

PointRight: Experience with Flexible Input Redirection in Interactive Workspaces

Brad Johanson, Greg Hutchins, Terry Winograd
Stanford University

Gates 3B-376, Serra Mall.
Stanford, CA 94305-9035, USA

E-mail: bjohanso@graphics.stanford.edu

Maureen Stone
StoneSoup Consulting

191 Pine Lane
Los Altos, CA 94022

E-mail: stone@stonesc.com

ABSTRACT
We describe the design of and experience with PointRight,
a peerto-peer pointer and keyboard redirection system that
operates in multi-machine, multi-user environments. Point-
Right employs a geometric model for redirecting input
across screens driven by multiple independent machines
and operating systems. It was created for interactive work-
spaces that include large, shared displays and individual
laptops, but is a general tool that supports many different
configurations and modes of use. Although previous sys-
tems have provided for re-routing pointer and keyboard
control, in this paper we present a more general and flexible
system, along with an analysis of the types of re-binding
that must be handled by any pointer redirection system This
paper describes the system, the ways in which it has been
used, and the lessons that have been learned from its use
over the last two years.

KEYWORDS: Input redirection, ubiquitous computing,
multi-display environments.

INTRODUCTION
PointRight is a pointer and keyboard redirection system
that operates in multi-machine, multi-user environments. It
employs a geometric model for pointer motion across
screens that is similar to conventional multi-headed dis-
plays, but redirects input across multiple independent ma-
chines and operating systems. We have developed it in con-
junction with interactive workspaces that include large,
shared displays and individual laptops, but it can be applied
to any networked collection of machines and input devices.

Development of PointRight began with the simple goal of
making it possible for a single mouse and keyboard to pro-
vide input to independent desktops on several large displays
in a room. It evolved into a general tool that supports many
different configurations and modes of use, which has been
in use in a number of settings over the past two years. Users

find it a natural and intuitive way to interact with multiple
devices and have been very positive in their assessment of
its utility and usability. This paper describes the system, the
ways in which it has been used, and the lessons that have
been learned.

Figure 1. The interactive room (iRoom)

BACKGROUND
The vision of ubiquitous computing [18], has come to frui-
tion in the growing diversity of widely used computer
hardware, including PDAs, large displays, wireless net-
works, and mobile devices of all kinds. But, most of the
software has been borrowed from standard desktop operat-
ing systems and applications. In most ubiquitous computing
environments, the software is based on a one-to-one linking
of a user with an input device (mouse and keyboard or sty-
lus) and a single display.

For many computer applications, the display space pro-
vided by a single display is not adequate. This has been
dealt with in all of the widely used windowing systems
(MacOS, Windows. X-Windows) by allowing the user�s
pointing device to operate in a geometric space that is tiled
across the multiple displays managed as a single desktop.
Keyboard input follows window focus, as usual.

Although this extension is valuable for individual work, it

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

does not generalize to the case of multiple independent de-
vices and users in an interactive workspace (see also, [2, 3,
16]), such as the iRoom [9], shown in Figure 1. The iRoom
has four large, permanently mounted projection displays,
three 6� diagonal back-projected touch-sensitive SMART
Boards [15], a bottom-projected 5� diagonal table-top dis-
play, a custom 7� diagonal high-resolution 12-projector
tiled back-projected display and a wireless LAN that sup-
ports laptops and PDAs brought into the room. Each projec-
tor has two inputs: one fed by a machine that is a permanent
part of the iRoom infrastructure, and one connected via a
VGA splitter to a cable that can be plugged into a laptop or
other external machine. While the iRoom machines by de-
fault run MS Windows, laptops regularly run any of Win-
dows, Mac or Linux operating systems.

In this more general situation, the multiple display surfaces
are not all controlled by a single machine and there is no
master input device to operate across them. There can also
be dynamic binding between displays and machines, as
when a laptop is projected on a wall display in place of the
machine native to the workspace.

Application suites in the iRoom, such as those used for
construction management [11], make use of a collection of
independent applications running on both shared and indi-
vidual computers in the room. Their unification into a
working environment depends on a general cross-device,
cross-platform, multi-user facility that enables each user to
control all of the devices with the conceptual simplicity of
using multiple monitors tiled in a single geometric space.

To solve this problem, we designed PointRight to allow
pointer control from any input device to be re-directed from
screen to screen as if all of the screens were a large virtual
desktop, despite their being driven by different machines
The result is a cursor that the user moves seamlessly across
the space of displays as though they were a single surface�
when it reaches the edge of a screen, it continues its motion
onto the connecting edge of the adjacent screen in that di-
rection. If there is no adjacent screen, it simply stops mov-
ing and remains at the edge of the screen. The input of any
keyboard associated with the pointing device is directed to
whatever machine is currently displaying the cursor.

PointRight allows for arbitrary topologies of rectangular
screens, flexible mappings between machines and screens,
and multiple simultaneously controlled cursors in a work-
space. It interacts with a machine�s operating system at the
level of mouse inputs, so that PointRight can be used to
control all applications. It keeps a map of the room�s topol-
ogy, updating it dynamically to account for changes of
mapping (which computer to which display) and the status
of each computer (running or not). We have deployed the
system in several environments and are currently distribut-
ing a version as Open Source [7].

RELATED WORK
The previous systems that are closest to the user�s experi-
ence of PointRight are single-user systems with multiple
monitors. PointRight opens up this functionality to the full
array of displays, pointing devices, and keyboards associ-
ated with all of the computers in an interactive workspace.

Remote interaction applications, such as VNC [14] provide
an image of the remote screen, on which the pointer is
moved. This differs from the PointRight metaphor of mov-
ing the pointer off the edge of one screen onto another. To
control multiple displays, the user would need to open one
VNC window per machine/display and switch among them.

Systems more similar to PointRight include x2x [19] and
x2vnc [6], which provide for configuration of an X-
Windows machine such that mouse and keyboard control
are redirected to another X-Windows machine or a machine
running a VNC server. These are specific to X-Windows
and do not support arbitrary topologies, allow dynamic
changes based on machine state, allow multiple machines
switched to a single screen, or provide for multiple simulta-
neous redirections.

The Mouse Anywhere capacity of Easy Living [2] allows a
single mouse to control any of a number of devices, using
the physical proximity of a person to a screen to provide the
binding. To redirect the pointer input from screen to screen,
the user physically moves from a location near one screen
to a location near the other.

The InfoTable and InfoWall [13] provide a specialized case
of the PointRight architecture. Control of the cursor is only
from laptops, and both the laptop and the other displays can
run only specialized Java applications, which hand off
pointing and dragging events via Java RMI. This enables
more sophisticated features such as �hyperdragging�, but
does not provide a solution to generally controlling applica-
tions in the workspace. The use of dedicated applications is
also the key to the iLand system [16] which builds work-
space applications on a uniform SmallTalk software plat-
form, and provides cross display pointer control to applica-
tions built on the framework.

A number of researchers have developed systems that pro-
vide for multiple people simultaneously using a single ap-
plication [1]. Software such as PebblesDraw [12] coordi-
nates the use of pointers by several users within a single
application. The Pebbles Remote Commander [12] provides
for the case of controlling a single shared display from a
collection of PDAs. PointRight input at its most basic is
indistinguishable from native mouse or pointer input, and
as such, it is restricted by the OS to single cursor control
per machine. Extending the PointRight implementation to
tag input streams from different users, which are then re-
ceived by applications that can distinguish them, would
allow PointRight to be used for multiple cursors on a single
display.

System Design Criteria
The following needs were key to designing PointRight:

A single mouse and keyboard for multiple displays: It is
impossible to fully operate a standard OS without a conven-
ient mouse and keyboard. While SMART Technologies
provides a software keyboard to supplement the touch pan-
els, it is only useful for trivial amounts of typing. When the
room was first set up, there was a wireless mouse and key-
board per projection display. As one would expect, this was
both confusing and cluttered. The first goal of PointRight
was to reduce this to a single mouse and keyboard for the
iRoom.

Controlling any device projected on a touch screen: The
touch panels for the SMART boards are connected as input
devices to the associated iRoom machines. Projecting a
laptop or other computer on the SMART board strongly
suggests that the touch panel should work for that machine,
not the one that is physically connected to the touch panel.
Rewiring and then installing the SMART drivers on a pro-
jected laptop is clearly an unsatisfactory solution. Point-
Right solves this problem.

Using a personal mouse and keyboard on a public
screen: Having a single iRoom mouse and keyboard is
great for a single user, but for multiple users, it is much
more convenient to be able to use any mouse and keyboard
at hand. Most often, this is a personal laptop. For example,
a key iROS facility, Multibrowse [10], makes it easy for a
participant in a meeting to bring up any web page or
application on any of the shared screens. Through a simple
drag and drop action, a file or URL from the local machine
appears on the shared display. Often the next step is to take
further actions such as following links on the displayed
page. Being able to redirect the laptop�s input devices to the
public screen via PointRight is much more convenient than
switching to the iRoom mouse and keyboard at that point.

These needs led to the following system design criteria:

Multi-input, multi-display
PointRight allows multiple users to use multiple mice and
keyboards to interact with multiple displays and machines.
The only restriction is that only one cursor can be active on
any one machine. This is a result of the decision to make
PointRight input masquerade as hardware input on any par-
ticular machine, which provides the maximum generality
with respect to applications. This could be extended for
special applications, as discussed above. As in all pointer
redirection systems, keystrokes follow the pointer.

Flexible and Dynamic Topology
Interactive workspaces will have a variety of topologies.
Not only can screens tile a plane in arbitrary ways, but there
may be folds and corners. The system needs to support ar-
bitrary 3D manifolds composed of rectangular screens of
different sizes and aspect ratios, providing smooth motion
across all of them. For example, in the iRoom setup shown

in Figure 2, the left edge of the table display connects to the
bottom edge of our front display while the top edge con-
nects to the bottom of the middle SMART Board. Other
mappings are possible, such as having each of the three
SMART Boards connected to the corresponding third of the
adjacent edge of the table screen.

Figure 2. The iRoom screen topology.

The topology can also be dynamic. There can be permanent
displays, some of which may switch between displaying
several different machines. Some machines may be able to
control several different screens simultaneously. Some
screens may be on rollers, and laptops may enter and exit
the workspace. Therefore, the input redirection system must
maintain a dynamic map of the room topology and the
mapping between machines and screens.

Different types of input
Some key distinctions constrain the use of different devices
in an input redirection system. We identify three different
cases and the mappings they support:

Screen-bound: (e.g., SMART Board, tablet computer,
eBeam pen) When the pointing device operates directly on
the display surface, there is a natural, fixed mapping from
the pointing position to a corresponding pixel on the screen.
Therefore, only redirection that preserves this mapping will
feel natural. This means that a touch panel, for example,
only operates naturally on a machine whose display image
is visible on the touch surface, either via projection or via a
system that mirrors the display pixels, such as VNC[14].

Machine-bound: (e.g., ordinary laptop and desktop). Most
common pointing devices, such as mice or trackpads, input
relative motion rather than absolute position. This motion is
not intrinsically tied to a particular display position. But,
the input is conceptually tied to a specific machine by the
juxtaposition of the input device with the display. This as-
sociation is particularly strong for laptops, where the dis-
play, keyboard and pointing device share a common pack-
age.

The display associated with a machine-bound device is
normally private, rather than part of the iRoom topology.
The user makes an explicit choice to switch between pri-
vate vs. room use. The first version of PointRight used a
hot-key command, the current one has the user slide the
cursor off the top edge of the display to enter the iRoom as

a universal pointer. Because of the strong expectation that
machine bound devices operate on their associated display,
there needs to be a strong visual reminder (such as a
grayed-out screen or a big message box) that input is being
remapped to the iRoom.

Free-space:.(e.g., our room mouse and wireless keyboard).
Any relative input device can be freely mapped to a work-
space. This illusion works particularly well if the actual
machine receiving the input is not visible, such as a wire-
less mouse and keyboard mapped through a machine hid-
den in the iRoom infrastructure. A free-space device needs
an explicit starting screen, which must be active and visible
to avoid confusion.

IMPLEMENTATION
The iRoom software is based on a middleware layer called
iROS [9], which enables the communication of events and
information across all of the machines. The key iROS com-
ponent is the Event Heap [8], which provides a blackboard-
like communication mechanism. PointRight runs on the
iROS, and uses the Event Heap for communication, along
with direct socket connections as needed for performance.
To participate in PointRight, a machine runs a PointRight
application and is connected through the local network to
the iROS.

The PointRight application consists of a sender that redi-
rects mouse and keyboard events from the local input de-
vice or devices while the receiver accepts remote pointer
and keyboard events into the local event stream. Senders
use a space topology description for the room to direct in-
put to the appropriate display. Receivers are responsible for
receiving events and rescaling cursor motions to fit their
particular display. Any machine running the PointRight
software can operate as either sender or receiver, but not
both simultaneously, avoiding problems of recursive redi-
rection, loops, etc. The interaction between a sender and
receiver is peer-to-peer with no centralized PointRight
server.

The PointRight system currently runs on Windows
9x/NT/2000 and on Mac OS X, and implementation is un-
der way for Linux. The code is available as open source [7],
and there are binary installers available for Windows.

Sender Implementation
When a sender is started, it accesses the current space to-
pology description to determine the configuration and
status of the available machines. Currently it uses a shared,
manually edited configuration file that specifies the basic
topology of screens, machines, and connections in a text-
based attribute-value format. Dynamic state information is
maintained about screen state (on/off), machine state
(on/off), and which machine is displaying to which display.
We are implementing a more flexible representation that
will enable dynamic changes to other configuration aspects
as well.

By monitoring events on the Event Heap, each sender
maintains dynamic data on the state of machines and dis-
plays. Events are generated when a screen is switched on or
off, a new machine becomes connected to a screen, or when
the PointRight application is opened or closed on a ma-
chine. Events are posted and retrieved on the Event Heap
server machine, and persist for a little more than two min-
utes. All active machines post events refreshing their cur-
rent state every two minutes. If the senders do not see an
event from a previously active machine or screen, the state
of that object in the local database is updated to �off.� This
soft-state mechanism allows for the graceful handling of
crashes, and also provides a simple mechanism for new
senders that come up to acquire the current state of ma-
chines and screens in the interactive workspace.

There are two basic modes for the sender, one for screen-
bound input, and one for normal (machine-bound or free-
space) input. For screen-bound devices, once an event is
posted that a new machine is being displayed on the screen,
the sender begins forwarding the absolute position of the
pointing input to the machine currently displaying to it.
With relative input, the sender determines a virtual location
for the pointer based on its own screen coordinates (extend-
ing beyond its visible screen) and uses the geometrical in-
formation to convert the absolute position into an appropri-
ate target screen (based on the current state of connections
of machines to screens) and a normalized position on that
screen. If a machine is not currently running a PointRight
receiver, or a display is off, then the sender skips over that
display to the next one in the same direction. If no receiver
is available in an indicated direction, then the cursor re-
mains at the edge of the screen, just as it does on reaching
the edge of the screen in a standard one-display system.
Once a target screen is determined, a command to position
the cursor on the machine displaying to that screen is sent.

Receiver Implementation
The receiver is configured with the area of the screen for
which it is responsible. The sender passes an absolute value
in a normalized range for x and y. These normalized values
are scaled to the x and y range managed by the receiver,
and the pointer on the receiver machine is set to this posi-
tion. Keyboard events from the sender are inserted into the
event queue on the receiving machine. Events coming from
multiple senders are put into the queue in whatever order
they arrive. Currently they are not tagged with information
as to the sender, but that is a planned extension.

Space Topology Description
The space topology description consists of screens, ma-
chines, and connections:

Screens: the dimensions of the physical screen, a set of
connections to other screens, a set of machines that can
display video to the screen, the state of whether the screen
is on or off, and which machine is currently driving the
screen.

Machines: Machines are computers running the PointRight
application and can therefore receive pointer events (they
can also send events, but this information does not need to
be shared globally). Data includes the rectangular pixel
region for which the PointRight application on that machine
is responsible. A multi-headed physical machine will there-
fore have multiple machine objects. There can also be ge-
neric machines, which are dynamically linked to specific
machines. For example, there is a special machine called
�laptop drop� that represents a laptop connected to the
iRoom VGA input cable for laptop projection. In the cur-
rent implementation, this avoids having to edit the static
part of the space topology description for each different
laptop.

Connection: A connection represents a valid transition
between screens that pointers can traverse. They are repre-
sented by an edge (top, bottom, left, right) for each of the
connected screens, and the region of the edge on each
screen through which the pointer can transition. The region
is defined by offsets that define the active region on the
edge. For example in the configuration shown in Figure 2,
0′-4′ on the top of table connects to 0′-5′ on the bottom of
the middle of the display labeled � SmartBoard Two.� Note
that a left edge can be connected to a top or bottom, and
screens flipped relative to each other are handled by revers-
ing the order of the offsets relative to one another (as is the
case with the connection between the table and the front
screen in Figure 2). There can be multiple connections to a
single screen edge as long as the edge regions for the con-
nections do not overlap.

Communication
A set of PointRight senders and receivers communicate
over an IP network with access to a shared Event Heap
server. The original implementation of the Event Heap had
too much latency to track cursor motion at adequate rates,
so a simple socket-based protocol was implemented to send
these events directly from the sender to the current receiver.
The Event Heap is used to communicate the changes of
pointer location to a new screen/machine that lead to open-
ing and closing these sockets (sockets are only opened if
there is no existing connection to the new target machine).
Keystrokes are communicated using the socket as well.

The current implementation of the Event Heap is efficient
enough that we are exploring using it for all PointRight
communication. Initial explorations with the Mac OS X
implementation suggest that it will easily support a half
dozen users on a wireless network (more on a wired net-
work). Above this, the network, not the Event Heap, causes
unsatisfactory delays. Events are much larger than the data
passed over the sockets, so this can be solved in any way
that simply reduces the total traffic on the network.

It is important to realize that no communication over a gen-
eral, shared network can guarantee the pointer performance

provided by a local machine. In modern workstations, both
the hardware and the operating system have been tuned to
give latency-free pointer input the highest priority. Raw
network speed is some compensation, but is not sufficient
in itself to guarantee performance for applications such as
PointRight.

CONFIGURATIONS
The value of PointRight is its generality, which enables it to
be used in a variety of hardware and user configurations. It
has been deployed in a number of different settings, sum-
marized below and shown in Figure 3.

The original iRoom
The primary development of PointRight has been in the
iRoom, described above and shown in Figure 1 and in Fig-
ure 3(a). It is used primarily as a laboratory for our ubiqui-
tous computing research, and for small meetings and pres-
entations.

PointRight has been in daily use for two years, and has be-
come one of the key features of the iRoom. It has been used
in all of the ways that were described in the earlier descrip-
tion of needs, and meetings are disrupted when it is not
available. Fortunately, it has been relatively robust, and on
the rare occasions when it fails, restarting takes only a min-
ute or two. We were initially concerned with whether the
non-planar mapping of the left side of the table to the bot-
tom of the front screen (as shown in Figure 2) would con-
fuse users. We found, however, that they used it without
hesitation or confusion.

Alternate iRooms
In addition to conducting our own project and course meet-
ings in the iRoom, applications have been developed for
other uses, such as construction management [11] and pro-
ject-based education. We have installed several iRoom fa-
cilities for these projects, with different configurations of
devices. One uses three front-projected touch panels, as
shown in Figure 3(f).

Users have the choice of using the touch screen directly,
thereby shadowing the screen, or using PointRight with a
free-space device, so they don�t have to stand in front of the
screen. The overall experience is that the bulk of �driving�
the display is done from a PointRight sender away from the
screen, but participants (not just the presenter) will often
step to the screen for a moment to perform a simple action
such as scrolling or following a link.

Another room, the prototype for a project learning setting,
has two front projection displays and no touch panels (Fig-
ure 3(d)). PointRight on the wireless mouse and keyboard
or on laptops is the primary input mode for that room.

IRoom2Go
Few environments provide the dedicated high-capacity fa-
cilities of an iRoom. We have found that PointRight is
equally valuable in �low tech� environments using small
amounts of standard equipment. The smallest configuration
is a pair of computers (laptops or desktops) one of which
runs the Event Heap server (which supports a variety of
iROS capacities in addition to PointRight) and one or both
of which run a PointRight sender or receiver. We have
found it useful in a development environment, where a de-
veloper can use a single mouse and keyboard to interact
with several machines without using a monitor switcher, as
shown in Figure 3(e).

Writing Laboratory
PointRight was used to create an environment for group
critiquing of student writing. Laptops are provided for indi-
vidual students and 5 large plasma panel displays are avail-
able for shared use by groups of three laptops as shown in
Figure 5(b) and (c). A single projected display is at the
front of the room. The PointRight configuration is set up so
that students within a group can simply move the cursor off
the top of their laptop screens onto the bottom of the shared
screen, which displays a document being jointly discussed.

Moving off the top of the group screen, the cursor goes
onto the projected room screen.

Ordinary word processing software is used on the shared
screens, with no special treatment for multiple pointers.
Since the students are engaged in face-to-face discussion,
ordinary social protocols are quite appropriate and have
proved adequate to avoid problems of concurrent action.
This negotiation is invisible in the same sense that the
movement of pointer from screen to screen is invisible. It
does not interpose any explicit mechanisms, but simply
meets natural expectations.

To create a mode where each student�s cursor moves di-
rectly from the laptop to the room screen instead of to a
group plasma panel, the plasma panels can be turned off
and the dynamic mapping automatically routes across them
to the next available target, which is the room screen. When
we have a dynamic topology database it will also be possi-
ble to accomplish this by changing the connections between
screens.

Multi-board integration
Our iRoom includes a machine with multi-display output
that can be used to display a single Windows desktop com-

Figure 3. PointRight configurations, clockwise from the top right. (a) The iRoom, with its three rear-projected SMART
boards and table. The free-space wireless mouse and keyboard, along with a laptop, are shown on the table. (b) The Writing
Laboratory, with its big front display and one of its 5 plasma displays. (c) Close-up of the plasma display and its three lap-
tops. (d) Project learning lab, two projectors pointed at a foam core screen, controlled by a wireless mouse and keyboard. (e)
A desktop iRoom. (f) The iRoom used for construction management, with its three front-projected, touch sensitive SMART
boards. The free space wireless keyboard and mouse are placed behind the projectors to eliminate shadowing.

(d)

(e)

(b)

(f) (a)

(c)

bining the three adjacent SMART Boards. Although it can
be controlled through PointRight using a free-space or ma-
chine-bound mouse, the natural interaction is to use the
touch screens, each of which now has a display that maps to
one third of the desktop on the single machine. Although
this is a somewhat specialized situation, the fact that the
generalized PointRight mechanism can be used for it is
indicative of the flexibility of the approach.

LESSONS
In working with these various configurations, we have
learned a number of lessons about what makes a cross-
machine input redirection mechanism effective.

Understanding input mapping: Our initial implementa-
tions had a single way of treating input and display map-
ping. The distinctions between different kinds of input led
to distinguishing the functionality that works for screen-
bound and other input devices. While this distinction is
invisible to users, it allows them to interact with displays in
a more intuitive way.

Detailed model of machines, displays, and connections.
To support the flexible configuration and reconfiguration of
an iRoom, we needed a detailed model of the correspon-
dence between computers, displays, devices, and regions.
One aspect of this was refining the geometric model so that
users can go across gaps and around corners without confu-
sion. We have learned that mappings that violate 2-
dimensional constraints (e.g., mappings from the side of the
table display to the bottom of the front display) do not cre-
ate difficulty or confusion to the user. The perceptual/motor
mapping to the 3-dimensional space leads to use that seems
�obvious�.

Robust dynamic data. The soft state mechanism makes it
possible for machines to react to system changes without
interruption. In particular, if some machine goes down, the
system adapts to the change within a couple of minutes
without the need for explicit intervention. Unfortunately in
today�s computing environment, this needs to be planned
for as a routine event

Include personal machines. PointRight can easily be in-
stalled as a sender on a personal laptop. When a machine
starts up it simply needs to run the application to become a
sender. This makes it realistic to use individual laptops for
PointRight input, even when they are not dedicated for use
in the workspace. This use has turned out to be one of the
most effective uses of PointRight.

FUTURE WORK
We are continuing to develop and extend PointRight in
several directions:

Dynamic topology update. Currently, data about the inter-
active space is partitioned into two components: static and
dynamic. Information about the size and location of dis-
plays, projectors, machines, etc. is stored in a file that is

accessed by the senders when they start up. Information
about the current state of each of these (whether projectors
are on or off, what machine currently is feeding the VGA
cable, etc.) is maintained dynamically through the soft state
mechanism of the Event Heap. We are developing ways to
interactively update the static information without having to
edit a configuration file. Some of this can be done auto-
matically (e.g., detecting new machines that are running a
PointRight receiver). In the long run, we can imagine a
context-aware environment in which sensors report the lo-
cation, identity, and orientation of each device, possibly
extending the vision-based techniques used to locate lap-
tops on the InfoTable [13] and to track people in Easy Liv-
ing [2].

Further integration of the visual space. PointRight pro-
vides a unified multi-display space for pointing. But, the
illusion of a continuous desktop breaks down if the user
trys to drag a window or icon across a display boundary.
We would like to find a method that elegantly extends
PointRight to moving information around the iRoom, while
maintaining our focus on general, heterogeneous applica-
tions and operating systems.

Flexible, concurrent input. PointRight already enables
multiple users to point at the same screen�they just can�t
do it simultaneously. Having multiple users active on the
same screen requires multiple cursors (or the equivalent),
plus OS and application support for multiple inputs. Using
the latest PointRight implementation, which uses only the
Event Heap for communication, we are exploring various
flexible input architectures.

In other work in our interactive workspace, we have devel-
oped a large high-resolution interactive display based on a
modeless interaction style that does not require a single
input focus [5]. It was developed using a pen-based tech-
nology that supports only a single physical input device, but
the underlying structure could be used to allow concurrent
operation by multiple PointRight senders, and we hope to
extend it in that way.

CONCLUSIONS
PointRight was originally designed to provide common
keyboard and mouse control for the collection of machines
in the iRoom. It has evolved to a general pointer redirection
mechanism, and has been deployed in several other settings
with configurations substantially different from the iRoom.

Unlike the other systems we know of, it was designed to
provide for heterogeneous operating systems and applica-
tions, combinations of fixed and mobile devices, and flexi-
ble layout topologies. It supports dynamic environments,
multiple machines per screen, and multiple screens per ma-
chine, and allows for direct interaction input devices such
as touch screens. The system requires only that an Event
Heap be running in the interactive workspace, and that each
machine that is going to participate, either as a source or

target of pointer events, install a small application. Users
need no special training or explanation, beyond a simple
introduction to the idea. They find using PointRight to be
intuitive and convenient.

PointRight is a part of the iROS software that we have
made publicly available [7], and we expect to develop it
further in response to feedback from a larger community of
users. The iROS software is part of the Stanford Interactive
Workspaces project (iwork.stanford.edu).

Finally, the fluidity of using the PointRight system is diffi-
cult to convey without seeing it in action. A video of the
system is available in streaming RealVideo format at
http://graphics.stanford.edu/papers/pointright-uist2002/..

ACKNOWLEDGMENTS
The Interactive Workspaces project is the result of efforts
by many students. Thanks to Bryn Forbes, and Rito Trevino
in particular, who helped figure out how to tap into the
Windows and Linux mouse and keyboard event systems,
and to Susan Shepard for her help making the video and
keeping the iRoom stable enough to develop in. Aren
Sandersen and Brian Luehrs have done the most recent im-
plementation and maintenance on the Windows version of
PointRight, Jeff Raymakers and Robert Brydon created the
OS X version. The work described here was supported by
DoE grant B504665, The Wallenberg Gobal Learning Net-
work, and by donations of equipment and software from
Intel Corp., InFocus, IBM Corp. and Microsoft Corp.

REFERENCES
1. Bier, Eric A., Steve Freeman, Ken Pier, MMM: The

multi-device multi-user multi-editor, CHI92

2. Brumitt, B., Meyers, B., Krumm, J., Kern, A., and
Shafer, S, EasyLiving: Technologies for Intelligent
Environments". Handheld and Ubiquitous Computing,
September 2000.

3. Coen, Michael. Design Principles for Intelligent Envi-
roments. Proceedings of AAAI'98. Madison, WI, 1998

4. Fox, A., Johanson, B., Hanrahan, P., Winograd, T.,
PDAs in Interactive Workspaces, Computer Graphics
and Animation, May, 2000.

5. Guimbretière, François, Maureen Stone, Terry Wino-
grad, Fluid Interaction with High-resolution Wall-size
Displays, UIST 2001.

6. Hubinette, Fredrik, x2vnc,
http://fredrik.hubbe.net/x2vnc.html.

7. iROS open source, http://iros.sourceforge.net

8. Johanson, B. and Fox, A., "The Event Heap: A Coor-

dination Infrastructure for Interactive Workspaces," To
appear in Proc. of the 4th IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA-2002),
Callicoon, New York, USA, June, 2002.

9. Johanson, Brad, Armando Fox, and Terry Winograd,
The Interactive Workspaces Project: Experiences with
Ubiquitous Computing Rooms, IEEE Pervasive Com-
puting Magazine 1(2), April-June 2002.

10. Johanson, B., Ponnekanti, S., Sengupta, C., Fox, A.,
"Multibrowsing: Moving Web Content Across Multi-
ple Displays," Proceedings of Ubicomp 2001, Septem-
ber 30-October 2, 2001.

11. Fischer, Martin; Stone Maureen; Liston, Kathleen;
Kunz, John; Singhal, Vibha (2002). "Multi-stakeholder
collaboration: The CIFE iRoom." Proceedings CIB
W78 Conference 2002: Distributing Knowledge in
Building, Aarhus School of Architecture and Centre
for Integrated Design, Aahus, Denmark, pp. 6-13.

12. Myers, Brad A., Herb Stiel, and Robert Gargiulo. "Col-
laboration Using Multiple PDAs Connected to a PC."
Proceedings CSCW'98: ACM Conference on Com-
puter-Supported Cooperative Work, November 14-18,
1998, Seattle, WA. pp. 285-294.

13. Rekimoto, J. "Augmented Surfaces: A Spatially Con-
tinuous Work Space for Hybrid Computing Environ-
ments." CHI'99, pp. 378-385.

14. Richardson, Tristan, Quentin Stafford-Fraser, Kenneth
R. Wood & Andy Hopper, "Virtual Network Comput-
ing", IEEE Internet Computing, Vol.2 No.1, Jan/Feb
1998 pp33-38.

15. Smart Technologies SMART Board,
http://www.smarttech.com/ SmartBoard/.

16. Streitz, Norbert A., Jörg Geißler, Torsten Holmer,
Shin'ichi Konomi, Christian Müller-Tomfelde, Wolf-
gang Reischl, Petra Rexroth, Peter Seitz, Ralf
Steinmetz, i-LAND: An interactive Landscape for
Creativity and Innovation, CHI99

17. Tandler, Peter: Software Infrastructure for Ubiquitous
Computing Environments: Supporting Synchronous
Collaboration with Heterogeneous Devices. In: Pro-
ceedings of UbiComp2001: Ubiquitous Computing.
Heidelberg: Springer LNCS 2201, 2001, pp. 96-115.

18. Weiser, M., The computer for the twenty-first century.
Scientific American, 94-100, September 1991.

19. x2x, http://ftp.digital.com/pub/DEC/SRC/x2x/

