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Figure 1: The first 5 principal components of a face, computed by our method. The form of these eigenmodes is strikingly similar to those derived empirically
by previous researchers (see figure 1 in Hallinan [7]). The corresponding eigenvalues are in the ratio of .42, .33, .16, .035, .021 and are in agreement with
empirical observation, with the first 5 eigenmodes accounting for 97% of the variance. The principal components contain both positive values (bright regions)
and negative values (dark regions), with zero set to the neutral grey of the background. The face is an actual range scan courtesy of Cyberware.

Abstract

We analyze theoretically the subspace best approximating images
of a convex Lambertian object under different distant illumination
conditions. Since the lighting is an arbitrary function, the space
of all possible images is formally infinite-dimensional. However,
previous empirical work by Hallinan [7] and Epstein et al. [4] has
shown that images of largely diffuse objects actually lie very close
to a 5-dimensional subspace. In this paper, we analytically con-
struct the principal component analysis for images of a convex
Lambertian object, explicitly taking attached shadows into account,
and find the principal eigenmodes and eigenvalues with respect to
lighting variability. Our analysis makes use of an analytic formula
for the irradiance in terms of spherical-harmonic coefficients of the
illumination [1, 14], and shows, under appropriate assumptions,
that the principal components or eigenvectors are identical to the
spherical harmonic basis functions evaluated at the surface nor-
mal vectors. Our main contribution is in extending these results
to the single-image case, showing how the principal eigenmodes
and eigenvalues are affected when only a limited subset (the upper
hemisphere) of normals is available, and the spherical harmonics
are no longer orthonormal over the restricted domain. Our results
are very close, both qualitatively and quantitatively, to previous em-
pirical observations and represent the first valid theoretical explana-
tion of these observations. Our analysis is also likely to be of inter-
est in other areas of computer vision and image-based rendering. In
particular, our results indicate that using complex illumination for
photometric problems in computer vision is not significantly more
difficult than using directional sources.

1 Introduction

A robust recognition system must be able to identify an object
across variable lighting conditions. This is often a challenging task,

since most feature-based methods like edge maps are not robust
to large lighting variations [11]. Hence, it is important to derive
a good low-dimensional model to explain lighting variability. A
classic approach is to consider the principal component analysis
(henceforth called PCA [8, 18, 19]) of a set of images acquired un-
der different conditions. With respect to lighting variability, how-
ever, the space of possible images is infinite-dimensional. Theoret-
ical work by Belhumeur and Kriegman [2] has shown that this is
true even when we assume only Lambertian objects under distant
illumination—a common simplifying assumption made in many
computer vision applications, that we will also make in this pa-
per. Indeed, to represent the illumination exactly, we would need
an infinite number of coefficients, corresponding to the intensity for
each incident direction.

However, experimental results go against this intuition. Empir-
ical work is reported by Hallinan [7], Epstein et al. [4] and Yuille
et al. [20]. They used a human face and other objects, performing
PCA on a number of different images acquired by moving a distant
point source along a sphere surrounding the object. These classic
experiments came to the somewhat counterintuitive conclusion that
for largely diffuse objects, the first 5 principal components explain
most of the image variation. In other words, images of diffuse ob-
jects under varying illumination lie very close to a 5D subspace.

Although these experiments are nearly a decade old, and have
been confirmed by other authors [2, 5, 6], there has previously been
no satisfactory theoretical explanation. Most previous work ignores
the question of visibility, deriving the result that in the absence of
shadows, a 3D subspace suffices to describe the set of images of
a Lambertian object under distant illumination [12, 16, 21]. This
model is too simplistic since it omits attached shadows, which are
important, especially when the illumination is complex. Most re-
cently, Basri and Jacobs [1], and Ramamoorthi and Hanrahan [14]
have independently derived an analytic formula for the irradiance
(and hence, reflected radiance from a convex Lambertian object)



Figure 2: The first 5 principal components for an image of a sphere, as computed analytically by our method. The corresponding eigenvalues are in the ratio
of .43, .24, .24, .023, .023, with the first 5 eigenmodes accounting for 96% of the variance. The principal components contain both positive values (bright
regions) and negative values (dark regions), with zero set to the neutral grey of the background.

under arbitrary distant illumination, explicitly considering attached
shadows. They show that the irradiance can be regarded as a convo-
lution of the incident illumination with the Lambertian reflectance
function (a clamped cosine), and express the irradiance in terms of
spherical harmonic coefficients of the illumination. A key result of
their work is that Lambertian reflection acts as a low-pass filter, so
that the irradiance lies very close to a 9D subspace. This model is
a significant step towards explaining why images of a diffuse ob-
ject lie close to a low-dimensional subspace, and provides novel
frequency-space tools to understand lighting variability. However,
the connection between the spherical harmonic basis and the princi-
pal components is not obvious. More importantly, the 9D subspace
predicted is somewhat at variance with the 5D subspace observed
empirically.

In this paper, we analytically construct the PCA for images of
a convex Lambertian object under varying illumination in terms of
the spherical harmonic basis functions, uncovering the connections
between the spherical harmonic basis and the PCA. We show that
under appropriate assumptions, the principal components or eigen-
vectors are equal to the spherical harmonic basis functions, and the
eigenvalues, corresponding to how important a principal compo-
nent is in explaining image variability, are equal to the spherical
harmonic coefficients describing the Lambertian BRDF.

Next, we extend these results even further. Our main contribu-
tion is in showing how the eigenvectors (principal components) and
eigenvalues are affected by restricting attention to a single image—
where we have only the upper hemisphere of normals, instead of
the whole sphere of surface orientations. While it is clear qualita-
tively that restricting the space of surface normals should produce a
lower-dimensional approximation, this paper is the first disciplined
approach to taking this restriction into account. In particular, we
show that the reduced dimensionality stems from the fact that while
the spherical harmonics are orthonormal over the entire sphere of
normals, this no longer holds over a reduced domain. Besides be-
ing of theoretical interest, this analysis gives analytic forms for the
modified lighting and appearance basis functions to be used in ob-
ject recognition. In this way, we extend the 9 parameter Lambertian
BRDF model, showing how to modify it when we have only a sin-
gle viewpoint. Furthermore, the results point to a way of extending
other computer vision algorithms to handle complex illumination.
Our theoretical predictions, summarized below, are seen to be very
close both qualitatively and quantitatively, to the previous empirical
observations of Hallinan [7] and Epstein et al. [4].

Orthogonality Matrix: The major mathematical result is that
the principal components and associated eigenvalues correspond to
the eigenvectors of a scaled version of the orthogonality matrix, i.e.
a matrix expressing the orthogonality between the spherical har-
monic basis functions, when the domain of integration is restricted
to the surface normals in the image. If we were considering the

entire gaussian sphere of possible normal directions, this matrix
would just be the scaled identity matrix. Hence, the eigenvectors
or principal components would simply be the spherical harmonic
modes. However, if we consider only a single image, the orthog-
onality matrix is no longer the identity, and the eigenvectors or
principal components are linear combinations of the spherical har-
monics, with a new eigenvalue spectrum. The orthogonality matrix
depends on the distribution of surface normals in the image, and
hence depends on object geometry. We are able to derive quantita-
tive results for a number of cases of interest, including images of a
human face and a sphere, shown in figures 1 and 2 respectively.

Form of Principal Components: Hallinan [7] characterizes the
first 5 principal components for human faces as corresponding to
frontal lighting, side lighting, lighting from above/below, extreme
side lighting, and lighting from a corner. Visual inspection of fig-
ures 1 and 2 indicates that the principal components predicted by
our theoretical model agree well with these labelings. Furthermore,
figure 1 looks almost identical to figure 1 in Hallinan [7]1.

Dimensionality of Approximating Linear Subspace: From
our derivation, we conclude that 5 eigenvectors or principal com-
ponents suffice to capture over 95% of the image variance. These
results agree with empirical work [7, 4]. In fact, we even have
good quantitative agreement. For instance, Epstein et al. [4] report
that for an image of a basketball, 3 eigenvectors capture 94% of the
variance, while 5 eigenvectors account for 98%. Our corresponding
theoretical results for an image of a sphere are 91% and 96%. For
a human face, the corresponding empirical numbers [4] for 3 and
5 eigenvectors are 90% and 94% respectively. Our corresponding
theoretical predictions are 91% and 97% respectively.

Eigenvalue Spectrum: Hallinan [7] notes that for human faces,
the principal components lie in two groups. In a group, the eigen-
values are similar, so the principal components may exchange
places. The first group, consisting of two members, corresponds to
frontal and side lighting. This is in agreement with our theoretical
predictions, illustrated in figure 1, which show these two eigenval-
ues to be close, having numerical values .42 and .33 respectively,
and well separated from the other eigenvalues. The next group con-
sists of the next three principal components. Our theory predicts
that the eigenvalues for the fourth and fifth principal components
are close (having values .035 and .021), so these may exchange

1We would like to propose a correction to his terminology however. Eigenvectors
4 and 5 involve second order or quadratic modes and therefore cannot really be simply
classified as corresponding to a single source of illumination. In fact, all the eigen-
modes except the first have negative lobes as well as positive and cannot therefore be
thought of as corresponding to any physical illumination. Hence, we think it should be
emphasized that the principal components do not necessarily correspond to physical
lighting conditions since they may take negative values. It may be more appropriate
in the future to label the eigenvectors based on how they correspond to the spherical
harmonic basis functions.



places, as observed by Hallinan [7]. We predict that the third prin-
cipal component should always correspond approximately to light-
ing from above/below, i.e. the Y direction. This appears to be the
case in the empirical data also.

2 Mathematics of Analytic PCA Construction

In this section, we give the mathematical details of our approach to
analytic PCA construction. We first define the notation and the ap-
propriate matrices. We then show how to reduce the problem to an
eigensystem. In the next section, we will compute the eigenmodes
for a number of cases of interest. There are two points worth noting
about the mathematics. Firstly, our original derivation will be with-
out subtracting out the mean, as opposed to the common practice in
PCA analysis. This will make the derivation slightly simpler, and
confer some interesting insights. Later, we will redo the analysis
with the mean subtracted in order to make a more accurate compar-
ison to empirical work. Secondly, we assume untextured surfaces.
This assumption does not significantly affect the validity of our re-
sults since we may simply multiply all the principal components
by the same texture in order to obtain results for textured objects.
However, it should be noted that consideration of texture causes the
principal components to have greater amplitude in regions of high
albedo. For objects of interest for us, such as human faces, this
effect is unlikely to be significant since the low-frequency texture
variations are relatively minor.

2.1 Principal Component Analysis

We first define the notation. We will be interested in im-
ages E(α, β) corresponding to a light source at direction (α, β)
where (α, β) are the global spherical coordinates of the distant
light source. A single pixel in the image will be denoted by
E(α, β, θ, φ), where (θ, φ) stand for the spherical coordinates of
the surface normal. Note that in our model of the world (distant illu-
mination, convex Lambertian surfaces, no cast shadows), these four
parameters suffice to determine the shading. Also, since the surface
is Lambertian, and we are ignoring the albedo, E(α, β, θ, φ) can be
though of as corresponding directly to the irradiance at orientation
(θ, φ) due to a unit directional source at (α, β).

Assume now that we sample the space of possible image pixels
in some way, i.e. by means of some light source positions (αj , βj)
and some normal coordinates, i.e. (θi, φi). The matrixQ consisting
of all observations then has the form

Qij = E(αj, βj, θi, φi)

Here, the rows (depending on index i) denote image observations,
while the columns (depending on index j) correspond to different
light source positions. This is the standard definition of the matrix
Q. In order to find the principal components or eigenimages, we
must find the eigensystem of the matrix T = QQT . The formula
for this matrix is given by

Tij =
∑

k

QikQ
T
kj =

∑
k

QikQjk

=
∑

k

E(αk, βk, θi, φi)E(αk, βk, θj, φj) (1)

To help make matters concrete, assume that in an experimental sit-
uation, there are n image pixels and d light positions. In most ex-
periments, n > d. Then, matrix Q will be n × d while matrix T
will be n × n. The eigenvectors of T will correspond to principal

component images, while the eigenvalues will measure their impor-
tance. We can get an idea of how well the matrix T is approximated
by some number of eigenvectors by considering the fraction of the
total sum of eigenvalues given by the sum of the eigenvalues cor-
responding to the eigenvectors in question. It should be noted that
in practical applications, it is possible to write down an equivalent
d × d eigensystem that is computationally simpler. However, for
analytic PCA construction, we work directly with the matrix T .

To proceed further, we will need a formula for E. Of course,
this can be obtained simply by the dot product of the vectors corre-
sponding to (α, β) and (θ, φ), yielding the standard expression:

E(α, β, θ, φ) = max[0, sinα sin θ cos(β−φ)+cosα cos θ] (2)

Note that E(α, β, θ, φ) here is simply the irradiance at orientation
(θ, φ) due to a unit directional light source at (α, β).

The angular-space formula above is difficult to manipulate be-
cause of the max expression. Instead, we will use a frequency-
space analytic formula for the irradiance derived independently by
Ramamoorthi and Hanrahan [14] as well as Basri and Jacobs [1].

E(α, β, θ, φ) =

∞∑
l=0

l∑
m=−l

ÂlLlm(α, β)Ylm(θ, φ)

In the equation above, Ylm are the spherical harmonics [3, 9, 17].
Spherical harmonics with l ≥ 0 and −l ≤ m ≤ l are the appropri-
ate signal processing tools in angular space and are the analog of
the conventional Fourier basis. The coefficients Llm are the spher-
ical harmonic coefficients of the incident illumination, while Âl is
a constant which vanishes for odd l > 1 and decays for even l as
l−5/2. Because of this rapid decay, a very good approximation can
be obtained by limiting l ≤ 2. In fact, 99% of the energy of the
BRDF filter, i.e. of Âl, is contained by l ≤ 2. The appendix lists
values for Âl and Ylm for l ≤ 2.

The final ingredient to complete the frequency-space descrip-
tion is to find the coefficients Llm(α, β) in terms of the angular
coordinates (α, β) of the light source. Since the light source is
described by a delta function, we simply evaluate the spherical har-
monics at the light vector, deriving Llm(α, β) = Ylm(α, β). Note
that we use the real form of the spherical harmonics, so there is no
need to worry about complex conjugation. Now,

E(α, β, θ, φ) =

∞∑
l=0

l∑
m=−l

ÂlYlm(α, β)Ylm(θ, φ)

Plugging this into equation 1, we get

Tij =
∑

l,m,l′,m′ ÂlÂl′Ylm(θi, φi)Yl′m′(θj, φj) ·∑
k
Ylm(αk, βk)Yl′m′(αk, βk)

We now proceed to do the summation over k. Clearly this will
depend in practice on the specific sampling pattern used for moving
the light source. However, our goal is to get an analytic understand-
ing. It is most reasonable to assume for mathematical purposes that
the light source samples are infinitely dense, sampling the sphere of
directions equally for all differential solid angles. This assumption
also makes physical sense since we wish to make no a priori as-
sumptions about the lighting distribution in the scene, so we should
assume the illumination is equally likely to come from any direc-
tion. The summation over the index k may then be replaced by an
integral over the angular coordinates (α, β), and we obtain

Tij =
∑

l,m,l′,m′ ÂlÂl′Ylm(θi, φi)Yl′m′(θj, φj) ×∫ π

α=0

∫ 2π

β=0
Ylm(α, β)Yl′m′(α, β) sinαdαdβ



It is now straightforward to use orthonormality of the spherical har-
monics to set l = l′ and m = m′ and write

Tij =

∞∑
l=0

l∑
m=−l

(
Âl

)2
Ylm(θi, φi)Ylm(θj , φj) (3)

We have just derived an analytic form for the elements Tij of the
matrix used for principal component analysis. This analytic form
has been derived under fairly weak assumptions—a convex Lam-
bertian surface under distant illumination, with a uniform probabil-
ity for the lighting over the entire sphere of incident directions. We
now show how to derive the corresponding eigensystem.

2.2 Reduction to Eigensystem

We now wish to find an eigenvector u, which is a vector that satis-
fies Tu = λu where λ is the eigenvalue. This can also be written
as

∑
j
Tijuj = λui. Note that u corresponds to a principal com-

ponent image. Now, we expand u in terms of spherical harmonics,

uj =

∞∑
p=0

p∑
q=−p

cpqYpq(θj , φj)

Our goal is to find the coefficients cpq . Plugging into equation 3,
we obtain∑

j

Tijuj =
∑

l,m,p,q,j

(
Âl

)2
Ylm(θi, φi)Ylm(θj, φj)cpqYpq(θj, φj)

λui = λ
∑
l,m

clmYlm(θi, φi) (4)

We require the first and second lines above to be equal. First, we
do the summation over the index j in the first line above. Define

Mlm;pq =
∑

j

Ylm(θj, φj)Ypq(θj, φj) (5)

The matrix M will be fundamental in the ensuing discussion. It
indicates the orthogonality relation between the various spherical
harmonics when the domain of integration is taken as the pixels of
the image. In the special case where image pixels correspond uni-
formly to the entire sphere of surface normals, the orthonormality
relation for the spherical harmonics will hold and the matrixM will
simply be the identity with Mlm;pq = δlpδmq . However, this con-
dition is never satisfied in practice since we never see the normals
facing away from us. Later, in the next section, we will consider
various matrices M and determine the resulting eigenmodes.

In terms of the matrix M , it is straightforward to write∑
j

Tijuj =
∑

l,m,p,q

(
Âl

)2
Mlm;pqcpqYlm(θi, φi)

This expression may be compared to the first line of equation 4.
The right-hand side must therefore equal the right-hand side in the
second line. Since the spherical harmonics are linearly indepen-
dent, the coefficients of the Ylm must match, and we obtain∑

p,q

(
Âl

)2
Mlm;pqcpq = λclm (6)

Thus, we have reduced the problem of computing the principal
components to an eigenvalue problem involving the matrix M .

To proceed further, we will make a number of notational
changes. First, let us collapse the double indices lm and pq into
a single index in the standard way, i.e. r = l2 + l + m and
s = p2 + p + q. r and s simply impose an absolute ordering
on the spherical harmonics, first on the index l or p, and then on

m or q. Finally, define M̂rs =
(
Âr

)2
Mrs, where Âr = Âl. It

should be noted that while the matrix M is symmetric, the matrix
M̂ is no longer symmetric, because of the premultiplication factor.
It is now straightforward to write equation 6 as

∑
s

M̂rscs = λcr (7)

But this is simply an eigenvalue problem with M̂c = λc. Thus,
we have reduced the principal component analysis problem to an
eigenvalue problem for M̂ . However, remember that the matrix M̂
is no longer symmetric. It often helps to work with symmetric ma-
trices, since their eigensystems have a number of nice properties. It
is straightforward to rescale the matrices and vectors for symmetry.
We first define a new symmetric matrix M̃ and vector d by

cr = Ârdr

M̃rs = ÂrÂsMrs (8)

Now, starting with the basic matrix eigensystem in equation 7, we
make the following substitutions:

∑
s
ÂrÂrMrscs = λcr

⇒
∑

s
Âr

(
ÂrMrsÂs

)
ds = λÂrdr

⇒ M̃d = λd

Thus, we now have a symmetric eigensystem that can be solved
for the vectors d. To find the eigenvectors of the original problem,
we must find the corresponding vectors c using equation 8. The
eigenvalues remain the same.

3 Computation of Eigenmodes

Our goals now are to actually compute the eigenvectors and eigen-
values for various different values of the matrix M̃ . However, this
matrix is infinite dimensional since both r and s can be arbitrarily
large corresponding to all possible spherical harmonic coefficients.
However, it has been shown [1, 14] that 99% of the energy of the
Lambertian BRDF is captured by l ≤ 2, i.e. by r, s < 9. In other
words, only the first 9 spherical harmonic terms are important and
there is little error introduced by truncating the series to order 2.
Therefore, for numerical calculations in the rest of this section, we
will use the 9 term approximation, reducing matrix M̃ to a 9 × 9
matrix. We analyze the resulting eigensystem for many choices of
the matrix M̃ . It should be emphasized that the analytic formulas
we derive are general, and hold for all values of r and s. It is only
the computed numerical values of the eigenvectors and eigenvalues
that depend on the 9 term approximation.

Now, we find the principal components for several special cases
of interest by considering the corresponding values ofM̃ and com-
puting the eigensystem. We first explicitly write down the formula
for M̃ by rewriting equation 5 as per our modified notation:

M̃rs = ÂrÂs

∑
j

Yr(θj, φj)Ys(θj , φj) (9)



3.1 Pixels equally distributed over sphere

The first special case of interest is when the pixels j are distributed
in such a way that the sum can be replaced with an integral over
the entire sphere. As already mentioned, this is unrealistic, but is
nevertheless an insightful special case. In that case, orthonormality
of the spherical harmonics yields

M̃rs = ÂrÂs

∫ π

θ=0

∫ 2π

φ=0

Yr(θ, φ)Ys(θ, φ) sin θ dθdφ

= ÂrÂsδrs =
(
Âr

)2
δrs

In other words, M̃ is the scaled identity matrix. The eigenvectors
or principal components (for both d and c) are simply the spheri-

cal harmonics themselves with eigenvalues
(
Âr

)2
. The amount of

variance accounted for by some number of eigenvectors is simply
the sum of the corresponding eigenvalues divided by the sum of
all the eigenvalues. This corresponds to the case previously stud-
ied by Basri and Jacobs [1], and Ramamoorthi and Hanrahan [14].
As noted by Basri and Jacobs [1], 37.5% of the variance is ac-
counted for by the constant term l = 0; r, s < 1, 87.5% of the
variance is accounted for when also considering the linear terms
l ≤ 1; r, s < 4, and over 99% of the variance is accounted for
when considering the quadratic terms, i.e. all 9 terms in our approx-
imation: l ≤ 2; r, s < 9. Thus, we see that our formulation agrees
with the previous subspace results. It is worth pointing out an im-
portant special case or corollary here. Shashua [16] has considered
the situation where there are no attached shadows. In this case, the
images of a Lambertian object lie exactly in a three-dimensional
subspace. We can consider this case in our formulation by remov-
ing the threshold to 0 in our definition of the Lambertian BRDF in-
tensity of equation 2. In terms of the above formulation, Âr would
vanish unless l = 1 (the linear terms), i.e. r = 1, 2, 3. Thus, the
eigenvectors would be exactly the linear spherical harmonics, and
as noted by Shashua [16], a 3D subspace would suffice.

3.2 Pixels equally distributed over hemisphere

We now consider a more realistic case. Since only front facing
normals are visible in a single image, we allow the pixels to be
equally distributed over the hemisphere with z > 0. In the standard
spherical coordinates this corresponds to θ < π/2. The matrix M
now encodes the orthogonality relation between the spherical har-
monics when the domain of integration is restricted to the upper
hemisphere. While linear independence of the spherical harmonics
guarantees that no linear combination can have norm 0, we will see
that the norm of certain linear combinations comes very close to 0,
i.e. most of the norm is concentrated over the unseen lower hemi-
sphere. Thus, these lighting configurations have negligible impact
on the irradiance of the upper hemisphere and may be neglected.

It is now straightforward to define

M̃rs = ÂrÂs

∫ π/2

θ=0

∫ 2π

φ=0

Yr(θ, φ)Ys(θ, φ) sin θ dθdφ (10)

It should be noted that M̃rs �= 0 only for terms having the same
m index, i.e. those with m = 0: Y0, Y2, Y6 (corresponding in
two-index notation to Y00, Y10, Y20), those with m = −1: Y1, Y5

(corresponding to Y1−1 and Y2−1), and those with m = 1: Y3, Y7

(corresponding to Y11 and Y21). We have not included m = ±2
since there is only one term with that value of m (Y4, Y8 corre-
sponding to Y2−2 and Y22 respectively). All other cross terms will

# Eigenvector d Eigenvector c λ VAF
1 .85 Y0 + .53 Y2 + .03 Y6 .92 Y0 + .39 Y2 + .01 Y6 .51 .51
2 .95 Y3 + .31 Y7 .99 Y3 + .12 Y7 .18 .69
3 .95 Y1 + .31 Y5 .99 Y1 + .12 Y5 .18 .88
4 -.42 Y0 + .63 Y2 + .65 Y6 -.68 Y0 + .68 Y2 + .26 Y6 .05 .93
5 Y8 Y8 .023 .95
6 Y4 Y4 .023 .98
7 -.31 Y3 + .95 Y7 -.66 Y3 + .75 Y7 .006 .98
8 -.31 Y1 + .95 Y5 -.66 Y1 + .75 Y5 .006 .99
9 .32 Y0 - .57 Y2 + .76 Y6 .61 Y0 - .71 Y2 + .36 Y6 .0008 .99

Table 1: Eigenvectors and eigenvalues for the hemisphere

vanish. Also, cross terms involving odd (l + m odd) and even
(l + m even) spherical harmonics only vanish. Hence, the cross
terms between Y0 and Y6 vanish. Thus, the effects of rearranging
the integration to lie over the hemisphere rather than the full sphere
will be the intermingling of the basis functions corresponding to
m = 0, and those corresponding to m = 1 and m = −1. Y4 and
Y8, corresponding to m = ±2, will remain eigenvectors ofM̃ and
are not affected by this intermingling.

It is now simple to compute the matrix M̃ and its eigensystem.
We used Mathematica for this purpose. The eigenvectors are nor-
malized to have unit norm and are determined only up to sign. The
eigenvalues are normalized to be the percentage of the total sum of
the 9 eigenvalues. They thus correspond to the fraction of variance
accounted for by that particular eigenvector. We also show the cu-
mulative sum of eigenvalues. This indicates how well the image
is approximated using only a number of the most important prin-
cipal components. To account for components not considered by
us, i.e. terms higher than order 2, we multiply the eigenvalues by
0.99, corresponding to the amount of energy captured by the first
9 terms, i.e. modes up to order 2. It should be noted that this is
only an approximation. However, exact bounds on the error for any
physical lighting distribution can be derived from the fact that the
lighting must be everywhere positive, using an approach similar to
that of Basri and Jacobs [1].

The four columns in table 1 stand for the eigenvectors d of the
matrix M̃ , the corresponding eigenvectors c of the original PCA
(as per equation 8)—note that these have more energy in the lower
frequencies—, the normalized eigenvalues λ, and the cumulative
sum of eigenvalues, corresponding to the variance accounted for
(VAF).

It can be seen that 98% of the variance is accounted for using
only the first 6 principal components or eigenvectors. The obser-
vation that fewer than 9 eigenvectors suffice for an accurate ap-
proximation is not really surprising. In fact, one can show from
first principles that there must be at least one eigenvector with a
negligible eigenvalue. Our numerical calculations are based on the
observation that the half-cosine function can be well approximated
using spherical harmonics up to order 2, which allows us to use the
9×9 matrix approximation for numerical work. But this also means
that the backwards half-cosine function, which has its positive lobe
in the lower hemisphere and is zero over the visible upper hemi-
sphere, is well approximated using spherical harmonics up to order
2. This approximation has negligible norm over the visible upper
hemisphere. Indeed, we see that the ninth eigenvector c in table 1
corresponds directly to the normalized backwards half-cosine, with
the corresponding eigenvalue being nearly three orders of magni-
tude smaller than the largest eigenvalue.

3.3 Image of a sphere

While the previous subsection gave considerable insight, it does
not correspond to a realistic situation. This is because, in practice,
the number of pixels occupied by regions at oblique angles to the



camera is reduced by a cosine factor when projected down into the
camera plane. Thus, we should consider that factor when doing the
integrations. Hence, we add a factor of cos θ in equation 10:

M̃rs = ÂrÂs

∫ π/2

θ=0

∫ 2π

φ=0

Yr(θ, φ)Ys(θ, φ) cos θ sin θ dθdφ

Note that this does not change the azimuthal structure of the ma-
trix M . Thus, our previous discussion regarding the groups for the
eigenvectors for different values m continues to hold. The eigen-
system is given in table 2 and is largely similar to that in table 1.

# Eigenvector d Eigenvector c λ VAF
1 .77 Y0 + .63 Y2 + .14 Y6 .88 Y0 + .48 Y2 + .04 Y6 .62 .62
2 .91 Y3 + .42 Y7 .99 Y3 + .17 Y7 .15 .77
3 .91 Y1 + .42 Y5 .99 Y1 + .17 Y5 .15 .92
4 -.52 Y0 + .48 Y2 + .71 Y6 -.82 Y0 + .51 Y2 + .28 Y6 .034 .95
5 Y8 Y8 .015 .97
6 Y4 Y4 .015 .98
7 -.42 Y3 + .91 Y7 -.78 Y3 + .63 Y7 .004 .99
8 -.42 Y1 + .91 Y5 -.78 Y1 + .63 Y5 .004 .99
9 .38 Y0 - .62 Y2 + .69 Y6 .65 Y0 - .70 Y2 + .30 Y6 .0004 .99

Table 2: Eigenvectors and eigenvalues for image of a sphere

3.4 Image of a face

To more accurately compare our predictions to those of Halli-
nan [7], we would ideally like to consider the image of a face rather
than a sphere. Hence, we took a range scan of a face (courtesy of
Cyberware), and raytraced a single frontal image, storing the sur-
face normal, i.e. (θ, φ) at each pixel. We could then evaluate the
matrix M̃ directly in a numerical fashion using equation 9, by sum-
ming over all pixels. The symmetry between side and top directions
is now broken because of the asymmetric dimensions of the face.
While the azimuthal structure is still nearly preserved, numerically,
all elements of the matrix M̃ will be nonzero unlike in the previous
subsections. The eigenvectors and eigenvalues are listed in tables 3
and 4. These are somewhat similar to those in table 2, but some
important differences are present and will be discussed in the next
section. It should be noted the numerical values depend on the spe-
cific face model used by us and will differ slightly for other faces.

# Eigenvector d Eigenvector c
1 .77 Y0 + .62 Y2 + .12 Y6 .88 Y0 + .48 Y2
2 .91 Y3 + .40 Y7 .98 Y3 + .16 Y7
3 -.10 Y0 + .89 Y1 + .44 Y5 -.15 Y0+ .97 Y1 + .18 Y5
4 -.43 Y0 + .46 Y2 + .65 Y6 -.41 Y8 -.76 Y0 + .54 Y2 + .29 Y6 - .18 Y8
5 -.06 Y3 + .99 Y4 -.15 Y3 + .98 Y4
6 -.24 Y0 + .16 Y2 + .30 Y6 + .90 Y8 -.68 Y0 + .30 Y2 + .20 Y6 + .63 Y8
7 -.40 Y3 + .91 Y7 -.75 Y3 + .65 Y7
8 -.44 Y1 + .89 Y5 -.79 Y1 + .60 Y5
9 .39 Y0 - .62 Y2 + .68 Y6 .65 Y0 - .70 Y2 + .29 Y6

Table 3: Eigenvectors for image of a face. For clarity and ease
of comparison, only those spherical harmonics with non-negligible
coefficient magnitudes (greater than .10) are noted.

4 Results with removal of mean value

One final point in attempting a quantitative comparison with the
work of Hallinan [7] and Epstein et al. [4] concerns removal of the
mean value before taking the PCA. As is the standard practice when
computing principal components, those authors have subtracted the
mean value before applying their analysis. We have so far cho-
sen not to do so, because the mathematics is somewhat simpler to
explain when retaining the mean value, and we believe there are

# λ VAF
1 .61 .61
2 .21 .82
3 .10 .92
4 .038 .96
5 .013 .97
6 .010 .98
7 .004 .99
8 .002 .99
9 .002 .99

Table 4: Eigenvalues for image of a face

valuable insights in the previous section. Furthermore, in many ap-
plications, the numerical forms of the basis functions derived in the
previous section are likely to be useful.

However, it is not significantly more difficult to apply our
framework with the mean image value removed. In this section, we
will extend our results under those conditions. It can be shown that
removing the mean simply corresponds to ignoring the constant or
ambient term Y0 or Y00. Alternatively, we may set Â0 = 0. This
makes intuitive sense since the ambient term simply sets the mean
value. The same result can also be derived through some simple
algebra on the definition of the PCA. We will now numerically use
an 8×8 matrix and 8 eigenvectors and eigenvalues, since the mean
term will no longer contribute.

We first show the eigenvectors and eigenvalues for the case of
an image of a sphere with the constant term subtracted in table 5.

# Eigenvector d Eigenvector c λ VAF
1 .97 Y2 + .26 Y6 .99 Y2 + .10 Y6 .43 .43
2 .91 Y3 + .42 Y7 .99 Y3 + .17 Y7 .24 .67
3 .95 Y1 + .31 Y5 .99 Y1 + .17 Y5 .24 .91
4 Y8 Y8 .023 .94
5 Y4 Y4 .023 .96
6 -.26 Y2 + .97 Y6 -.59 Y2 + .81 Y6 .019 .98
7 -.42 Y3 + .91 Y7 -.78 Y3 + .63 Y7 .006 .98
8 -.42 Y1 + .91 Y5 -.78 Y1 + .63 Y5 .006 .99

Table 5: Eigenvectors and values for image of the sphere with the
mean image value subtracted out (i.e. ignoring the ambient term).

The first three eigenmodes are now very clearly identifiable
as frontal, side and top/bottom lighting while the next two are
quadratic modes. Three eigenvectors account for 91% of the vari-
ance, and 5 eigenvectors for 96%. These results clearly show why
the first 5 eigenvectors form a stable group that is a good approx-
imation in a variety of circumstances. Furthermore, our numerical
values are quantitatively similar to the empirical results quoted by
Epstein et al. [4] for an image of a basketball, wherein 3 eigenvec-
tors captured 94% of the variance, while 5 eigenvectors accounted
for 98%. The somewhat better low-dimensional fit obtained by Ep-
stein et al. [4] can be at least partially explained by the details of
their experiment. Their lighting conditions sampled only part of the
illumination sphere (the top right), while we make the more gen-
eral assumption of light sources equally sampling the entire sphere
of incident directions. It should be noted that the sixth eigenvec-
tor, although having eigenvalue similar to eigenvectors 4 and 5,
corresponds to a backlighting configuration not well sampled ex-
perimentally by Hallinan [7] and Epstein et al. [4].

Finally, we can look at the eigenvectors and values for an im-
age of a face after the mean has been subtracted. As before, the
eigenvectors are largely similar to those above, with the specific
numerical values dependent on the specific face model used by us.



However, it should be noted that there are some subtle differences
between face and sphere eigenvectors, as can be seen by compar-
ing eigenvector 4 (second from right) in figures 1 and 2, or tables 5
and 6. The eigenvectors and eigenvalue spectrum are shown below
in tables 6 and 7 as well as figure 3.

# Eigenvector d Eigenvector c
1 .15 Y1 + .95 Y2 + .24 Y6 .15 Y1 + .98 Y2 + .09 Y6
2 .91 Y3 + .40 Y7 .98 Y3 + .16 Y7
3 .88 Y1 -.17 Y2 + .44 Y5 .96 Y1 -.19 Y2 + .18 Y5
4 .09 Y2 + .13 Y4 -.58 Y6 + .80 Y8 .24 Y2 + .12 Y4 -.56 Y6 + .77 Y8
5 -.06 Y3 + .98 Y4 -.14 Y8 -.15 Y3 + .97 Y4 - .14 Y8
6 -.23 Y2 + .77 Y6 + .58 Y8 -.53 Y2 + .67 Y6 + .50 Y8
7 -.40 Y3 + .91 Y7 -.75 Y3 + .64 Y7
8 -.44 Y1 + .89 Y5 -.79 Y1 + .60 Y5

Table 6: Eigenvectors for image of a face with the mean image
value subtracted out (i.e. ignoring the ambient term). For clarity
and ease of comparison, only those spherical harmonics with non-
negligible coefficient magnitudes (greater than .10) are noted here.

# λ VAF
1 .42 .42
2 .33 .75
3 .16 .91
4 .035 .95
5 .021 .97
6 .011 .98
7 .007 .99
8 .003 .99

Table 7: Eigenvalues for face image with mean value removed.
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Figure 3: Fraction of eigenvalues accounted for versus number of
eigenvectors or principal components for PCA of a face with mean
removed. 5 principal components account for 97% of the variance.

The significant difference compared to the sphere is that the
eigenvalue for side lighting (eigenvalue #2) is substantially higher
than that for top/bottom lighting (eigenvalue #3) and is in fact com-
parable to the eigenvalue for frontal lighting (eigenvalue #1). The
spherical symmetry between side and top/bottom (X and Y ) di-
rections is broken since human faces are elongated, and are not
symmetric about X and Y directions.

These results explain Hallinan’s observation that the eigen-
vectors split into two groups, with the first two eigenvectors cor-
responding to frontal and side lighting, and the next three to
top/bottom lighting and more extreme forms. It does appear from
the eigenvalues in table 7 that the eigenvector corresponding to
top/bottom lighting should always appear in third position, and the

empirical data appear to confirm this. The quantitative predictions
for variance accounted for are also in accordance with empirical
work. The empirical numbers given by Epstein et al. [4] for the
variance accounted for by 3 and 5 eigenvectors in images of a hu-
man face are 90% and 94% respectively. Specularity and a small
amount of cast-shadowing accounts for the slightly lower numbers
as compared to the basketball example. Our corresponding theoret-
ical predictions are 91% and 97% respectively. These are slightly
higher than the empirical values because we assume Lambertian
surfaces, and do not take cast shadows into account. Finally, fig-
ure 1 indicates that the principal components predicted by us are in
very good agreement with those from figure 1 in Hallinan [7].

5 Conclusions and Future Work

We have presented a method to analytically construct the principal
components for a single view of a convex Lambertian object under
varying distant illumination. From this construction, we derive a
number of results including good approximating low-dimensional
subspaces, the forms of the principal components, and the eigen-
value spectra of the eigenmodes. These results show excellent qual-
itative and quantitative agreement with previous empirical work.

Besides explaining a number of previous papers on lighting
variability, the results are likely to be of considerable interest in
computer vision and graphics. It is likely that the principal compo-
nents derived by us can be used as optimal basis functions in many
photometric problems in computer vision such as identifying ob-
jects across lighting variability, photometric stereo, and factoriza-
tion of lighting and texture. In all of these areas, our results indi-
cate that complex illumination is not significantly more difficult to
model than point sources, pointing the way to a suite of computer
vision algorithms that works under far more general illumination
conditions than currently. Indeed, we simply need to consider a
few additional basis functions, i.e. 5D or 6D subspaces instead of
3D. Furthermore, our low-dimensional lighting subspaces may also
have implications for human vision, and the human ability to iden-
tify objects across lighting variability.

Our results are also of theoretical and practical interest in com-
puter graphics for both the forward rendering and inverse render-
ing problems. For image-based rendering under varying illumina-
tion [10], our approach yields optimal basis functions, and easily
allows the use of complex illumination. Our work is also a first
step in extending the inverse rendering framework of Ramamoorthi
and Hanrahan [15] to consider the fundamental limits of what in-
formation about the lighting and BRDF can be estimated when the
entire reflected light field, corresponding to all surface orientations
and outgoing directions, is not available.

In future work, we would like to extend our derivation to con-
sider non-uniform sampling patterns for the light source, corre-
sponding to preferred directions of illumination. We would also
like to incorporate specularity in our analysis. From a practical
point of view, we would like to implement some of the algorithms
proposed here for problems such as photometric stereo, inverse ren-
dering, and image-based rendering.

Finally, we note that this paper has developed a significantly
new set of tools for analyzing lighting variability, and we expect
these and more advanced methods to be of increasing significance
in object recognition and other areas of computer vision.
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Appendix: Spherical Harmonics

Below, we list the values of the constants Âr as well as the real
forms of the first 9 spherical harmonics, used for computation, in
both single and double index form. The spherical harmonics are
simply constant linear and quadratic polynomials of the Cartesian
components of the surface normal [13]. However, it will be conve-
nient here to write them in trigonometric form.

Â0 = π : l = 0

Â1, Â2, Â3 = 2π/3 : l = 1

Â4, Â5, Â6, Â7, Â8 = π/4 : l = 2

Y0 = Y00(θ, φ) =

√
1

4π

Y1 = Y1−1(θ, φ) =

√
3

4π
sin θ sinφ

Y2 = Y10(θ, φ) =

√
3

4π
cos θ

Y3 = Y11(θ, φ) =

√
3

4π
sin θ cosφ

Y4 = Y2−2(θ, φ) =

√
15

4π
sin2 θ cosφ sinφ

Y5 = Y2−1(θ, φ) =

√
15

4π
sin θ cos θ sinφ

Y6 = Y20(θ, φ) =

√
5

16π

(
3 cos2 θ − 1

)

Y7 = Y21(θ, φ) =

√
15

4π
sin θ cos θ cosφ

Y8 = Y22(θ, φ) =

√
15

16π

(
sin2 θ

(
cos2 φ− sin2 φ

))


