippable motions that it possesses.

4.4.1 Segmentation

Reverse engineering applications deal with reconstructing a CAD model from an unstruc-

tured input dataset such as one that may come from a laser scanner. A significant problem

in reverse engineering is the segmentation of the input dataset into a set of regions, such that

each region can be approximated by a single simple surface. Segmentation is usually fol-

lowed by surface fitting, where each component is approximated by best fitting parametric

surface. The problems of segmentation and surface fitting are closely related: if we know



CHAPTER 4. LOCAL SURFACE SLIPPAGE 63

the surfaces, we can segment the input pointset by grouping together points that lie within

a threshold of the same surface. On the other hand, given a segmentation of the pointset

into components, we can find the approximating surfaces by finding the best fitting surface

for each component. For general objects, segmentation and surface fitting problems often

require user input. However, in many CAD applications, the underlying model is composed

of kinematic surfaces, see examples in Figure 4.1. In such cases, automatic segmentation

and surface fitting are often possible.

There is a large body of research dealing with shape segmentation. A general survey of seg-

mentation and surface fitting in reverse engineering of CAD objects can be found in [106].

Most automatic segmentation methods fall into two general categories. Bottom-up, or re-

gion growing techniques, start with a set of seed points for which some local surface char-

acteristics are computed. New points are then added to the seed regions as long as the com-

puted surface characteristic does not change. The other approach to automatic segmentation

is to proceed top-down. The original pointset is recursively subdivided until each subset

belongs to a single component. This approach is common in image segmentation [95], how-

ever in model segmentation most techniques tend to use the bottom-up method, e.g. [88, 9].

For surface fitting of general shapes, the segmentation problem is generally difficult, and

the user is often asked to indicate rough component boundaries [57], which are then refined

and approximated with parametric patches. In Computer Graphics, automatic methods for

segmentation of arbitrary shapes are often used for generating base mesh domains for mul-

tiresolution analysis and texture mapping. Such methods are generally based on generating

regions that satisfy specific distance and planarity constraints [52, 36, 12, 87, 59].

The use of kinematic surfaces in geometry processing is not new. Pottmann at al. [78, 76]

determine if a given pointset is sampled from a kinematic surface by analyzing the normals

of P in line-space. The input points are then re-projected onto the underlying kinematic

surface for noise reduction or for inspection and quality assurance. Our segmentation al-

gorithm based purely on region growing of slippable components is, to the best of our

knowledge, new and is described in [37].
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4.4.2 Point Classification

We cannot apply the method of Section 4.3 to the input pointsetP directly, sinceP as a

whole may not be slippable. Our goal is to discover a decomposition ofP into P1,P2, . . . ,Pk

such that eachPi is large, connected, and slippable.

Our approach falls into the class of bottom-up segmentation algorithms. We start by com-

puting for each point in the input a guess at what kind of kinematic surface it was sampled

from. For each pointpi ∈ P we form a neighborhoodPi of m points aroundpi . This forms

our original set of components. If the input data is given with the connectivity information,

e.g. as a mesh, we can build eachPi by crawling the mesh structure outward frompi until

m points are encountered. If the input is given as a point cloud, we just take them nearest

neighbors ofpi .

Next, we compute the covariance matrixCi of points inPi according to Equation 4.7. We

make two modifications to the basic equation to make the computation more numerically

stable. First, we shift all points inPi so that the center of mass lies at the origin of the

coordinate system. Second, we uniformly scale the points so that the average radius of

the patch is 1. These steps do not change the slippable motions of the pointset, but ensure

that the magnitude of thepi ×ni term is comparable with theni term in the computation,

making the computation more numerically stable.

The next step is to decide how many slippable motions the neighborhood aroundpi has. Let

λ1 ≤ λ2 ≤ . . . ≤ λ6 be the eigenvalues ofCi andx1,x2, . . . ,x6 be the corresponding eigen-

vectors. We call the eigenvalueλ j “small” if the ratio λ6
λ j

is greater than a given threshold

g (we use a value between 100 and 300 in our implementation). Ifk is the number of

small eigenvalues ofPi , we call the eigenvectorsx1, . . . ,xk theslippage signatureof pi . We

write the slippage signature in matrix form asX1...k, with the eigenvectors corresponding to

slippable motions arranged in columns.

The actual segmentation proceeds by aggregating neighboring points into slippable com-

ponents. Originally, the neighborhood around each pointpi is treated as a separate patchPi .

Each patch has a covariance matrixCi and a slippage signatureXi
1...k. Notice that a patch
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may not have any slippable motions (if all eigenvalues ofCi are large), in which case its

slippage signature is empty. The algorithm proceeds as follows:

1. Initialization: Compute a similarity score between each pair of adjacent patches. In

the case of mesh input, adjacency is easy to determine. In the case of point cloud

input, two patches are adjacent if they share any vertices. The similarity score is

based on both the number and the compatibility of the slippable motions of the two

patches. We use a priority queue to store the patch pairs, with the pair that has the

best similarity score at the top of the queue.

2. Patch growing: At each step, we select a pair of adjacent patches that are the most

similar and collapse them into a single patch. The new covariance matrix is computed

from the covariance matrixes of the two patches to obtain the slippage signature for

the merged patch. We then update the similarity score between the new patch and its

neighbors.

3. Termination: Stop aggregating when the similarity score of the pair of patches at

the top of the queue drops below a threshold. We apply a cleaning step to remove any

small patches that may have remained. The resulting set of patches is the segmenta-

tion of the pointset. Each slippable patch can be approximated by a single kinematic

surface.

We now examine the steps of the above algorithm in more detail.

4.4.3 Similarity score

Given two patchesPi andPj (these can be either single points, whose slippage signature

is computed from an initial neighborhood, or merged patches during the running of the

segmentation algorithm), we say that they belong to the same component if:

• Their corresponding covariance matrixesCi andCj have the same number of small

eigenvalues.
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Figure 4.2: Coloring points of a shape consisting of kinematic surfaces based on the number
of small eigenvalues of the region around the point. Points whose neighborhoods are one-
slippable are colored red, and whose neighborhoods are three-slippable are colored blue.
Gray regions correspond to points in neighborhoods with no slippable motions, while green
points are incorrectly classified as being two-slippable (See Section 4.5). The width of the
one-slippable regions depends on the size of the initial neighborhood around each point
(set to 10 points in this example).

• The corresponding slippage signatures are the same, that is we can express the slip-

pable motions ofPi as a combination of slippable motions ofPj and vice versa.

As described in Section 4.4.2, we callλk a small eigenvalue ifλ6
λk

> g for some minimum

“condition number”g. The number of slippable motions for a patchPi is given by the

largestk for which the above condition holds:

s(Pi) = argmaxk{
λ6

λk
> g} (4.7)

This means that the distance between the moving and the stationary copy of the patchPi

changes as leastg times slower in the direction of slippable motions than any other motions.

For a non-degenerate patch (i.e. not a curve), the maximum number of slippable motions is

3. We call a pointset withk small eigenvaluesk-slippable. Figure 4.2 shows a simple object

whose points are colored according to the number of small eigenvalues in a region around

each point. Notice that the planar and the spherical regions are colored the same. This

means that we cannot use just the number of small eigenvalues as the surface descriptor for

segmentation, we need to look at the corresponding slippable motions as well.
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The first test for similarity between patchesPi andPj rejects the patch pairs for which the

number of slippable motions computed according to Equation 4.7 is different.

For the second similarity test, letX1...k andY1...k be the slippage signatures of patchesPi

andPj respectively and letk be the number of slippable components of each patch. Since

the first test was successful,k is the same for both patches. Each component of the slippage

signature is a 6× 1 vector corresponding to a rigid motion. Two slippage signatures are

compatible if the rigid motions of one can be expressed as combination of rigid motions of

the other.

In general, deciding if a given rigid motionM can be expressed as a combination of other

rigid motionsM1 . . .Mk is a difficult problem. The space of all rigid motions ofℜ3, SE(3),

is a curved manifold, which means simple interpolation techniques cannot be applied to

rigid motions [2, 71]. In our case, however, we are dealing with instantaneous rigid mo-

tions, since the eigenvectors of the matrixC correspond to velocities. This means that the

eigenvectors ofC lie in the tangent space ofSE(3), which is flat. As a result we can treat

the components of the slippage signatures as vectors inℜ6. The columns of each slippage

signature form an orthogonal basis for the space of all instantaneous slippable motions of

the corresponding pointset. To answer if two slippage signaturesX1...k andY1...k are com-

patible, we just need to test if each columnX1...k can be expressed as a linear combination

of columns ofY1...k.

Because of noise in the data we will never be able to perfectly express the slippable motions

of Pi in terms of the slippable motions ofPj . Therefore, we need to look at the residual

after the approximation. The amount by which two slippage signatures are dissimilar is

given by the(k+ 1)st singular value of the combined matrix[X1...kY1...k]. In the actual

implementation we need to transform the rigid motions of one patch into the coordinate

system of the other since we applied a shift and scaling in the computation of the covariance

matrix.
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Figure 4.3: Potential segmentation algorithm problem. (a) Two patches that are part of a
shallow cylinder look very similar to (b) two planar patches, especially at early iterations
of the algorithm. The first two eigenvectors, which correspond to translation along the
cylinder (blue arrow) and rotation around the cylinder’s axis (red arrow) match for both
patches. Since the cylinder is shallow, rotation around the patches’s average normal (red
arrow) also has a relatively small eigenvalue, making the patches look like they are two
planes (b). However, we can distinguish this case since the corresponding eigenvectors
will not match. Since classification errors are the motivation for our multi-pass algorithm.

We combine the two similarity tests into one similarity score as follows:

Sim(Pi ,Pj) =

{
0 if s(Pi) 6= s(Pj)

F(σk+1) wherek = s(Pi) otherwise.
(4.8)

wheres is computed according to Equation 4.7,σk+1 is the(k+1)st singular value of the

combined matrix[X1...kY1...k], andF is described below.

We would like the similarity score to increase as the patches become more similar, so the

functionF maps small singular values into high similarity scores. We also useF to map

the similarity scores into the range of values between 0 and 1.F is a Gaussian centered

around 0, whose width determines how different slippage signatures of two patches that are

considered similar can be.
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4.5 Robust Segmentation Algorithm

Using Equation 4.4.3, we can now assign a similarity score to each pair of patches and

run our clustering algorithm. Since the width of the Gaussian inF controls how fast the

similarity score drops when the slippage signatures become different, we can terminate the

algorithm when the similarity score of the next candidate pair of patches drops too low.

However, using Equation 4.4.3 in its present form will result in poor segmentation due to a

number of robustness issues, largely due to incorrectly determining the number of slippable

motions of a patch. We now present an algorithm that is tolerant to such mistakes.

4.5.1 Multi-pass segmentation algorithm

Incorrectly determining the number of small eigenvalues of a patch can affect the similarity

score in two ways. First, if we setg in Equation 4.7 too high, we can miss some slippable

motions for a patch and decide that two patches are incompatible because they have a

different number of small eigenvalues. If we setg too low, we can pick eigenvectors that

are not slippable as part of the slippage signature. This can make patches incompatible

because the non-slippable motions of the patches are not likely to match. Therefore, the

performance of our algorithm depends on how well we identify the number of slippable

components of each patch.

In practice, it turns out that it is difficult to correctly determine the number of slippable

motions of a patch, especially in the early iterations of the algorithm when the patches are

still small, and in the presence of noise in the data. The reason for this is that a small

neighborhood around a point generally looks planar, e.g. looking around a point we cannot

tell if the point should belong to a plane or a cylinder of large radius. In general we cannot

reliably classify which shape the neighborhood belongs to until it grows sufficiently large.

But growing the patch depends on merging it with its neighbors, which is in turn based

on comparing the slippage signatures. For example, if we try to treat two patches that

are part of the cylinder as planar, we are likely to get a bad similarity score from their

slippage signatures, since only two of the three eigenvectors in each slippage signature are
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Algorithm 1 Multi-pass segmentation of a point setP into slippable components.
1: for each pointpi ∈ P do
2: Form patchPi of m vertices (using mesh crawling or nearest neighbors).
3: Form the covariance matrixC according to Equation 4.7 and compute its eigenvector

decompositionC = XΛXT .
4: end for
5: k← 3
6: while k 6= 0 do
7: for each pair of adjacent patches(Pi ,Pj) do
8: Form combined matrix of slippage signatures,[X1...kY1...k], as described in Sec-

tion 4.4.3.
9: Compute(k+1)st singular valueσk+1 of [X1...kY1...k].

10: ComputeSim(Pi ,Pj) according to Equation 4.9.
11: end for
12: Initialize priority queue to empty.
13: Insert all pairs of adjacent patches into the priority queue in order of decreasing

similarity score.
14: (Pi ,Pj) =EXTRACTMAX(pqueue)
15: while Sim(Pi ,Pj) >M INSIMILARITY do
16: Pi j =MERGE(Pi ,Pj)
17: for Pk ∈ neighbors(Pi) ∪ neighbors(Pj) do
18: Remove pair(Pk,Pi) (correspondinglyPj ) from the priority queue.
19: ComputeSim(Pk,Pi j ) according to Equation 4.9 and insert pair(Pk,Pi j ) into the

priority queue.
20: end for
21: (Pi ,Pj) = EXTRACTMAX(pqueue)
22: end while
23: k← k−1
24: end while

going to match well (See Figure 4.3). This is the general ”chicken and egg problem” of

segmentation [106]: we cannot make a decision about a pointset until we know what shape

it belongs to, that is until we have segmented the input. Therefore, instead of trying to pick

a correct value ofg that will result in fewest misclassifications, we will instead make our

algorithm robust against misclassifying shapes at the early stages of segmentation.

Our solution is based on the observation that anyk-slippable shape is also(k−1)-slippable.

Therefore, instead of comparing just thek-column slippage signatures of the two patches,
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we should also compare the slippage signatures made from the first(k−1) eigenvectors

etc. The best of the (at most three) similarity scores is assigned as the merge score for the

two patches. In the case of misclassifying the cylindrical patches as planar, the first two

eigenvectors of each patch will form the basis for the slippable motions of the cylinder,

while the third will be the one that belongs to the plane (rotation around the normal at the

center of the patch). In this case, comparing the slippage signatures withk = 2 will give a

high similarity score.

However, picking too few components as slippable motions of a patch can result in undesir-

able segmentation. To illustrate, suppose we have a shape consisting of a cone and a cylin-

der, which share an axis of revolution. There are two valid segmentations into slippable

components: both the cone and the cylinder are in one component, which is one-slippable,

with the rotational motion; or there are two components, a two-slippable cylinder and a

one-slippable cone. The input clearly consists of two different geometric shapes, so we

would like the segmentation determined by our algorithm to reflect that.

We will do the segmentation in several passes. First, we try to merge together all three-

slippable components. There may be many patches that are classified as three-slippable

because the patch size is not large enough to correctly determine the number of slippable

motions. However, the only patches that will be merged are those whose slippable motions

are compatible, which are the patches that belong to planar and spherical components of

the input. In the second pass, we merge all patches that are classified by the size of their

eigenvalues asat least two-slippable, i.e. we allow a patch to ”drop” a slippable motion. In

comparing the slippage signatures of such patches, we only use the first two eigenvectors

of each covariance matrix as the slippage signature (i.e. the largest slippable eigenvector

is dropped). This handles the case of two-slippable patches being classified as planar as in

Figure 4.3. In the final pass, we merge all patches that are at least one-slippable, using the

first eigenvector as the slippage signature for each patch. In practice, we repeat this process

several times, every time making the width of the Gaussian inF larger to accommodate

more noise as patches become larger. Finally, since we tend to misclassify patches more

often at the early stage of the segmentation, we do not allow patches that consist of a large

number of points to drop slippable motions (this prevents the case of merging the cone with
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the cylinder as described above). Our new similarity score is as follows:

Sim(Pi ,Pj) = F(σk+1) ·G(Pi ,k) ·G(Pj ,k). (4.9)

Here, the functionG acts as a confidence multiplier for the similarity score. The simplest

form of G is just a cutoff. At each iteration of the algorithm, letk be the minimum number

of slippable components that we are considering. Then

G(Pi ,k) =


1 if λ6

λk
≥ g and λ6

λk+1
< g

1 if λ6
λk+1
≥ g and|Pj |< N

0 otherwise

(4.10)

HereN is the desired size of individual segmented components. Notice thatG also prevents

the algorithms from merging patches which have different number of small eigenvalues, so

we do not need to explicitly test for the number of small eigenvalues of a patch. Algorithm 1

contains the pseudocode for the multi-pass segmentation algorithm.

4.5.2 Initial patch size selection

The last important parameter that affects the robustness of our algorithm is the size of the

initial neighborhood formed around each patch. As described above, we do not need to

reliably determine the number of small eigenvalues of the patch, but if two patches belong

to the same component, we would like the corresponding eigenvectors to match within the

threshold set byF .

In practice, we noticed that the algorithm is most sensitive to the value of initial patch size

m, as opposed to the value of the condition numberg. Therefore, selecting the right patch

size is important for good segmentation.
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Unfortunately, this parameter is difficult to determine analytically. Therefore, in our imple-

mentation, we determine the correct initial patch size by the quality of the final segmenta-

tion. If the initial neighborhood size is too small, the eigenvectors in the slippage signature

of each point will not match the point’s neighbors, and the algorithm will not be able to

aggregate large patches. The final output will be over segmented: there will be a large

number of components, with only a few points in each. Therefore, if the final segmentation

has too many components, we increase the value ofm and try again.

4.5.3 Post-processing steps

After the completion of the algorithm, it is likely that a number of regions remains that

are not part of any slippable component. One reason of this is that those parts corresponds

to areas of the shape that are not slippable. However, often there are regions in the input

that are actually part of a slippable shape, but due to noise did not get clustered correctly.

We therefore allow large slippable regions to absorb their small neighbors, as long as the

overall region remains slippable.

We also apply some simplification to the border between regions. The exact border between

two components depends on the neighborhoods size,m, that was used in the initial point

classification. For example, in Figure 4.2, a larger neighborhood size would increase the

width of the one-slippable regions. While we may need larger size ofm for the initial

clustering, we often prefer the points to belong to a more slippable component at the end of

the segmentation. Therefore, when a point can be classified as belonging to two different

patches, as happens near the border between two regions, we assign the point to the more

slippable region. In a way, we allow the more slippable regions to eat into the less slippable

regions, but only as long as no regions become disconnected.

4.6 Segmentation Results

In this section, we show the results obtained by our segmentation algorithm.
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Figure 4.4: Segmentation of a simple model into slippable components. Grey areas corre-
spond to stable regions. Notice that even through the spherical part and planar parts were
classified as having the same number of small eigenvalues in Figure 4.2, since their slip-
pable motions are incompatible with each other, they are segmented into separate regions.

Figure 4.4 shows the final segmentation of the shape in Figure 4.2. The shape consists

of a cube with a hemisphere attached to one of the faces. The final segmentation consists

of three-slippable and one-slippable regions, as well as a number of stable (not slippable)

corners. The planar faces and the sphere are segmented into separate components, since

even though they have the same number of slippable motions, the motions themselves are

different. The segmentation also includes one-slippable components that correspond to the

edges between the three-slippable regions. The width of these components depends on the

size of the initial neighborhood that is built around each point. Our second cleaning step

thins such edge pieces as long as they do not fall apart into disconnected regions. In our

application, the input to the algorithm was given as a mesh. Therefore, we used the connec-

tivity of the input to prevent the segmented regions from forming disconnected components

during thinning. In the case when input data is given without any underlying connectivity,

more sophisticated methods for preserving topology of the regions are required [27].

Many segmentation algorithms perform edge detection as the first step of segmentation, us-

ing the assumption that different regions in the input are separated by sharp edges [9]. Our

algorithm does not need the edge detection step, and in fact can find boundaries between

slippable regions even if no sharp edge is present in the data. Figure 4.5 shows a shape

containing a cylindrical part that smoothly joins to a plane, which are correctly identified

by our algorithm.
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(a) (b)

Figure 4.5: Segmentation without sharp edges. (a) The back of the fandisk model contains
a cylindrical region (blue) and a planar region (red). Even though there is no sharp edge
between them, our segmentation algorithm is able to recognize the two regions. (b) Outline
of the bottom of the model, showing the shape of the cylindrical and planar region.

(a) (b) (c) (d)

Figure 4.6: Segmentation of a mechanical part consisting mostly of cylinders and sur-
faces of revolution. (a) Initial classification of neighborhoods into one-slippable (red),
two-slippable (green), and three-slippable (blue). Notice that some cylindrical neighbor-
hoods are incorrectly classified as planar. (b) Segmentation obtained by our algorithm. (c)
View of the bottom of the part. Notice that the join between the planar bottom and the
cylindrical side is captured as a separate rotationally symmetrical component. (d) View of
the top of the part.

Figure 4.6 shows the segmentation of a mechanical part consisting mostly of cylinders

and surfaces of revolution. The input pointset contains 20,000 vertices. The initial patch

classification of a neighborhood of 30 vertices is shown in Figure 4.6(a). The size of the
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(a) Top view (b) Bottom view

Figure 4.7: Segmentation of a part consisting of planar and cylindrical components. Edges
between the planar components and between the planar and cylindrical components are
captured as separate regions.

neighborhood was not large enough to correctly classify all vertices that belong to the

cylindrical regions, as indicated by the blue coloring (corresponding to the three-slippable

regions) at the lower part of the shape. The misclassified vertices were not aggregated

in the first pass of the algorithm, since treated as planes, their similarity score was too

low. However, in the second pass, they were correctly treated as two-slippable regions

and clustered. The results are shows in Figure 4.6(b)-(d). Notice that the segmentation

captures the edge between the planar bottom part and the cylindrical side part as a separate

one-slippable component. The fact that the algorithm classifies sharp edges as separate

components can be advantageous in reverse engineering. Since sharp edges are generally

hard to capture accurately in laser scanning, this component is useful as an indicator of the

area that is likely to contain a sharp edge. In the construction of a CAD model from this

input pointset, this component can be replaced by a surface blend [9].

Finally, Figure 4.7 shows segmentation of another mechanical part, consisting of a larger

number of slippable components. The model consists of 40,000 points, and the input neigh-

borhood size was set to 30 vertices. After the initial segmentation, the post-processing pass

thinned the one-slippable components to the maximum width of 5 vertices.
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4.7 Summary

In this chapter, we continued the theme of analyzing intrinsic surface properties by devel-

oping a surface descriptor based on surface invariance under rigid motion, called surface

slippage. Although we took a digression from the topic of registration, the slippage surface

descriptor was in fact inspired by the behavior of surfaces during rigid registration, a topic

we will present in the next chapter.

Since slippage can be computed for small patches as well as for entire surfaces, and is able

to detect and classify common surfaces found in scans of mechanical parts, we developed

a segmentation algorithm based on the slippage surface descriptor. Even our fairly simple

greedy implementation was able to successfully segment mechanical parts into kinematic

components without any user input. We expect that using a more sophisticated clustering

technique such as [52] with our surface descriptor can lead to even better results.

Several directions are possible for future work. In particular, we observed that surface

slippage is dependent on the size of the pointset or neighborhood for which it is computed.

On the theoretical front, it should be possible to integrate the slippage descriptor with the

persistence framework in [27], to achieve better understanding of the underlying shape.

On the practical side, there is a significant amount of work in shape retrieval from large

databases of mechanical parts [83, 81]. We expect that surface slippage can be a useful tool

for such applications.



Chapter 5

Stable Sampling for Local Registration

”If you wish to drown, do not torture yourself with shallow water.”

–Bulgarian proverb

The slippable shapes introduced in the previous chapter often require special care during

registration. If the two scans being registered come from some slippable shape, there will

not be a unique transformation that aligns them. In this chapter, we show that rigid reg-

istration of slippable scans suffers from the problem of shallow local minima in the error

landscape. In particular, local optimization algorithms such as ICP encounter this problem

and as a result converge slowly, find the wrong pose, or even diverge, especially in the pres-

ence of noise or miscalibrations in the input data. Using the slippage analysis introduced in

the previous chapter, we develop a method for selecting the input points for ICP that min-

imizes the uncertainty in the resulting alignment by choosing samples that best constrain

potential slippable motions. It is straightforward to apply slippage analysis to the case of

pairwise registration. In this case, instead of considering how the shape slides against itself,

we examine how the data shapeP slides against the model shapeQ.

78
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5.1 Geometric Constraints for Local Registration

Local registration, as the name implies, assumes that the model and data surfaces are ap-

proximately correctly aligned and performs a local refinement of the alignment to obtain

the final registered pose. We reviewed the basics of local registration in Chapter 2, where

we noted that local registration is often performed by algorithms based on performing local

optimization in the space of aligning transformations. The quality of the final pose between

the two surfaces, therefore, depends on the number of local minima in the error landscape

of the optimization problem. In this chapter we show that registration of slippable or nearly-

slippable surfaces has error landscapes with shallow global minima and many local minima,

making such surfaces difficult to register using standard local optimization methods.

Most of the optimization-based local registration algorithms are based on the popular ICP

algorithms and its variants. In Chapter 2 we observed that the choice of distance metric

that is used in the minimization highly affects the number of local minima in the error

landscape, and that certain error metrics have larger funnels of convergence. In particular,

it has been shown that when two surfaces are close to each other, the point-to-plane error

metric of Chen and Medioni is the best approximation of the true distance between the

surfaces. We will focus on this case here, since we assume that a good estimate of pose is

available from a global alignment algorithm, such as one described in Chapter 3.

We again start with a set ofn pairs of points in correspondence(pi ,qi), obtained for ex-

ample by the algorithm in the previous chapters, or by the closest point search during an

iteration of ICP. The point-to-plane error metric and the corresponding minimization prob-

lem are defined as follows:

Eplane= min
R,t

n

∑
i=1

((Rpi + t−qi) ·ni)2, (5.1)

whereni are the normals to the surfaceQ at pi . The tangent plane at eachqi gives the first

order approximation to the actual surface at that point.

If the rotation that minimizesEplaneis small (which is the case when the surfaces are already
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close to the correct alignment), Equation 5.1 can be linearized by linearizing the rotation

matrixR. Using the small-angle approximation for rotations, we have:

R =


1 −α β

α 1 −γ

−β γ 1

 (5.2)

which results in the following linear least squares problem:

Eplane= min
c,c

n

∑
i=1

((pi−qi) ·ni +c· (pi×ni)+c·ni)2. (5.3)

The minimum of Equation 5.3 is found as the solution of a linear systemCx = b. This

equation is virtually identical to the slippage constraint Equation 4.5 in Section 4.2 except

for the presence of the residual vector:

b =−


(p1−q1) ·n1

. . .

(pn−qn) ·nn

 (5.4)

The matrixC is the Hessian of the minimization problem, and it encodes how much the

alignment error changes when the pointsetP is moved from its optimum alignment toQ

(where, ideally, the error is zero) by a transformation[∆cT ∆cT ]:

∆E = [∆cT ∆cT ]C

[
∆c

∆c

]
(5.5)

As we saw in Chapter 3, certain types of geometry can lead to a Hessian that is not full

rank. While this was a desirable property in the previous chapter, since it allowed us to

identify slippable surfaces in the input point cloud, such surfaces can cause problems during

registration.
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5.1.1 Stability of the Solution

Let’s examine what happens when the Hessian matricC in not full rank. There is no

unique minimizing transformation to alignP to Q since they are slippable surfaces, so any

transformation in the null space ofC can be applied to the solution without changing the

point-to-plane distance between the surfaces. In effect, the area in transformation space has

a plateau around the optimum solution.

The problem arises when the input surfaces are mostly slippable, but actually contain

enough features to constrain the slippable transformations. An example is two planar re-

gions with indentations or incisions. Examples of such input are shown in Figure 5.1. If

the size of these ”lock and key” features is small, and only a subset of all the points are

used in each iteration of the alignment algorithm, most of the points that enter the mini-

mization will come from areas that are planar. If the data has no noise, the small number

of points from the ”lock and key” areas should be sufficient to resolve the ambiguity in the

transform, and bring the surfaces into alignment. In reality, noise in the point positions and

normals in the flat areas will overwhelm the contribution of the points sampled from the

features, and the algorithm will fail to converge. In transformation space, there is a very

shallow local minimum around the optimum transformation, which causes the algorithm to

converge slowly. Additionally, the noise in the input causes this local minimum to have a

smaller funnel of convergence.

There are several ways to approach the problem of shallow error landscape and false local

minima in the presence of slippable surfaces. We can try to reduce the noise by smoothing

the meshes. This can have an undesirable side effect of smoothing away the features that

provide the constraints. We can try to use other constraints, such as color [10, 107]. We

can also add more points to be used for minimization of Equation 5.3. Just adding more

points will not improve convergence, since they are as likely to come from the flat areas as

from the parts of the meshes that provide the constraints. We would like, therefore, to be

able to detect whether the input data has any rotational or translational slippage, identify

if there are any features that can better constrain the slippable transformations, and sample

those features more densely.
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5.2 Improving ICP’s Stability Through Sample Selection

In this section we describe a greedy algorithm for selecting samples from the input meshes

or point clouds in a way that will constrain the transformations that are close to slippable

under the uniform sampling model. Our approach is based again on the idea of examining

each surface separately, before it enters the registration. We will identify the potentially

slippable transformations using the method in Section 4.2. Then, we will identify those

points in each input mesh which best constrain each slippable transformation. These are

the ”lock and key” features that will help bring the mesh into alignment when it enters the

registration pipeline. Our sampling algorithm will then try to distribute the points uniformly

among the features, instead of just uniformly sampling the surfaces.

The two techniques that are the most similar to our approach are those of Simon [99]

and Rusinkiewicz [85]. Simon developed several hill climbing algorithms for selecting

a set of points on one of the input meshes that has the best potential for constraining all

transformations when another mesh is aligned with it. These algorithms are especially

well-adapted for dealing with noisy data, but do not address the problem when matching

areas are only a subset of the input meshes. They are also designed for cases when only

a very small number of points is required for alignment, and consider the input meshes in

pairs, instead of pre-processing the meshes separately. As a result, they are too expensive

to be used when large number of points are to be selected for minimization.

Rusinkiewicz [85] proposed a technique called normal-space sampling that is aimed at

constraining translational sliding of the input meshes. When drawing samples from a mesh,

the algorithm tries to ensure that the normals of the selected points uniformly populate the

sphere of directions. The algorithm can be viewed as trying to equalize the eigenvalues of

eigenvectors ofC that correspond to translations. We will use a similar approach to create

a basis all six eigenvectors ofC.
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5.2.1 A Measure of Stability

Since slippage is the result of shallow error landscape around the global minimum which

is the solution of Equation 5.3, we can use the condition number of the HessianC to

detect potential slippable transformations. Notice that we do not actually need to find the

optimum alignment to detect slippable transformations, since the matrixC is composed of

just points ofP and normals ofQ. Let x1 . . .x6 be the eigenvectors ofC andλ1≥ . . .≥ λ6

be the corresponding eigenvalues. As discussed in Section 4.2, if any of theλk are small

compared ofλ1, the corresponding eigenvector indicates a slippable transformation. Our

measure of stability of ICP’s solution will be the condition number ofC: c= λ1
λ6

. We would

like the Hessian to be well-conditioned, so the goal of our sampling strategy is to keepc as

close to 1 as possible.

Although the Hessian of Equation 5.3 includes points from bothP andQ (through their

normals), we would like to be able to perform the slippage analysis and the sampling us-

ing each mesh separately. In the context of an actual registration problem each meshP is

usually aligned against severalQ’s, so performing the sampling for each pair can become

expensive. It turns out that looking at justP alone is the correct approach, since we only

want to add those points which will pull the meshes into alignment that is the global op-

timum. That is, we want to make the error landscape around the global minimum steep,

while keeping the landscape shallow around the local minima to allow the algorithm to

escape. The global minimum is achieved when the points inP align exactly with their cor-

rect mates inQ. In this case the normals in Equation 5.3 are the same for pointspi andqi

(since we assume that the two meshes are very similar in their area of overlap). Therefore,

to constrain the correct transformations, we should analyze and constrain the covariance

matrix that is computed using both points and normals from the meshP. This is exactly the

same as the matrix in Equation 4.7, we will refer to it asCP to emphasize that although the

registration consists of bothP andQ, the sampling is done with respect to justP. Similar to

Section 4.2, we will pre-normalize all the points inP so that their center of mass is at 0 and

the its average radius is 1. This has the effect of equalizing the magnitude of the rotational

and translational contributions of each point in the computation ofCP.
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5.2.2 Optimizing the Measure

We compute the covariance matrixCP according to Equation 4.7 and a uniform subset of

points fromP. We usually select 10% of the points for the estimation step. We perform

the eigenvector decomposition ofCP and obtain the eigenvectorsx1 . . .x6. In the previous

chapter, we were interested in pointsets for which this matrix had a large condition number,

since those corresponded to slippable surfaces. Here, since slippable surfaces result in

slow convergence of the registration algorithm we instead want to create a pointset whose

condition number is close to 1, i.e. as un-slippable as possible. We use the eigenvectors to

compute a set of points that will result in a stable solution for the registration ofP andQ

as follows:

1. LetSbe the initial set of candidate points. Ideally,Swill contain all points onP that

belong to the overlap area. We will discuss how to obtain the setS later. Form a

6-vectorvi = [pi ×nP
i ,nP

i ] for each point inS. Notice that herenP
i is the normal of

the pointpi as opposed to the normal of its closest point mate.

2. Form six sorted listsL1 . . .L6. Each listLk contains the vectorsvi sorted in decreasing

order based on the magnitude of the dot productvi · xk. The magnitude of this dot

product determines how much a given point constrains each eigenvectorxk. Hence,

points in each list are sorted in order of decreasing contribution to geometric stability.

3. We now try to equally constrain all eigenvectors ofCP. We will maintain an estimate

of how each eigenvector is constrained by the already chosen points. Lett1 . . . t6 be

the sums of(vi ·xk)2 over the already chosen points.(vi ·xk)2 is the amount of error

incurred if the pointpi is moved from its optimum position by the transformationxk.

Therefore, we can think of these totals as our current estimate of the eigenvalues. We

choose the next point from the sorted list that has the smallest total. This corresponds

to the most unconstrained eigenvector.

4. Letp be the chosen point. We compute(vi ·xk)2 for each eigenvectorxk and update

the running totals.
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Notice that this sampling strategy does not take into account the meshQ. We can think of

this strategy as constraining the all transformations whenP is aligned to a copy of itself in

the overlap region. Assuming that we are aligning two ideal, overlapping scans of the same

object, this exactly corresponds to constraining the covariance matrix when we reach the

global minimum. Once the points are sampled fromP, we can compute their closest points

in Q. We then proceed with the rest of the ICP algorithm as usual, now using the normals

from Q for the minimization of Equation 5.3.

The selection process above has to be performed for each input pointset or mesh, and uses

all of the available points. Since nearest-neighbor search step in ICP can be expensive,

to save time we often want to select only a subset of points inP to register withQ. In

this case, processing all points of the input only to select a small subset of them leads to

wasteful work. In the next section, we present several acceleration techniques that make

the selection process take time proportional to the number of points that are selected from

P.

5.3 Accelerations and Enhancements

The most expensive step of the sampling algorithm is the Step 2, which sorts all points

with respect to their product with each of the eigenvectors ofCP computed in Step 1. To

reduce the cost of these sorts, we instead sort the points into a specified number of bins.

The points are left unsorted within each bin. Although not optimal, this still produces a

good sampling, and the approximation error can be bounded by the size of the bins. Thus,

the second step can be done in time proportional to|P|.

The sampling strategy only uses the meshP to form the covariance matrix. Although

this has the effect of assuming that the entire meshP will lie in the overlap area, it is

also a valid sampling strategy if the ”lock and key” features are spread relatively evenly

over the surface ofP. By making this assumption, we are able to process each mesh in

the registration pipeline separately, instead of performing the covariance computation and

sampling for all pairs of meshes under registration.
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If the feature distribution is highly uneven, or if extra processing is allowed to compute to

covariance matrix for each pair of meshes, we can modify the steps of the above algorithm

to compute the slippable motions of the overlap area betweenP andQ. We need to perform

the overlap computation at two points in the algorithm: first to computeCP we should use

only points from the part ofP that overlaps withQ. Second, we should run the sampling

algorithm only on points that belong to the overlap area.

The overlap can be computed only approximately, since accurately determining the part of

P that overlaps withQ is exactly the goal of the registration algorithm. A common heuristic

used in the local registration algorithms such as ICP, whereP andQ are already close to

their final registered pose, is to compute for each pointpi the distance to its closest point

in Q. Points for which this distance falls below a certain threshold are assumed to lie in

the approximate overlap area. Even using efficient nearest-neighbor data structure such as

a k-d tree this can be expensive for large meshes. Additionally, it can be wasteful to test

all point in P for overlap if we only intend to use a small set of points for computing the

aligning transform in each iteration of ICP.

To avoid testing all points inP for overlap withQ during the sampling algorithm, we

implemented the following simple improvement in our system. LetSP be a set of points

randomly selected fromP. The size ofSP needs to be large enough to reliably determine

the covariance matrix for the overlap region. The number of points depends on the size of

the overlap between the two meshes, the resolution of the mesh, and the magnitude of the

noise in the input data. In our experience, for meshes that overlap by 25% the number of

points necessary to reliably compute the eigenvectors is on the order of several hundred.

After performing the closest point test for this small set of initial points to discard points

that fall outside the approximate overlap area, we useSP to compute the covariance matric

CP and its eigenvectors.

The real source of inefficiency for computing the sampling for pairs of meshes comes in

having to test all points ofP for overlap withQ during the sorting step of the sampling

algorithm. Instead, we process all points ofP regardless of whether they are in the overlap

area. This allows us to delay the overlap test until Step 3. At that time, we can perform the
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overlap test using the closest point search. Ifpi does not belong to the overlap area, we do

not update the totals and choose the next point. This method is more efficient than using the

brute-force approach of testing all points for overlap (if we use fast sorting), since we only

perform as many nearest-neighbor tests as dictated by the sampling rate of our algorithm.

Additionally, we can cache the computed closest points, and use them for minimization of

Equation 5.3. In practice, this makes the amount of wasted work inversely proportional to

the overlap area. With this implementation, ICP using our sampling strategy takes about 5

times longer per iteration than ICP using uniform sampling when the input meshes overlap

by half their area.

5.4 Results

5.4.1 Using Stable Sampling for Pairwise Registration

We have applied our sampling algorithm to several types of synthetic and real data.

The first test case is two planar patches with two grooves forming an X (Figure 5.1(a)).

Each patch has independently added Gaussian noise. This test case is similar to the one

used by Rusinkiewicz [85] for normal-space sampling. Figure 5.1(b) shows the conver-

gence rates for aligning these patches using uniform sampling, normal-space sampling,

and our covariance-based sampling. Both normal-space and covariance sampling are able

to find the correct alignment, while uniform sampling does not align the grooves cor-

rectly. Normal-space sampling takes more iterations to converge since distributing the

points equally throughout the sphere of normals puts an equal number of points in the flat

areas of the patches as it does in the grooves. Covariance sampling instead picks only those

points that form a good basis for the normals.

Figure 5.2 shows the points picked by the sampling algorithm to constrain the eigenvectors

of the covariance matrix. To simplify the visualization, we use a smaller version of the

incised plane model and assume that the entire mesh is within the area of overlap. The

initial covariance analysis reveals three unstable eigenvectors with approximately equal
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Figure 5.1: (a) Two planar patches with 1 mm deep grooves. Each patch has indepen-
dently added zero-mean Gaussian noise with variance 0.05 mm. Initial condition number
is 66.1. Condition number after selecting 30% of the points with our algorithm is 3.7. (b)
Convergence rates using ICP with uniform, normal-space, and covariance sampling.

(a) (b)

(c) (d)

Figure 5.2: Points picked by our sampling algorithm for a patch with two grooves. (a)
Points constraining two unstable translational eigenvectors. (b) Points constraining the
unstable rotation. (c)-(d) Two remaining rotations are stable so they only require a few
points. The eigenvector corresponding to translation inz is well constrained by the already
picked points and does not contribute to the sampling.
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eigenvalues: two translations in thexy plane and rotation aroundz. Notice that most of the

points are picked from the areas in the grooves, since they are the ones that constrain the

unstable eigenvectors. A few points from the corners are picked to additionally stabilize

the rotations around the diagonals.

Figure 5.3 shows two spherical patches with grooves and noise. Here, covariance sampling

in the only method that finds the pose that correctly aligns the grooves (Figure 5.3).
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Figure 5.3: (a) Two spherical patches with 1 mm deep grooves. Each patch has indepen-
dently added zero-mean Gaussian noise with 0.05 mm variance. This dataset has three
slippable rotations. Initial condition number is 26.9. Condition number after selecting 30%
of the points with our algorithm is 4.1. (b) Convergence rates for “incised sphere” meshes
for uniform, normal space and covariance sampling

We have also applied our algorithm to real scan data. Figure 5.4(a) shows the sampling of

two scans from the Forma Urbis Romae dataset [58]. Similar to the “incised plane” ex-

ample, these meshes exhibit translational sliding in the plane and rotational sliding around

the vector perpendicular to the plane of the meshes. Most of the samples are placed into

the incisions on the scans to constrain the scans from sliding and rotating in their common

plane. It took ICP 25 iterations to converge to the correct alignment (Figure 5.4(c)) from

a rough manual positioning of the scans using our sampling strategy. Each input mesh

contains about 300,000 points, and the algorithm was subsampling 10% of the points from

each mesh to be used in alignment. With these settings, each iteration of ICP using our

stable sampling took 5 seconds on a 400MHz Pentium II. One iteration of ICP using uni-

form sampling took 1.5 seconds, however when started from the same position, uniform
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(a) (b) (c)

Figure 5.4: Aligning two scans of Forma Urbis Romae fragment 033abc. (a) Points selected
by our sampling strategy are in black. Notice that in the outlined region there are relatively
fewer constraints to prevent horizontal sliding than vertical sliding. (b) Therefore uniform
sampling cannot align the vertical grooves in the outlined region as evidenced in this Z-
buffer rendering of the two meshes by the fact that the vertical grooves are obscured. (c)
Stable sampling produces the correct alignment making all the grooves visible.

sampling is unable to correctly align the vertical grooves (Figure 5.4(b)).

5.4.2 Using Stable Sampling in a Multi-view Registration System

In most 3D scanning systems, pairwise registration is usually followed by a multi-view

global relaxation algorithm [80, 86], which spreads the accumulated alignment error over

a set of views. Since a single mesh usually has several partners in this set, poor pose for

one mesh can easily be propagated to its partners. Even if two views are aligned correctly,

a shallow error landscape around the minimum can cause them to be pulled apart during

global relaxation. Finally, if the output surface model is to be reconstructed from the input

views by some sort of averaging [23], misaligned features can become blurred.

The stable sampling algorithm presented above has been integrated into the multiview reg-

istration system of Pulli [80]. The algorithm is based on using the point-pairs from the

pairwise registration step to distribute the accumulated alignment error among a set of

scans. In this case, using the point-pairs obtained by stable sampling instead of regular uni-

form sampling results in a lower residual error over the entire system. In particular, meshes

tend to ”hold together” better, especially in areas which are rich in features. This allowed

the scans to slide in areas where there were few features, while preserving the alignment
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(a) (b)

Figure 5.5: A visualization of residual error in the overlap portion of the pair of scans
in Figure 5.4 after they and their partners have been processed by Pulli’s global registra-
tion [80]. Meshes in (a) were aligned using uniform sampling. Meshes in (b) using our
geometrically stable algorithm. Error is in mm, black corresponds to 0, white to 1. The
maximum error in (a) is over 1 mm, while the maximum error in (b) is 0.3 mm.

in feature rich areas. Figure 5.5 shows the residual error between the pair of scans from

the Forma Urbis dataset examined above after the entire set of views has been processed

by the global relaxation algorithm. Scans aligned with uniform sampling (Figure 5.5 (a))

have been pulled apart by as much as a millimeter, while those aligned by our algorithm

(Figure 5.5 (b)) stayed together.

Finally, slippage analysis has been used in a multi-view non-rigid alignment systems by

[49, 14] to determine featureless areas of the input scans. Both of the methods are based

on subdividing the input meshes into small patches, which are assumed to be rigid. The

patches are registered using rigid registration and merged together using a surface recon-

struction algorithm in [49] or by warping the original input mesh to conform to the sub-

divided and registered patches using thin-plate splines in [14]. Slippage analysis is used

to decide when to no longer subdivide a piece because it will not have enough constrain-

ing features to result in a correct rigid registration. Figure 5.6 shows the results of the

dicing-based non-rigid alignment using the method in [49].

5.5 Limitations

The main limitation of the above algorithm is that the sampling cannot differentiate between

points that come from features and points that look like features because they are the result

of noise in the data. Since the algorithm prioritizes the points based on their influence of
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Figure 5.6: Results of dicing-based nonrigid registration algorithm using stability analy-
sis [49]. Top: the lips exhibit a gross misalignment of 1.9 mm due to warp from incorrect
scanner calibration, as shown by a depth plot across the highlighted segment. The mis-
alignment results in surface irregularity after the final mesh is obtained using [23]. Bottom:
using dicing and stability analysis the artifacts are removed.

the covariance matrix, it is possible that it can favor areas with significant noise, since the

points there can look like good features for the algorithm to sample.

If the size of the features is large relative to the magnitude of the noise, applying simple

smoothing the input data before applying the sampling can eliminate the selection of noisy

points. However, if the size of the features is too small, or if the meshes are smoothed

too much, the algorithm can still fail. Figure 5.7 shows success and failure cases of our

sampling algorithm in the presence of noise.

Several more sophisticated approaches to the noise problem are also possible. Recently,

feature-preserving smoothing methods have been developed [32, 51, 26], which produce
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(a) (b)

(c) (d)

Figure 5.7: Effect of noise on covariance sampling. (a) A noisy patch with a cross in the
center. The width of the grooves, indicated by black arrows, is 10 mm, the depth is 1 mm,
the mean height of the noise is 0.2. Since the groove is shallow, the normals of points
in the groove are comparable to normals of the noisy flat areas and the algorithm cannot
distinguish between features and noise. (b) Performing 6 iterations of simple smoothing by
averaging neighbors removes most of the noise but keeps the feature. (c) A similar patch,
but the width of the groove is only 1 mm. (d) Since the size of the feature is comparable
to the size of the noise, smoothing removes the noise and most of the feature, which means
all areas of the patch now look identical, and covariance-based sampling fails.

significantly better results than simple Gaussian smoothing above. These methods can also

be combined with a persistence framework in [27], to select points that are consistently

picked as features through several levels of smoothing.

The implementation of the algorithm as described above has been largely aimed at aligning

the scans from the Forma Urbis Romae dataset [58], which are mostly flat with groove-like

features. As a result, the algorithm suffers from a limitation that by always picking the best-

constraining points some areas of the input can be completely devoid of samples. Since the

features are quite evenly distributed in our dataset, this was not a problem in our case. In
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more difficult cases, an implementation based on importance sampling should be used. For

example, one can sample directly from the space of all normalized 6-dimensional vectors,

which would still pick out the features but also distribute some samples in other areas of the

input. This approach is similar to the implementation of normal-space sampling in [85].

5.6 Summary

In this chapter we used the slippage analysis to develop a point selection strategy that im-

proves geometric stability of the well-known Iterated Closest Point algorithm. We showed

that slippable surfaces which lack any ”lock and key” features have a plateau in the error

landscape of the distance function, which means they cannot be aligned uniquely. When

the input data has some features which should provide constraints for the alignment, but

is close to slippable, the noise in the normals and point positions can overwhelm the con-

straints coming from the available features, which can lead to slow convergence of the

ICP.

By performing slippage analysis of the data mesh, we were able to detect the cases when the

input surfaces have only a few constraining ”lock and key” features. We then developed a

sampling strategy that selected from the data shape only those points which would provide

aligning constraints, while avoiding noisy featureless areas.

While we only address the stability of pairwise alignment of meshes or point clouds in this

chapter, a similar stability analysis can be applied to a larger collection of range images,

e.g. during multi-view registration. The slippage analysis will need to be performed on the

entire system, with points from all pairs of scans used in the computation of the covariance

matrix to identify the potentially weakly-constrained inputs. Point selection for maximiz-

ing stability of a large set of scans is substantially more difficult than the pairwise step,

since we have to consider how sliding of a single scan pair will affect the entire system.



Chapter 6

Conclusions and Future Work

”Would you tell me which way I ought to go from here?” asked Alice.

”That depends a good deal on where you want to get,” said the Cat.

”I really don’t care where” replied Alice.

”Then it doesn’t much matter which way you go,” said the Cat.

–Lewis Carroll

6.1 Summary

In this thesis, we examined several problems in geometry processing that deal with shape

similarity, with the main focus on pairwise range image registration. We developed an

algorithm for global alignment of two surfaces without relying on an initial estimate of their

relative position and an improved local registration algorithm that can efficiently register a

surfaces without many constraining features.

The overall theme of our approach to pairwise registration has been to first analyze each of

the two input surfaces separately, as if it was being matched to a copy of itself. Since both

surfaces come from scanning of the same physical object, they have to be similar across

95
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their overlap area and we could gain insight on how a given surface will perform in a regis-

tration problem without having to know what it is being registered to. To characterize local

surface geometry in a transformation-independent manner, we developed several new sur-

face descriptors. The integral volume invariant captures local mean curvature information

around each point in a multiscale and noise-robust way. The local slippage property char-

acterizes local invariance of a surface patch under a rigid transformation. We used these

surface descriptors to select feature points which were then used in pairwise registration.

The ”feature analysis” theme of this work has focused of selecting points on the input

surfaces in such a way as to make the overall registration problem easier. An integral

volume invariant combined with persistence was used to select a small set of unique feature

points and their potential correspondences. Since the feature points were selected from

areas which were somehow salient with respect to the surface descriptor, which ensured that

the resulting correspondence search space is not very large and can be explored efficiently.

The local slippage property gives insight into the local error landscape of the registration

problem around the globally best alignment. Slippage was used to select feature points in

the local registration algorithm in a way that improved its convergence rate, especially in

cases when the input data contains only a few areas with distinctive geometric information.

A perhaps somewhat unexpected use of the local slippage property was its application to

reverse engineering. Since many machined parts consist of surfaces that are invariant under

some rigid motion, known as kinematic surfaces, the local slippage descriptor was imme-

diately applicable in a segmentation algorithm to decompose a point cloud into a set of

kinematic components. This is not completely surprising however, since surface segmen-

tation can be thought of as another example of the similarity problem, in this case within

just a single object. The goal of many segmentation algorithms is to decompose an object

into parts where all points within a single patch are somehow similar (e.g. approximated

by a single kinematic surface). By posing segmentation as a similarity problem, we were

also able to use our global registration algorithm for segmentation of an articulated object

into rigid components. Here, the inputs were two positions of an articulated object, and the

similarity problem was to find components that are the same after a rigid transformation.
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Other shape similarity problems briefly touched on in this work included symmetry detec-

tion, non-rigid and multi-view registration.

6.2 Understanding Registration Algorithms

Shape similarity, matching, and registration are, at this point, fairly mature but still actively

researched areas of geometry processing. As more and more new approaches to these

problems are developed, there is a growing need in finding ways to perform comparative

evaluation of new and existing methods.

While many practical methods have been developed for local and global registration, there

has been relatively little work on deriving bounds on the performance of these optimization

algorithms. Recently, bounds on the number of iterations of the Iterated Closest Point

algorithm have been derived in [29, 5], which show that the number of iterations before

converging to a local minimum is polynomial in the number of points, and independent

of the dimensionality of the data. While of high theoretical significance, these bounds do

not correlate well with the actual running times of ICP encountered in practice, where the

number of iterations before convergence to a local minimum is often sub-linear.

Speed of convergence has also been analyzed from an optimization-based perspective.

In [75] Pottmann and Hofer analyze how the rate of convergence of local registration

changes when different metrics are used to measure squared distance between the input

surfaces. An empirical study of ICP by Rusinkiewicz and Levoy [85] perform a similar

analysis experimentally for the well known Iterated Closest Point algorithms, and show

how the choice of error metric, correspondence computation and outlier rejection influ-

ences ICP’s convergence.

The above studies deal with only limited cases of local registration, and are generally aimed

at quantifying the rate of convergence of the optimization algorithm. In optimization-based

registration algorithms, the focus in not only the rate of convergence but also the frequency

of local minima in the error landscape, since those can prevent the algorithm from achieving
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the correct result altogether. There is currently very little formal understanding of how the

choice of the distance function, feature and correspondence selection methods and outlier

rejection influence the frequency and size of local minima in the global registration error

landscape. In particular the funnel of convergence analysis performed by Mitra et al. [64]

for choosing the distance function can be applied to studying how the choice of different

shape descriptors for computing correspondences can improve the convergence of different

optimization-based registration methods.

Finally, as more and more matching algorithms are developed in the future, comparing

their performance to existing work will become increasingly important. Currently, there

are no established benchmarks for registration algorithms and some preliminary work in

benchmarking general shape retrieval. In the next several sections, we will examine the

current shape retrieval benchmarks, discuss some of their potential limitations, and propose

some ideas for developing a new set of registration and shape matching tests.

6.3 Shape Similarity Benchmarks

The first question we have to ask ourselves when developing a shape retrieval benchmark

is: how can we evaluate the performance of a shape retrieval algorithm. Given a query

object, the goal of shape retrieval is to return a set of objects from the database thatbest

match the query. But using what metric?

The first solution to benchmarking the growing number of shape retrieval algorithms was

proposed by Shilane et al. The Princeton Shape Benchmark [97] is a set of 2000 3D models

hand-classified into semantic groups. The classification groups the objects into functional

classes (e.g. people, cars, tables etc.) of different levels of granularity (e.g. passenger cars,

trucks etc). Two shapes are said to match if they belong to the same group, and not match

otherwise. Shape retrieval algorithms can then be tested against this dataset by evaluating

measures such as precision vs. recall plots, discounted cumulative gain etc. The Princeton

Shape Benchmark is gaining wide use in the shape retrieval community. For example it was

used as the test dataset in the first AIM@SHAPE contest for shape-based retrieval which
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was held at the 2006 Shape Modeling International conference.

The drawback of a category-based benchmark such as this, is that the similarity decision is

binary: either two objects are in the same class, in which case they are similar, or not. Most

geometric matching algorithms assign a similarityscoreto a pair of shapes. The Prince-

ton Shape Benchmark, however, does not include a quantification of geometric similarity

against which an algorithm’s results can be compared. In addition, when geometrically

similar objects are placed into different categories, the benchmark can be misleading.

We propose that a shape matching benchmark should include some measure of geometric

similarity in addition to a semantic grouping of shapes into functional classes. The question

here is, of course, what to take as ground truth. For each pair of objects in the benchmark

dataset set we need to define a notion of distance, which means we have to solve the shape

matching problem again.

For total matching, we can imagine computing the ground truth by brute force, i.e. sam-

pling the space of possible alignments between each pair of shapes and computing the

distance between the surfaces for each transformation. Since it has to be done only once,

and can be done offline, efficiency of comparison is not a big concern when creating the

benchmark. The problem is harder for partial matching, since now we have to somehow

identify the matching regions in each alignment configuration. As discussed in Chapter 2,

given a proposed alignment a common heuristic is to define as matching regions the points

on the two input shapes that lie within a threshold of each other.

Therefore, the shape benchmark that is based purely on geometry will consist of a set of

shapes and a distance metric encoding the difference between all shape pairs. To evaluate

the performance of shape retrieval algorithms, which often want to reflect not only geomet-

ric but also functional similarity among objects, the geometric benchmark can be combined

with the labeling based dataset such as the Princeton Shape Benchmark. In fact, combining

geometric and labeling-based methods have already proven to give good matching results,

as shown in [96], where a labeling-based dataset was used to learn geometrically significant

areas of input shapes, which were then used for shape matching.
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6.4 Benchmarking Registration Algorithms

It should be easier to objectively compare performance of registration algorithms, since the

ground truth can, with some work, be found exactly. The main component of a benchmark

for registration should be a set of range images taken from known calibrated positions.

This setting is similar to the test datasets used for evaluating stereo reconstruction algo-

rithms, such as the frameworks proposed by Seitz et al. [91] for multi-view and Scharstein

et al. [89] for binocular stereo.

The dataset developed by Seitz et al. for multi-view stereo consists of a number of images

of an object taken from known calibrated camera positions. To compare the quality of

the reconstruction, a 3D model of the shape obtained by laser scanning the object is also

provided. Although this somewhat biases the tests since the 3D shape obtained from range

scanning can potentially include errors, in practice this bias proved to be quite minor.

Obtaining 2D images of an object from known positions is relatively easy using a device

such as the Stanford Spherical Gantry. It is currently not feasible to mount a high quality

3D scanner on such a device that would exactly track its position due to the size of most

triangulation-based scanners. Instead, position of the scanner for each view can be com-

puted by including a calibration target of known shape at a known location in the working

volume of the scanner. The orientation of the target in each view will give the position and

orientation of the scanner.

We can evaluate registration algorithms based on two metrics. First, given a calibrated

dataset, we can immediately reconstruct a high quality 3D model of the scanned object,

and use it as ground truth. Multi-view matching and reconstruction algorithms can then

be tested based on how closely their reconstruction matches the target. Alternatively we

can compare the transformations returned by a registration algorithm to the actual transfor-

mation between a pair (or among a set) of views which can be computed exactly from the

calibrated dataset.

Once a faithful 3D model of the object is available we can imagine following two directions

in generating test datasets:



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 101

• Synthetic scans. It is easy to generate a synthetic range image given a complete

object model. All that is necessary is to determine which points on the model are

seen by the virtual scanner, compute the distance from the scanner to each point,

and return the resulting depth image. By modeling the scanner’s parameters such

as noise, grazing angle visibility and calibration distortion we can obtain synthetic

datasets where all variables of the scanning process are known exactly.

Although such synthetic datasets will not reflect the kind of noise that is encountered

in the actual scanning, a wide variety of datasets can be generated under easily con-

trolled conditions. Therefore, they can be used to study how different registration

algorithms adapt to various scanning conditions such as amount of noise, distortion,

the size of overlapping regions and un-even sampling of the surfaces under precisely

controlled conditions. In addition, it is likely that producing large datasets where

position of each scan is known exactly by using a calibration target is a laborious

process. Synthetic scans have the advantage that the position of each scan is known

exactly at all times.

• Real scans.The disadvantage of a synthetic dataset is that we do not currently know

how to accurately model every kind of noise that is present in the scanning process.

Therefore, a calibrated dataset of real range scans is also necessary. Removing the

calibration information from the set of scans used to build the ground truth 3D shape

can provide one such dataset. However, we are likely to want to generate other range

image datasets where the object is scanned under various challenging conditions, for

example low laser intensity, poorly calibrated scanner, over and under sampling of

various areas and the varying amounts of overlap.

Generating large sets of scans where the position of each range image is known

exactly, while possible, is likely to be very laborious given currently available tech-

nology. However, given a good reconstruction of an object from a calibrated dataset,

and a set of un-calibrated range images, the unknown position of each scan can be

recovered by simple pairwise registration with the full object.
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The next question to ponder is what kind of datasets should be generated. Registration al-

gorithms should be tested against common difficulties that are encountered in 3D scanning.

We describe some ideas on potential datasets below.

• Ideal scanning conditions.Current automatic algorithms work the best of datasets

which contains few tens of scans, with pairs of scans overlapping by 30− 70% of

their extent, and with scans being evenly sampled. These conditions can be easily

replicated in a synthetic dataset, and may be more difficult to replicate with real data:

requiring some over-scanning and clean up.

• Uneven sampling.When scanning a physical object some areas often receive many

more samples than others. Many registration algorithms, in particular those dealing

with multi-view registration fail in the presence of heavy under or over sampling. We

can create a dataset that simulates this by choosing several directions from which the

object should be scanned multiple times.

• Noise and miscalibration. Amount of noise varies among different scanners, so

ideally the registration benchmark should include datasets obtained from scanning

the same object by several different 3D shape acquisition devices. In addition, subtle

warps can be introduced into the data to see how well an algorithm adapts to the

failure of the assumption that the aligning transformation is rigid. Such warp is often

the result of incorrect calibration of scanner parameters, which often happens in large

field scanning projects.

• Varying overlap size. Similar to over and under scanning, varying the size of the

overlap between pairs of scans can generate a challenging dataset, in particular for

methods based on global surface analysis. This can be easily achieved in either a real

dataset by varying the amount by which objects are re-positioned after each scan or in

a synthetic dataset by varying the distance between pairs of virtual scanner positions.

• Grazing angles scans and holes.In addition to noisy scans, scanning surfaces at a

grazing angle, varying the laser intensity and scanning particularly convoluted self-

occluding surfaces can result in a dataset where each range image contains significant
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holes. Such datasets are useful to test how well shape matching adapts to even locally

incomplete information.

• Object size. The final parameter that can be varied is the number of range images

taken of each object, which usually depends on object size. This is particularly use-

ful in evaluating multi-view registration algorithms which often scale poorly when

dealing with a large number of range images.

Above we listed the kinds of datasets that can be generated for each object in the registration

benchmark to simulate different scanning conditions. The next question to address is what

kinds of objects should be included in the benchmark. These should reflect the kinds of

surfaces often encountered in 3D shape acquisition. Therefore the dataset should include:

• Smoothly varying surfaces. The majority of objects that are scanned consist of

relatively smooth surfaces with features of varying size that are uniformly distributed

over the entire object. These should form the basic test for registration algorithms,

while some of the more difficult but still common cases are discussed below.

• Textured surfaces.Surfaces with lots of surface texture, such as broken stone, chis-

eled marble, or toys with lots of surface detail can test the feature selection algo-

rithms.

• Smooth surfaces with few features.Objects such as mechanical parts often consist

of large planar of spherical shapes which are hard to register since there are few

constraining features.

• Symmetric objects. These can be particularly problematic for multi-view registra-

tion algorithms, since many pairwise matches will have to be sorted though in a

globally consistent manner.

Developing a benchmark such as the one described above is a fairly large undertaking,

especially due to the need to provide good quality ground truth data and the large number

of parameters that registration algorithms depend on which the data needs to address in a

consistent and calibrated manner. However, once developed, it should provide a good tool
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for comparing the performance of pairwise and multi-view registration algorithms, feature

selection methods, and the effectiveness of various shape descriptors in a purely geometric

fashion.

6.5 Future Work

With the development of fast 3D shape acquisition devices such as those based on struc-

tured light [84, 25, 33] or multi-view stereo [17], it is now possible to capture 3D geometry

at the rate of up to 60 frames as second. This allows us to capture objects that are moving or

deforming, since the scanners are fast enough to assume that the object is rigid for the du-

ration of each frame. Developing methods specifically aimed at alignment, reconstruction

and processing of moving and deforming shapes is a challenging research area currently

lacking in effective algorithms. Datasets coming from real-time shape acquisition devices

are usually noisy, fragmented and necessarily very large, presenting many interesting prob-

lems for researchers in geometry processing.
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Appendix A

Properties of the Integral Volume

Invariant

In this section we derive the properties of the integral volume invariant used in Chapter 3.

The derivations are due to Pottmann and are covered in more detail in [77].

A.1 Relation between curvature and the integral area in-

variant of a 2D curve

Given a closed planar curvec, and a pointp ∈ c, one takes the circular diskBr(p) with

centerp and radiusr and uses it as the region of influence for the computation of an integral

invariant. In [61], the authors define theintegral area invariantat pointp as

I r(p) :=
∫

c̄ ∩ Br (p)
dx. (A.1)

Here c̄ denotes the interior ofc. I r is the area of the intersection ¯c∩Br(p) of the curve’s

interior and the influence diskBr(p) centered at the pointp. This is the two-dimensional

analogue of the integral volume invariant defined in Chapter 3.
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In the following, curvatures of the boundary curvec of a 2D domainD are always com-

puted with the sign that arises from an orientation of the boundary with help of normals

pointing into the interior ofD. This implies that the boundary of a convex domainD gets

nonnegative curvature. In 3D, we do the same and thus get nonnegative principal curvature

for the boundary surface of a convex domain.

We will first show the relationship between the 2D integral area invariant atp and local

curvatureκ at pointp.

I r(p) =
π

2
r2− κ

3
r3 +O(r4). (A.2)

As expected, the term withr2 describes the area of the semicircle (it belongs to an approxi-

mation of the curve by its tangent); the first correction term (withr3) involves curvatureκ.

For a proof, consider a second order Taylor approximant of the curve atp, expressed in the

Frenet frame(x,y). It reads

y =
κ

2
x2.

It is sufficient to work with this parabolap instead ofc. The (real) intersection points of

the circlex2 +y2− r2 = 0 (boundary ofBr ) with p have coordinates(±t,κt2/2). It is easy

to show thatt = r +O(r3). To obtain the correction term, we have to compute

T = 2
∫ t

0

κ

2
x2dx+2

∫ r

t

√
r2−x2dx=

κt3

3
+2

∫ r

t

√
r2−x2dx.

Since forx > t andκ > 0, the parabola is above the circle of radiusr, we have

∫ r

t

√
r2−x2dx<

∫ r

t

|κ|
2

x2dx=
|κ|
6

(r3− t3) = O(r5).

Because oft3 = r3 +O(r5), we finally getT = κ

3 r3 +O(r5), which proves equation (A.2).

(This does not proveI r = π

2 r2− κ

3 r3 + O(r5), since we have neglected third order terms

of the curve, which might come in). We also see that the correction term may as well be

derived from ∫ r

−r

κ

2
x2dx.
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A.2 Mean curvature and the volume descriptor

Fortunately, the approach outlined in the previous section carries nicely over to the 3D case.

With H as mean curvature at the pointp of consideration, the volume descriptor to kernel

radiusr satisfies

Vr =
2π

3
r3− πH

4
r4 +O(r5). (A.3)

Obviously, the leading term is the volume of a half ball of radiusr. The correction term

involves the mean curvatureH at the considered surface point (centerp of the ball). The

proof resembles the 2D case. We use the principal frame atp as coordinate frame and

approximate the given surface up to second order by the paraboloidP,

z=
1
2
(κ1x2 +κ2y2).

Here,κ1,κ2 denote the principal curvatures atp. In a very similar way as in the 2D case we

show that it is actually not necessary to compute the intersection curve of the paraboloid

P and the spherex2 +y2 +z2− r2 = 0 of radiusr, since the part of the volume beyond the

intersection is of orderO(r5) and thus not relevant for our estimate. Hence, the computation

of the desired correction term can be performed with the integral,

T =
1
2

∫
D
(κ1x2 +κ2y2)dxdy,

taken over the circular diskD : x2 +y2≤ r2. Using polar coordinates(R,φ), we get

T =
1
2

∫ 2π

0

∫ r

0
(κ1R2cos2φ +κ2R2sin2

φ)R dR dφ =

r4

8

∫ 2π

0
(κ1cos2φ +κ2sin2

φ) dφ =
π(κ1 +κ2)r4

8
=

πHr4

4
.
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A.3 Influence of a surface perturbation on the volume de-

scriptor

The volume descriptor computes the volume of an object bounded by part of a sphere and

a partP of a given surface. Let us discuss how the descriptor changes ifP undergoes some

perturbation. The perturbation movesp to p′ and thus the kernel ballBr(p) undergoes a

translation toBr(p′). The latter intersects the perturbed surface in a patchP′. Translating

Br(p′) back toBr(p) movesP′ to a patchP∗. Apart from a negligible part along the inter-

section with the ballBr(p), the change of the volume is given by the oriented volumeV∗

betweenP and the surface patchP∗. Let us assume thatP is given as a parametric surface

s(u,v), parameterized over a domainD. We express the perturbation towardsP∗ with a

height fieldτ(u,v) in normal direction ofP. Thus,P∗ is given by

x = s(u,v)+ τ(u,v)n(u,v),

wheren denote unit surface normals. Using a(u,v,w) parameter space, which is related to

Cartesian coordinates viax = s(u,v)+wn(u,v), we can compute the volume as

V∗ =
∫

D

∫
τ(u,v)

0
(su +wnu,sv +wnv,n) dw du dv=∫

D
[
∫

τ(u,v)

0
[(su,sv,n)+w(nu,sv,n)+w(su,nv,n)+w2(nu,nv,n)] dwdudv.

Here,su = ∂s/∂u, etc., and(a,b,c) := det(a,b,c). It is now convenient to use a principal

curvature parametrizations(u,v), which impliesnu = −κ1su,nv = −κ2sv. Moreover, we

note that(su,sv,n) equals the surface area elementdA of the surface patchP. Thus, we

obtain (with Gaussian curvatureK = κ1κ2),

V∗ =
∫

P

(∫
τ(u,v)

0
[1−2wH +w2K] dw

)
dA,

and finally,

V∗ =
∫

P
τ(u,v)dA−

∫
P

τ
2(u,v)H dA+

1
3

∫
P

τ
3(u,v)K dA. (A.4)
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The perturbation changes the volume descriptor fromV to V−V∗. For a perturbation with

zero mean, we have
∫

Pτ(u,v)dA= 0, and thus the perturbationτ(u,v) enters only in powers

≥ 2, which shows the robustness of the volume descriptor.



Appendix B

Bounds on cRMS and dRMS Error

Metrics

In this chapter we prove the upper and lower bounds on the distance root mean squared

error used in Chapter 3. Assume we have two sets of pointsP = {p1, . . . ,pn} andQ =

{q1, . . . ,qn} in correspondence.

B.1 Upper bound

Let hi be a displacement vector that encodes the misalignment betweenpi andqi .

qi = pi +nh. (B.1)

If we assume thatP andQ are in optimal alignment, their centroids align, which means:

n

∑
i=1

hi = 0, and
n

∑
i=1

n

∑
j=1

hT
i h j = 0. (B.2)
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Then,

n2 ·dRMS2 =
n

∑
i=1

n

∑
j=1

(||qi−q j ||− ||pi−p j ||)2 =

n

∑
i=1

n

∑
j=1

(||(pi−pi)+(hi−h j)||− ||pi−p j ||)2≤

n

∑
i=1

n

∑
j=1

(||hi−h j ||)2 =

n

∑
i=1

n

∑
j=1

(||hi ||2 + ||h j ||2)−2
n

∑
i=1

n

∑
j=1

hT
i h j =

2n
n

∑
i=1
||hi ||2 = 2n2 ·cRMS2.

Therefore, the upper bound on dRMS is given by:

dRMS≤
√

2·cRMS. (B.3)

B.2 Lower bound

Let

hi j =
∣∣||qi−q j ||− ||pi−p j ||

∣∣ . (B.4)

Then

n2 ·dRMS2 =
n

∑
i=1

n

∑
j=1

h2
i j . (B.5)
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We prove the lower bound on dRMS by construction. Pick two correspondences(p1,q1)

and (p2,q2), and position the points such that pointsp1 and q1 coincide and the lines

defined by(p1,p2) and(q1,q2) align with each other. Since this cannot be better than the

best alignment, the maximum distance betweenp2 andq2 in this case is 2h12 by definition.

Now we add a third point-pair(p3,q3). Since the distance between any pair of points inP

is greater than the exclusion radiusRE and less than the extent of the shapeL, we have

||p3−q3|| ≤
L

RE
(h12+h23+h13). (B.6)

Adding the next point-pair(p4,q4) completes the frame, and analogously we have

||p4−q4|| ≤
L

RE

4

∑
i=1

4

∑
j=1

hi j = H. (B.7)

We choosep1, . . . ,p4 such thatH is minimized over all such choices. We can now use

this this frame to align the two point sets and compute the distance betweenP andQ as

the difference of offsets to the basis points. Since cRMS is computed after an optimal

alignment ofP andQ it is necessarily smaller than the distance computed using our frame.

With some abuse of notation, we will now assume thatP has been transformed as described

above.

n·cRMS2 ≤
n

∑
i=1
||pi−qi ||2≤

L
RE

2 n

∑
i=1

(H +hi1 +hi2 +hi3 +hi4)2≤

L
RE

2
·k1 ·

n

∑
i=1

(H2 +h2
i1 +h2

i2 +h2
i3 +h2

i4)≤

L
RE

2
·k2 ·

n

∑
i=1

n

∑
j=1

h2
i j =

L
RE

2
·k2n2 ·dRMS2.
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Which gives the lower bound on dRMS with cRMS:

1
L

RE
·k ·
√

n
cRMS≤ dRMS. (B.8)


