Query, Analysis, and Visualization of
Hierarchically Structured Data using Polaris

Chris Stolte, Diane Tang, Pat Hanrahan
Stanford University

Abstract a greater level of detail. Thus, the interface must expose the under-

In the last several years, large OLAP databases have become comlay'ng hn_erarchlca_ll structure of the data and support rapid refinement
of the visualization.

mon in a variety of applications such as corporate data warehouses . . . . .
Y P P This paper presents an interactive visual exploration tool that fa-

and scientific computing. To support interactive analysis, many ilitat lorat vsis of dat h ith rich hi
of these databases are augmented with hierarchical structures that!''2!€S exploratory analysis ol data warenouses with rich hierar-
chical structure, such as would be stored in data cubes. We base

provide meaningful levels of abstraction that can be leveraged by this tool on Polaris [20], a system for the exploration of multidi-

both the computer and analyst. This hierarchical structure gener- ional relational datab Polaris is built lqebrai

ates many challenges and opportunities in the design of systems fofnensional relational atabases. Folaris 1S bullt upon an algebraic

the query, analysis, and visualization of these databases formalism for constructing table-based visualizations. The state of
’ i ) the user interface is a visual specification. This specification is in-

In this paper, we present an interactive visual exploration tool terpreted according to the formalism both to determine the series
that facilitates exploratory analysis of data warehouses with rich prete 9 :
hierarchical structure, such as might be stored in data cubes. WeOf queries necessary to retrieve the requt_asted data: as well as de-
base this tool on Polaris, a system for rapidly constructing table- termine how to map and layout the resulting tuples into graphical

based graphical displays of multidimensional databases. Polaris_marks. Because every intermediate specification is valid and can be

builds visualizations using an algebraic formalism that is derived interpreted to create a visualization, analysts can rapidly and incre-

from the interface and interpreted as a set of queries to a databasememalIy construct complex queries, receiving visual feedback as

We extend the user interface, algebraic formalism, and generationthe_?_/hasse.mbleI and.alterftlr;elsp.eccliflgatl?rclf. " ¢
of data queries in Polaris to expose and take advantage of hierarchi, . e ﬁ.”g'l'?a \t/erstlon 3 d'o aris did no tlrecé Yy supp?r or exEolse |
cal structure. In the resulting system, analysts can navigate through ierarchically structured dimensions, instead presenting €ach leve

the hierarchical projections of a database, rapidly and incrementally ©f the hierarchy as a separate, independent dimension. In this pa-
generating visualizations for each projection per, we extend the algebraic formalism (Section 4), user interface

(Section 5), and generation of data queries (Section 6) to take ad-
: vantage of hierarchically structured data cubes. We then illustrate
1 Introduction the ease and effectiveness of using Polaris to explore hierarchically
In the last several years, large OLAP databases have become comstructured data via three case studies (Section 7).
mon in a variety of applications. Corporations are creating large
data warehouses of historical data on key aspects of their opera-2 Related Work
tions. International research projects such as the Human Genome . . .
Project [11] and the Sloan Digital Sky Survey [18] are generating We consider two areas of related work: the visual exploration of
massive scientific databases. databases and the use of data visualization in conjunction with data
A major challenge with these data warehouses is to extract mean-Mining algorithms.
ing from the data they contain: to discover structure, find patterns, . .
and derive causal relationships. The sheer size of these data setg'l Visual Exploration of Databases
complicates this task: Interactive calculations require visiting each One area of related work is the field of visual query tools. Projects
record are not plausible, nor is it feasible for an analyst to reason such as VQE [5], Visage [16], DEVise [14], and Tioga-2 [26] have
about or view the entire data set at its finest level of detail. Imposing focused on developing visualization tools that directly support in-
meaningful hierarchical structure on the data warehouse providesteractive database exploration through visual queries. Users can
levels of abstraction that can be leveraged by both the computerconstruct queries and visualizations directly through their interac-
and the analyst. tions with the interface. These systems have flexible mechanisms
These hierarchies can come from several different sources. Somedor mapping query results to graphs and support mapping database
hierarchies are knowa priori and provide semantic meaning for  tuples to retinal properties of the marks in the graphs. Of these sys-
the data. Examples of these hierarchies are Time (day, month, quartems, only Tioga-2 provides built-in support for interactively navi-
ter, year) or Location (city, state, country). However, hierarchies gating through and exploring data at different levels of detail. How-
can also be automatically derived via data mining algorithms that ever, the underlying hierarchical structure must be created by the
classify the data, such as decision trees or clustering techniquesanalyst during the visualization process; Polaris leverages the hier-
Part of the analysis task when dealing with automatically generated archical structure that is already encoded in the data warehouse.
hierarchies is in understanding and trusting the results [22]. XmdvTool [24], Spotfire [19], and Xgobi [4] provide the analyst
Visualization is a powerful tool for exploring these large data with a set of predefined visualizations such as scatterplots and par-
warehouses, both by itself and coupled with data mining algo- allel coordinates. These systems are augmented with extensive in-
rithms. However, the task of effectively visualizing large databases teraction techniques (e.g., brushing and zooming) that can be used
imposes significant demands on the human-computer interface toto refine the queries. In contrast, we provide the analyst with a
the visualization system. The exploratory process is one of hypoth- set of building blocks that can be used to interactively construct
esis, experiment, and discovery. The path of exploration is unpre- and refine a wide range of displays to suit the analysis process.
dictable, and analysts need to be able to easily change both the dat®f these systems, only XmdvTool supports the exploration of hi-
being displayed and its visual representation. Furthermore, the an-erarchically structured data. XmdvTool has been augmented with
alyst must be able to first reason about the data at a high level of structure-based brushes [7] that allow the user to control the dis-
abstraction, and then rapidly drill down to explore data of interest at play’s global level of detail (based on a hierarchical clustering of the
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Figure 1: A hierarchicalimedimension. A hierarchical dimension is structured as a tree with multiple levels. In this case, there are four
levels: All, Year, Quarter, andMonth Each level corresponds to a different semantic level of detail. The parent-child relationships in the tree
are the basis for aggregation within the dimension.

data) and to brush records based on their proximity within the hier- than data sets with rich hierarchical structure. In this section, we
archical structure. Again, this approach limits the user, in this case explain the difference between the two types of data sources as well
to viewing a single hierarchical structuring of the data and a single as give a brief overview of Polaris before discussing our extensions
ordering of that hierarchy to make proximity meaningful. Polaris to Polaris in the rest of the paper.

supports both the simultaneous exploration of multiple hierarchies )

(derived from semantic meaning or algorithmic analysis) and the 3.1 Relational Databases vs. Data Cubes

ability to reorder the hierarchy as needed. o Relational databases organize data iefations where each row
Another relevant database visualization system is VisDB [12], in a relation corresponds to a basic entity or fact and each column
which focuses on displaying as many data items as possible to pro-represents a property of that entity [23]. For example, a relation
vide feedback as users refine their queries. This system even dismay represent transactions in a bank, where each row corresponds
plays tuples that do not satisfy the query, indicating their “distance” tg a single transaction, and each transaction has multiple properties,
from the query criteria using spatial encodings and color. This ap- sych as the transaction amount transaction, the account balance, the
proach helps the user avoid missing important data points that fall hank branch, and the customer.
just Outside Of the Selected query parameters. In Contrast, Polaris, We refer to arow in a re|ation agap|eor record and a Column
by taking advantage of the hierarchical structure of the warehouse, i the relation as dield. A single relational database will contain
provides extensive ability to drill down and roll up data, allowing many heterogeneous but interrelated relations.
_the analyst_to get a_complete overview of the data set before focus-  The fields within a relation can be partitioned into two types:
ing on detailed portions of the database. dimensionsand measures Dimensions and measures are similar
2.2 Visualization and Data Mining to independent and dependent variables in traditional analysis. For
) ) o example, the bank branch and the customer would be dimensions,
Many research and commercial systems use visualization in con-\hile the account balance would be a measure.
junction with automated data mining algorithms. One common ap- |y many data warehouses, these multidimensional databases are
plication of visualization together with data mining is in helping  gtryctured as n-dimensional data cubes. Each dimension in the
analysts understand models generated by the data mining processyata cube corresponds to one dimension in the relational schema.
For example, several researchers have developed techniques speciEach cell in the data cube contains all the measures in the relational
ically for displaying decision trees, Bayesian classifiers, and deci- gchema corresponding to a unique combination of values for each
sion table classifiers [1], and these visualization techniques have gimension.

been incorporated into products such as SGI's MineSet [3]. The dimensions within a data cube are often augmented with
Other approaches to coupling visualization and data mining have 4 pigrarchical structure. This hierarchical structure may be derived
traditionally been employed within focused domains. One ap- from the semantic levels of detail within the dimension or generated
proach is to use visualization to gain an initial understanding of o classification algorithms. Using these hierarchies, the analyst
a warehouse and then apply algorithmic analysis to the identified ;5 explore and analyze the data cube at multiple meaningful levels
areas of interest [13][22]. The other major approach is to use data ut aggregation calculated from a baset table(i.e., a relation in
mining to compress the size and dimensionality of the data and theny,e gatabase with the raw data). Each cell in the data cube now
use focused visualization tools to explore the results [10][25]. corresponds to the measures of the base fact table aggregated to the
Unlike these examples, Polaris is not focused on a particular al- proper level of detalil.
gorithm, a single phase of the discovery process, or a narrow appli- - The aggregation levels are determined from the hierarchical di-
cation domain. Instead, Polaris is a general tool that can be used,,ansion. which is structured as a tree with multifgheels Each
to gain an initial understanding of a warehouse, to visually mine o, 6| corresponds to a different semantic level of detail for that di-
the warehouse, to understand algorithm output, and to interactively .« 1sion. Within each level of the tree there are maoges with
explore a mining model. The ability to encode a large number of g0 node corresponding to a value within the domain of that level
dimensions in a table layout in Polaris helps an analyst gain an ini- ot yetail of that dimension. The tree forms a set of parent-child re-
tial understanding of how different dimensions relate as a precursor 5o nships between the domain values at each level of detail. These
to automated discovery. Similarly, Polaris can be used directly as relationships are the basis for aggregation, drill down, and roll up

a ViSl.".iI m_ining tool. Fir_1a||y, by integrating the decisi_on trees and_ operations within the dimension hierarchy. Figure 1 illustrates the
classification networks into the data warehouse as dimensional hi- jimension hierarchy for @imedimension.

erarchies, Polaris can be used by analysts to gain an understanding Simple hierarchies, like the one shown in Figure 1, are com-

of how these models classify the data. monly modeled using atar schema The entire dimensional hi-
erarchy is represented by a single dimension table (also stored as a
3 BaCkground relation) joined to the base fact table. In this type of hierarchy, there
Polaris [20] was originally designed to support the interactive ex- is only one path of aggregation. However, there are more complex
ploration of multidimensional relational data warehouses rather dimension hierarchies where the aggregation path can branch. For
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Figure 2: The Polaris user interface with enhancements (shown in blue) to expose and support hierarchical dimensions. Analysts construct
table-based displays of relational and cube data by dragging dimension levels and measures from the data cube schema onto shelves through:-
out the display. A given configuration of levels and measures on shelves is called a visual specification. The specification unambiguously
defines the analysis and visualization operations to be performed by the system to generate the display.

example, &imedimension might aggregate frobay to bothWeek upon a formalism for precisely describing graphical table-based vi-
andMonth These complex hierarchies are typically represented us- sualizations. The configuration of fields on shelves formisaal
ing asnowflake schenthat uses multiple relations to represent the specification Each visual specification is an expression of the Po-

diverging hierarchies.

When referring to values within a dimension hierarchy, we will
use a dotted notation to specify a specific path from the root level
(All) of the hierarchy down to the specified value. Specifically, to
refer to a value on level of a hierarchy, we first optionally list
the dimension name, then zero or more of the{ 1) intermediate
ancestor values, and then finally the value on & level, all
separated by periods. For example, tlam node on theMonth

laris formalism that can be interpreted to determine the exact anal-
ysis, query, and drawing operations to be performed by the system.
The specification consists of two main portions. The first por-
tion, built on top of an algebra, describes the structure of the table-
based visualization (i.e., how the table is divided into panes). We
can think of a table as having three axes: the x-axis divides the table
into columns, the y-axis divides the table into rows, and the z-axis
layers x-y tables that are composited on top of one another. Each

level in theTimehierarchy that corresponds to January, 1998, can intersection of an x, y, and z axis results in a table pane. Thus,
be referred to a4998.Qtrl.Jan When this notation is used, we the first portion of the specification consiststable algebra ex-

will call the reference aualified value When a value is simply pressionswith one expression per axis. Each pane contains a set
described by its node value (without any path to the root node) we of records (obtained by querying the data cube) that are visually
call the reference annqualified value encoded as a set of marks to create a graphic.

. . While the first portion of the specification determines the “outer
3.2 Polaris Overview table layout,” the remaining portion determines the layout within a
Before explaining the extensions to Polaris needed for supporting pane, such as how the data within a pane is transformed for analysis
interactive visual exploration of hierarchically structured data sets, and how it is encoded visually. Specifically, it describes:

we first give a brief overview of the original Polaris system.

The goal of Polaris was to provide an interface for rapidly and
incrementally generating table-based displays (note that from here
on out, unless otherwise specified as a fact table or dimension table,
the termtablerefers to a table-based visualization and not a relation

in a database). Users construct these table-based visualizations via

a drag-and-drop interface, dragging field names from the Schema
box to various blue shelves throughout the interface, as shown in
Figure 2. Any configuration of field names on shelves is valid.

The Polaris interface is simple and expressive because it is built

1. The sorting and filtering of fields.

2. The mapping of data sources to layers.

3. The grouping of data within a pane and the computation of
statistical properties, aggregates, and other derived fields.

4. The type of graphic displayed in each pane of the table. Each
graphic consists of a set of marks (e.g., circles, bars, glyphs,
etc.), with one mark per record in that pane.

5. The mapping of data fields to retinal properties of the marks
in the graphics (for example, mappilgofit to the size of a
mark orQuarterto the color).
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Figure 3: Example of the set interpretations and table structures resulting from simple applications of the table algebra operators. Ordinal
fields (e.g., dimension levels) partition the table into columns (or rows) and quantitative fields (e.g., measures) are spatially encoded as axes
within the columns. Note the difference between the application of the nest and dot operator to the same operands when the fact table does
not contain data for October.

We only need to extend the table algebra and the specification ofinto rows and columns. The third expression defines the z axis of
the filtering and sorting. The rest of the formalism, including how the table, which partitions the display into layers.

we determine the type of graphic and the visual encodings, has not Each expression is composed of operands connected by opera-
changed and so we do not discuss them further here. See Stolte etors. Each operand is evaluated to a set form, and the operators

al. [20] for a detailed discussion. define how to combine two sets. Thus, each expression can be inter-
Thus, in order to extend Polaris to support hierarchical dimen- preted as a single set (thermalized set forjnwhere each element
sions, we need to modify: in the set corresponds to a single row, column, or layer.
e the formalism and table algebra (described in Section 4) To be more specific, each operand of the table algebra is the
e the user interface (described in Section 5) name of a field. There are two types of operands: ordinal and quan-

e and the interpretation of the visual specification as a set of {itative. Whether an operand is ordinal or quantitative depends on
queries in a multidimensional query language (described in the type of the corresponding field in the database.

Section 6). The set interpretation o_f an ordlnal operand consists of the mem-

bers of the ordered domain of the field. For example, the set inter-

: : pretation of theMonthoperand would b¢Jan Feb ...,Dec}. The
4 EXtendmg the Formalism set interpretation of a quantitative opgrand is a single-ilement set
In order to support both relational databases and hierarchically containing the field name. For example, the set interpretation of the
structured data cubes, we need to extend two aspects of the Polari®rofit operand would béProfit}.

formalism: the specification of the table configurations, and the fil-  The assignment of sets to the different types of operands reflects
tering and sorting of fields. Before we discuss these two extensions,the difference in how the two types of fields are encoded into the
however, we first give a brief review of the table algebra. structure of the table. Ordinal fields partition the table into rows

. and columns, whereas quantitative fields are spatially encoded as
4.1 Table Algebra Review axes within the table panes. Examples of the set interpretations and

A key component of this formalism is the table algebra, which is resulting table structures for both ordinal and quantitative operands
used to specify the table configurations. When analysts place fieldsare shown in Figure 3.

on the axis shelves (shown in Figure 2) they are implicitly creating  As stated above, a valid expression in the algebra is an ordered
expressions in this algebra. A complete table configuration consistssequence of one or more operands with operators between each pair
of three separate expressions. Two of the expressions define theof adjacent operands. The operators in this algebra, in order of
configuration of the x and y axes of the table, partitioning the table precedence, are crosg), nest (/), and concatenation (+); paren-
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Figure 4: Each pane in a Polaris visualization corresponds to a slice of a projection of a data cube. The projection in each pane is determined
by the contents of the “Level of Detail” shelf and by the normalized set form of the table expressions. The table is partitioned into rows,
columns, and layers corresponding to the entries in these sets. The underlying data cube must be projected to include only the dimensions
that occur in these entries. This is shown here for a simple text-based table. Generating this table requires two separate projections of the data
cube because of the concatentation in the y-axis expression.

theses can be used to alter the precedence. Because each operand isA second approach would be to list only the node values, ignor-
interpreted as an ordered set, the precise semantics of each operatang the path to the root of the hierarchy and excluding repeated val-
are defined in terms of how they combine two sets (one each from ues. Again, we order the node values by a depth-first traversal of the
the left and right operands) into a single set. Some examples aredimension hierarchy. Fdvionth this would yield{Jan Feh ...,
shown in Figure 3. Nov, Dec}. Clearly, using this set interpretation we can generate
Thus, every expression in the algebra can be reduced to a singledisplays that summarize monthly values across years. Furthermore,
set, with each entry in the set being an ordered concatenation ofwe can generate displays that drill down into a hierarchy by using
zero or more ordinal values followed by zero or more quantitative our nest (/") operator; e.gYear/ Month
field names. For example, the normalized set form of the expression  The use of the nest for drilling down into a hierarchy, however,
Month x Profitis { (Jan Profit), (Feb, Profit), ..., Oec Profit) }. would be flawed. The nest operator is unaware of the defined hierar-
The normalized set form of an expression determines one axis of thechical relationship between the dimension levels but instead works
table: the table axis is partitioned into columns (or rows or layers) by deriving a relationship based on the tuples in the fact table. Not
so that there is a one-to-one correspondence between columns andnly is this inefficient, as fact tables are often quite large, but it

entries in the normalized set. can also yield incorrect results. For example, consider the situation
o where no data was logged for October. Application of the nest op-
4.2 Redefining the Algebra Operands erator would result in an incorrectly deriv@anehierarchy that did

In order to fully support and expose the hierarchical structure in not include October as a child of Qtr4 or either year (see Figure 3).
data cube dimensions, we must redefine the algebra so that the Our solution is to introduce another operator, the dot (“.") oper-
operands are measures and dimension levels rather than indeperator, that is similar to the nest operator but “hierarchy-aware.” We
dent database fields. In this redefinition, measure operands are triveview the definition of nest and then define dot. If we defifido
ially treated the same as quantitative fields: we assign to each meaDbe the fact table being analyzedp be a record, and(r) to be the
sure operand a single element set containing the measure namevalue of the fieldA for the recordr, then the definition of nest, as
Like quantitative fields in the original algebra, measures will be Presented in [20], is:
spatially encoded as axes within the panes.
Similarly, we would like to treat dimension levels in the same A/B ={(a,b)|3Ir € FT st A(r) = a & B(r) = b}
way we treated ordinal fields and assign to each the ordered domain
of the dimension level. The resulting sets would then partition the The dot operator is defined similarly. If we defibd to be the
table into rows, columns, and layers. There are, however, complica- relational dimension table defining the hierarchy that contains the
tions. The domain of a dimension level is not a single ordered list. levelsA andB, andA precedes in the schema obT, then:
Instead, it is composed of the node values at a particular level in the
dimension hierarchy, and each node value is uniquely defined by its A.B={(a.b)|3r € DT st A(r) = a & B(r) = b}
path to the root of the hierarchy. To illustrate the complications this
causes, we consider tA@mehierarchy illustrated in Figure 1. Note that whereas nest produces a set of two-valued tuples, dot
First, consider théMlonth level of the hierarchy. One possible produces a set of single-valued tuples, each containing a qualified
set interpretation of this symbol would be to list each node value, value. If the two operands are not levels of the same dimension
including its path to the root for uniqueness, ordered by a depth- hierarchy (or set interpretations of operations on levels of the same
first traversal of the dimension hierarchy; e.§1998.Qtrl.Jan hierarchy), orA does not precedB in the schema obT (e.g.,A
..., 1999.Qtr4.De¢. Although this approach provides a unique must be an ancestor level in the tree defineddy , then the dot
set interpretation for each dimension level, it limits the expressive- operator evaluates to the empty set. With this definition, the two
ness of the algebra. Any table constructed to inclitenth must expressiongvionth and Year.Monthare not equivalentMonth is
also includeYear it is not possible to create displays that sum- interpreted agJan, Feb, ..., Dec} whereasyear.Monthwould be
marize monthly values across years, a useful view that we would interpreted ag1998.Jan 1998.Feb ..., 1999.De¢. With a fully
like to support. Interestingly, however, summarizing monthly val- populated fact tablefear.Months equivalent torear/ Month
ues across years is not a standard projection of a data cube, as it Given these set interpretations for dimension and measure
requires aggregating across a hierarchical level. We discuss howoperands, we can apply the set semantics for each operator to re-
this type of aggregation is computed in Section 6. duce expressions in this new algebra to their normalized set form,



with each entry in the normalized set being an ordered concate-the ordinal fields of the database. The dimension’s name, however,
nation of zero or more domain values followed by zero or more cannot be dragged to the interface; the analyst can only manipulate
measure names. As before, the normalized set form determines onehe individual levels within a dimension.
axis of the table.

5.2 Qualifying Dimension Levels

4.3 Filtering and Sorting within the Algebra When an analyst drops a dimension level, sudiasth on a shelf,

In our original formalism, a table configuration was specified by there are several potential intentions. He may intend to include the

three expressions in the table algebra, and then filtering and sortingoperandvionthin an expression, but he may also meé@ar.Month

was specified separately by listing the sorted and filtered domain or Year.Quarter.Monththe analyst needs to be able to specify the

for each database field that was to be filtered or sorted. When theexact qualification desired. Our solution is the make full qualifi-

set interpretation was generated for field operands in the algebra,cation (e.g.,Year.Quarter.Monththe default. To generate a dif-

these specified domains would be used. It is possible, however, toferent qualification, the user can right-click the dimension level in

generate a more succinct and general formalism if we incorporate the shelf and select the “Qualification...” menu item. He is then

the filtering and sorting directly into the table algebra. presented with a dialog box that allows him to explicitly specify
In our revised formalism, if a dimension or measure is to be fil- which of the intermediate levels to include in the qualification of

tered (or sorted), then the filtered and sorted domain is listed di- the operand, thus generating the applicable expression.

rectly after the instance of the level or measure operand in the ex-

pression, in effect directly specifying a set interpretation for the 5.3 Qualifying Dimension Level Filters

operand. For example, if we wished to filter the expressiomth When applying filters to a dimension level, an analyst may want to
+ ProductTypeto include only the first three months of the year, = gpecify the filter using either qualified or unqualified values. We
sorted in reverse order, this could be specified by including the fil- haye extended the Polaris interface to allow both options. For ex-
tered domain in the expression as followdonth{Mar, Feb, Jan} ample, if the user wishes to exclud898.Jarbut not1999.Jan he

+ ProductType The advantage provided by this revision of the ta-  can choose to filter using qualified values. Similarly, it is possible
ble algebra is the ability to specify separate filters and orderings 1 specify a filtering using unqualified values: each qualified value
for different instances of the same operand in an expression. Simi-that matches the unqualified value will be included in the filter. Cur-
larly, we can filter a measure by specifying a range of values, e.9., rently, Polaris requires the filter be specified using either qualified

Profit{0, 500}. i . or unqualified values, but not both. As a future extension, we intend
We also need to allow the use of qualified values in the spec- 1o support heterogeneous filtering.

ification of filtering or sorting of dimension levels. As we dis-
cussed in Section 3.1, a value in a dimension hierarchy can either5.4  Drilling down and Rolling up
be described by simply stating the value in the node (an unquali-

fied value) or by describing a path from that node to the root node tion is to drill down or roll up within a dimension hierarchy. There-

Ir:etzzi(k)]:]elr:\;gr%t(ii g:ilelfsligrvatlgi)é e\i/\t/)ree?ofﬂtseenBgtﬁrtso(ret;ngf 3£L'esfore, it is important to include a simple mechanism for performing
. o y I yp these operations. One option is for the analyst to remove the cur-
in the specification, as the unqualified node values are often not

. ) - rent level from the appropriate shelf (by dragging it off the shelf)
TS'&;% F;)hr examp”fg, gthel user W'Sthss to echmGQS.Jarbut not and then drag the new level to that same shelf. Although the desired
~anthen qualiied vajues must be used. effect is achieved, it is more complicated than we would like.
s We provide an alternate mechanism for drilling down and rolling
S Redefmmg the User Interface up a dimension. Within the box representing each dimension level
Having redefined the formalism underlying the Polaris interface, on a shelf, there is anV” icon, as can be seen in Figure 2. When
we must now alter the interface to support hierarchically structured the user clicks on theV” icon, he is presented with a listing of
data. Five major changes need to be made: all the levels of the dimension (including diverging levels in com-
plex dimensional hierarchies). When a new level is selected, this is
1. the Schema list must display dimension hierarchies and mea-interpreted as a drill down (or roll up) operation along that dimen-

When analyzing and exploring large data cubes, a common opera-

sures, not simply database fields; sion and the current level is automatically replaced with the selected
2. the analyst must be able to distinguish betw&émmth and level (with the same qualification). Thus, the user can rapidly move

Year.Monthwhen includingMonthin a specification; between different levels of detail along a dimension, refining the
3. the analyst must be able to filter a dimension level using qual- visualization as he navigates.

ified values; . .
4. the analyst must be able to quickly drill down and roll up a 2-5 Grouping within Panes

dimension hierarchy using the interface; In the original version of Polaris, the analyst specified the group-
5. the analyst needs to be able to change the number of marksing of tuples within each pane by placing fields on the shelf titled

within each pane to reflect different levels of detail. “Group By”". Each field in this shelf was included in the GROUP

BY clause in the SQL query that aggregated the data in each pane
Figure 2 illustrates the revised interface. We now discuss each in-into tuples to be mapped to marks.
terface extension in detail. The situation when visualizing data cubes is slightly different.

The query for each pane does not produce a relational data set that
5.1 The Schema is then grouped and aggregated. Instead, each pane corresponds
In the original interface, the analyst was presented with a list box to a projection of the data cube, with the projection determined by
containing the ordinal and quantitative fields in the database. The the dimension levels included in the table expressions. To produce
analysts included these fields in a specification simply by dragging additional marks within a pane, the analyst must specify additional
and dropping the field’s name onto the appropriate shelf in the inter- dimensions to be included in these projections, done by including
face. To support hierarchical data cubes, we have extended this listthe desired dimension levels in the “Level of Detail” shelf (shown
box to display the dimensions of the data cube with an ordered list in Figure 2), the hierarchical analog of the “Group by” shelf.
of the dimension’s levels beneath each dimension. The analysts can As was the case with the original version of Polaris, this “Level
drag and drop any dimension level to the interface as they did with of Detail” shelf gives the analyst the ability to rapidly drill down
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Figure 5: The overall data flow in Polaris when generating a visual representation of a data cube.

into their data without changing the table configuration. Changing then be sorted into panes locally.
the level of detail without changing the table configuration only The key to efficiently utilizing the OLAP server is this grouping

changes the data density within each pane. of queries. By algebraically manipulating our table expressions, we
can quickly determine all projections corresponding to a given ta-
6 Querying a Hierarchical Data Cube ble configuration. The key observation is that of our four algebraic

operators (nest, cross, concatenate, and dot), the only operator that

The final step in extending Polaris to fully support hierarchical data can produce adjacent panes with differing projections is the con-
cubes is to show how to construct an efficient set of multidimen- catenate operator. Nest, cross, and dot include all input dimension
sional queries from a specification in our formalism. levels in each output set entry; concatenate does not. Thus, if we

Each pane in a Polaris visualization corresponds to either a slicecompute a single expression as the cross of the three table expres-
of a projection of the data cube or an aggregation of such a pro- sions and then reduce to a sum-of-terms form, the resulting terms
jection. The specific projection corresponding to each pane is de-will correspond to the set of projections that need to be generated.
termined by the contents of the “Level of Detail” shelf (discussed This is illustrated in Figure 5.
in Section 5.5) and by the normalized set form of the table axis  Most typical multidimensional query languages provide a mech-
expressions (dlscussed in Section 4) The table |S_par.t|t|0ned |nt0anism for generating projections of the data cube. Our current im-
rows, columns, and layers corresponding to the entries in these setsplementation generates a single MDX query to a remote Microsoft
Therefore, each pane in the table is associated with three set entrieg\nalysis Server for each projection. The resulting cells are then
corresponding to its row, column, and layer, respectively. sorted into panes using transformation capabilities built into Po-

The underlying data cube must be projected to include only the laris. In addition, any explicitly specified filtering of dimension
dimension levels that occur in the three set entries (and in the Level members is included in the MDX queries sent to the remote server.
of Detail shelf) and it must be sliced to include only the specific The overall data flow in Polaris is depicted in Figure 5.
dimension members that occur in these entries. This is illustrated
in Figure 4. When multiple set entries defining a pane refer to dif-
ferent levels of the same dimension, the correct projection to re- 7 Results

trieve is the one corresponding to the most detailed level of that |, this section, we illustrate how Polaris can be used to effectively
dimension. Before determining how the projections are efficiently nayigate and analyze three hierarchically structured data sets: (1) a
retrieved from the server, we must carefully consider the situation 12_\week trace of mobile network usage, (2) results from the 2000
where set entries contain values whose qualification skips levels in presidential election, and (3) historical business metrics for a hypo-
the hierarchy. thetical coffee chain.

When set entries contain values whose qualification skips levels
(e.g., Time.Jap, this is interpreted to imply that nodes in the hi-
erarchy whose values are not unique (when we consider only the
included levels) should be aggregated in that projection. In the Figure 6 shows an analysis of a 12-week trace of every packet that
Time.Janexample, the aggregation for the pane must be computed entered or exited the mobile network in the Gates building at Stan-
by aggregating across years, and thus across a hierarchy level ratheford University [21]. Over the 12 weeks, 78 million packet headers
than up the hierarchy. This type of aggregation is not natively sup- were collected. The analysis goal is to understand usage patterns of
ported in most hierarchical query languages. Thus, we request thethe mobile network. This data is stored in a data cube with many
cube projection from the remote server and compute the aggrega-different dimensions (User, Time, Remote host, Traffic direction,
tion within Polaris before sorting tuples into panes, as shown in and Application), each with multiple levels of detail.

Figure 4. If all node values are unique across the entire level, then  To start the analysis, the analyst first sees if she can spot any
no aggregation needs to be performed. patterns in time, so she creates a series of line charts in Figure 6(a)

Although it is possible for each pane to correspond to a different showing packet count and size versus time for the most common
projection of the cube, the common situation is for a large number applications, broken down and colored by the direction of the traf-
of panes to correspond to the same projection and differ only by fic. In these charts, the analyst can see that the web is the most
how that projection is sliced. For efficiency, we would like to con- consistently used application, while session is almost as consistent.
sider these panes as a group and send a single query to the OLARFile transfer is the least consistent, but also has some of the highest
server requesting the appropriate projection (and then, if necessarypeaks in both incoming and outgoing ftp traffic. Note the log scale
perform a single aggregation of the projection). The projection can on the y-axes.

7.1 Mobile Network Usage Data
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Figure 6: Analysis of network usage data using Polaris. Figure 7: Analysis of the results of the 2000 presidential election.

Given this broad understanding of traffic patterns, the next ques- Were due to the rendering group within the graphics lab, while the
tion posed by the analyst is how the application mix varies depend- robotics lab had vastly different behavior depending on the partic-
ing on the research area. The analyst pivots the display to generatdilar group (the mob group dominated by session traffic, while the
a single line chart of packet count per research area over time, bro-learning group had more web traffic, for example).
ken down and colored by application class (Figure 6(b)). From this . . .
breakdown, the analyst can see that the graphics group was respon?-2 2000 Presidential Election Results

sible for the large incoming and outgoing file transfers. She can Figyre 7 shows Polaris being used to explore and analyze the results

also see that the systems group had atypically high session traffic. of the 2000 presidential election. This data is particularly interest-
Curious, the analyst then drills down further to see the individual ing because the visualizations used to explore it are created from

project groups (Figure 6(c)), discovering that the large file transfers two separate data sets. The first data set is a relational database
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Figure 8: Analysis of sales data for a hypothetical coffee chain.

In Figure 7(a), the analyst has generated an overview of the en-
tire country at the State level in the Location hierarchy, coloring
each state by which candidate won that state. The analyst is inter-
ested in more detailed results for the state of Florida, so she filters
on the Latitude and Longitude measures to focus on Florida and
changes the level of detail to County, generating Figure 7(b). In the
final visualization, shown in Figure 7(c), the analyst further focuses
on the southern tip of Florida (by again filtering the Latitude and
Longitude measures). Furthermore, she adds two additional layers
to the visualization (read directly from the data cube) and displays
both the name and the total number of votes counted in each county.

7.3 Historical Profit/Sales for a Coffee Chain

The final analysis is shown in Figure 8. The data being analyzed
is two years of business metrics for a hypothetical nationwide cof-
fee chain, comprising approximately 5,000 tuples stored in a data
cube. The data is characterized by three main dimensions (Time,
Products, and Location), each with multiple levels of detail. We
consider a scenario where the analyst is concerned with reducing
marketing expenses and is trying to identify products that are not
generating profit and sales proportional to their marketing costs.

The first visualization created, Figure 8(a), is an overview of
three key measures (Profit, Sales, and Marketing) as a scatterplot
matrix. The analyst has drilled down using the Level of Detail shelf
to the Product and State level. The two charts circled in orange
show that several of the distributions do not reflect the positive cor-
relations that the analyst was expecting. To further investigate, the
analyst reduces the scatterplot matrix to two graphs and colors the
records by Market and Producttype (Figure 8(b)), thus identifying
espresso products in the East region and tea products in the West
region as having the worst marketing cost to profit ratios.

In the final visualization, Figure 8(c), the analyst drills down
into the data to get a more detailed understanding of the correla-
tions: She creates a small multiple set of stacked bar charts, one for
each Market and Producttype. Within each chart, the data is fur-
ther drilled down by individual Product and State. Finally, each bar
is colored by the Marketing cost. As can be seen in the visualiza-
tion, several products such as Caffe Mocha in the East have negative
profit (a descending bar) with high marketing cost (a bright red bar).
Having identified such poorly performing products, the analyst can
modify the marketing costs allocated to them.

7.4 Summary

Each of these case studies demonstrates how analysis progresses
from a high level of abstraction to detailed views of the data. Fur-
thermore, each example shows the importance of being able to eas-
ily change the data being viewed, pivot dimensions, and drill down
during the analysis process.

8 Discussion

In this section, we focus on two points of discussion. First, we dis-
cuss the different roles Polaris can play in the knowledge discovery
process, and second, we discuss how our formalism can be applied
to the development of generalized visualization systems, particu-
larly level of detail systems.

In this paper, we have demonstrated the effectiveness of Po-

of approximately 500,000 tuples (stored in Microsoft's SQLServer) laris as a stand-alone tool for visual mining of large, hierarchical
describing detailed polygonal outlines of the states and counties indatabases. Equally important is how Polaris can be coupled with
the USA. Additional levels of detail have been constructed by poly- automated data mining systems to help analysts better understand
gon simplification, and the resulting levels of detail form a Loca- not only their data, but also the models generated by the algorithms.
tion hierarchy. The second data set is stored as a data cube (in Mi-First, Polaris can be used as a precursor to data mining: The analyst
crosoft’s Analysis Server) and contains detailed county-by-county benefits from an understanding of the overall structure of the data

vote results (also with a Location dimension). In the first two vi-

that helps her steer the discovery process and provides context for

sualizations, these data sets are explicitly joined before being im- “hidden information” discovered by the algorithms. Second, Po-

ported into Polaris. In the final visualization, we use the ability in

Polaris to visually join data sets using layers.

laris can also be used to validate and comprehend the models and
results generated by algorithmic analysis. Analysts do not want to



treat an algorithm as a black box and blindly trust its output. One
technique for using Polaris for validation is to construct hierarchical
dimensions from the output generated by classification algorithms.
The analyst can then drill down and roll up the data, traversing the
classification hierarchy and inspecting the records sorted into each
bucket, further developing understanding and trust.

A second point of discussion is the application of our formalism
to the development of general visualization systems. Although we
have only demonstrated our formal language as an underlying tech- [7]
nology for the Polaris interface, we believe it is a promising basis
for the development of a wide-range of visualization systems. One
example is in the development of interactive “semantic-zooming”
visualization systems. Programmers developing such systems need
a mechanism for describing a wide range of visual displays, with
each display being associated with a different level of detail view
of the data. Using our formalism, these programmers could simply
describe each visual display with a succinct specification. When
the user interacts with the interface to move to a different level of [10]
detail, the system need only feed the appropriate specification into
our interpreter. The interpreter would generate all of the drawing
operations and queries necessary to generate the display. In addittll
tion to simplifying the development of such systems, the presence
of an underlying formalism also serves to help clearly define the [12]
semantics of the interface, as demonstrated by Polaris.

[4]
[5]

[6]

[8]

[9]

9 Conclusions and Future Work [13]
We have extended Polaris, an interface for the exploration and
analysis of large multidimensional databases, to fully support and
expose the hierarchical structure of data cubes. These dimen-[14]
sional hierarchies play an indispensable role in the analysis of large
databases where, in order for the analysis task to be manageable,
it is necessary to perform the analysis at multiple levels of aggre- [
gation, moving from visual overviews to details on demand. In
extending Polaris, we have extended not only the interface, but also
the underlying algebraic formalism. Furthermore, we have devel-
oped an efficient mechanism for interpreting the formal specifica-
tions as a collection of multidimensional queries.

We have many plans for future work in extending this system. [17
As databases continue to grow in size, developing tools and tech-
niques for the interactive exploration of data at multiple levels of
detail is crucial. As we discussed in Section 8, we believe our al- [18]
gebraic formalism provides a solid foundation upon which to build
visualization systems. We are currently building systems that, a la [19]
Pad++ [17], automatically and interactively change the visual rep- g
resentation as the analyst changes level of detail. This research has
many interesting challenges, including transitions between differ-
ent visual representations, mapping representations to levels of de-
tail, and maintaining interactivity while exploring large data ware- [21]
houses.

A second area of future research is the visual presentation of
metadata. Hierarchically structured dimensions are one instancel??
of an increasingly popular trend: the augmentation of data with
rich domain-specific metadata. This metadata is as important to the
analysis process as the underlying database itself. An important 23]
area of future research is the development of visualization tech-
niques that display this metadata and leverage it in the display of (24]
the described data.
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