
Chapter 2

Reflection as Convolution

In the introduction to this dissertation, we have discussed a number of problems in com-

puter graphics and vision, where having a deeper theoretical understanding of the re-

flection operator is important. These include inverse rendering problems—determining

lighting distributions and bidirectional reflectance distribution functions (BRDFs) from

photographs—and forward rendering problems such as rendering with environment maps,

and image-based rendering.

In computer graphics, the theory for forward global illumination calculations has been

fairly well developed, based on Kajiya’s rendering equation [35]. However, very little

work has gone into addressing the theory of inverse problems, or on studying the theoret-

ical properties of the simpler reflection equation, which deals with the direct illumination

incident on a surface. We believe that this lack of a formal mathematical understanding

of the properties of the reflection equation is one of the reasons why complex, realistic

lighting environments and reflection functions are rarely used either in forward or inverse

rendering.

While a formal theoretical basis has hitherto been lacking, reflection is of deep interest

in both graphics and vision, and there is a significant body of qualitative and empirical

information available. For instance, in their seminal 1984 work on environment map pre-

filtering and rendering, Miller and Hoffman [59] qualitatively observed that reflection was

a convolution of the incident illumination and the reflective properties (BRDF) of the sur-

face. Subsequently, similar qualitative observations have been made by Cabral et al. [7, 8],
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D’Zmura [17] and others. However, in spite of the long history of these observations, this

notion has never previously been formalized.

Another interesting observation concerns the “blurring” that occurs in the reflection

from a Lambertian (diffuse) surface. Miller and Hoffman [59] used this idea to represent

irradiance maps, proportional to the reflected light from a Lambertian surface, at low res-

olutions. However, the precise resolution necessary was never formally determined. More

recently, within the context of lighting-invariant object recognition, a number of computer

vision researchers [18, 30, 91] have observed empirically that the space of images of a dif-

fuse object under all possible lighting conditions is very low-dimensional. Intuitively, we

do not see the high frequencies of the environment in reflections from a diffuse surface.

However, the precise nature of what is happening computationally has not previously been

understood.

The goal of this chapter is to formalize these observations and present a mathemati-

cal theory of reflection for general complex lighting environments and arbitrary BRDFs.

Specifically, we describe a signal-processing framework for analyzing the reflected light

field from a homogeneous convex curved surface under distant illumination. Under these

assumptions, we are able to derive an analytic formula for the reflected light field in terms

of the spherical harmonic coefficients of the BRDF and the lighting. The reflected light

field can therefore be thought of in a precise quantitative way as obtained by convolving

the lighting and BRDF, i.e. by filtering the incident illumination using the BRDF. Mathe-

matically, we are able to express the frequency-space coefficients of the reflected light field

as a product of the spherical harmonic coefficients of the illumination and the BRDF.

We believe this is a useful way of analyzing many forward and inverse problems. In

particular, forward rendering can be viewed as convolution and inverse rendering as de-

convolution. Furthermore, in the next chapter, we are able to derive analytic formulae for

the spherical harmonic coefficients of many common BRDF and lighting models. From

this formal analysis, we are able to determine precise conditions under which estimation of

BRDFs and lighting distributions are well posed and well-conditioned. This analysis also

has implications for forward rendering—especially the efficient rendering of objects under

complex lighting conditions specified by environment maps.

The goal of this and the following chapter are to present a unified, detailed and complete
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description of the mathematical foundation underlying the rest of the dissertation. We will

briefly point out the practical implications of the results derived in this chapter, but will refer

the reader to later in the dissertation for implementation details. The rest of this chapter

is organized as follows. In section 1, we discuss previous work. Section 2 introduces

the reflection equation in 2D and 3D, showing how it can be viewed as a convolution.

Section 3 carries out a formal frequency-space analysis of the reflection equation, deriving

the frequency space convolution formulae. Section 4 briefly discusses general implications

for forward and inverse rendering. Finally, section 5 concludes this chapter and discusses

future theoretical work. The next chapter will derive analytic formulae for the spherical

harmonic coefficients of many common lighting and BRDF models, applying the results to

theoretically analyzing the well-posedness and conditioning of many problems in inverse

rendering.

2.1 Previous Work

In this section, we briefly discuss previous work. Since the reflection operator is of fun-

damental interest in a number of fields, the relevant previous work is fairly diverse. We

start out by considering rendering with environment maps, where there is a long history

of regarding reflection as a convolution, although this idea has not previously been math-

ematically formalized. We then describe some relevant work in inverse rendering, one

of the main applications of our theory. Finally, we discuss frequency-space methods for

reflection, and previous work on a formal theoretical analysis.

Forward Rendering by Environment Mapping: The theoretical analysis in this pa-

per employs essentially the same assumptions typically made in rendering with environ-

ment maps, i.e. distant illumination—allowing the lighting to be represented by a single

environment map—incident on curved surfaces. Blinn and Newell [5] first used environ-

ment maps to efficiently find reflections of distant objects. The technique was generalized

by Miller and Hoffman [59] and Greene [22] who precomputed diffuse and specular re-

flection maps, allowing for images with complex realistic lighting and a combination of

Lambertian and Phong BRDFs to be synthesized. Cabral et al. [7] later extended this
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general method to computing reflections from bump-mapped surfaces, and to computing

environment-mapped images with arbitrary BRDFs [8]. It should be noted that both Miller

and Hoffman [59], and Cabral et al. [7, 8] qualitatively described the reflection maps as

obtained by convolving the lighting with the BRDF. In this paper, we will formalize these

ideas, making the notion of convolution precise, and derive analytic formulae.

Inverse Rendering: We now turn our attention to the inverse problem—estimating

BRDF and lighting properties from photographs. Inverse rendering is one of the main

practical applications of, and original motivation for, our theoretical analysis. Besides be-

ing of fundamental interest in computer vision, inverse rendering is important in computer

graphics since the realism of images is nowadays often limited by the quality of input mod-

els. Inverse rendering yields the promise of providing very accurate input models since

these come from measurements of real photographs.

Perhaps the simplest inverse rendering method is the use of a mirror sphere to find the

lighting, first introduced by Miller and Hoffman [59]. A more sophisticated inverse lighting

approach is that of Marschner and Greenberg [54], who try to find the lighting under the

assumption of a Lambertian BRDF. D’Zmura [17] proposes estimating spherical harmonic

coefficients of the lighting.

Most work in inverse rendering has focused on BRDF [62] estimation. Recently, image-

based BRDF measurement methods have been proposed in 2D by Lu et al. [51] and in

3D by Marschner et al. [55]. If the entire BRDF is measured, it may be represented by

tabulating its values. An alternative representation is by low-parameter models such as

those of Ward [85] or Torrance and Sparrow [84]. Parametric models are often preferred

in practice since they are compact, and are simpler to estimate. A number of methods [14,

15, 77, 89] have been proposed to estimate parametric BRDF models, often along with a

modulating texture.

However, it should be noted that all of the methods described above use a single point

source. One of the main goals of the theoretical analysis in this paper is to enable the use

of inverse rendering with complex lighting. Recently, there has been some work in this

area [16, 50, 64, 75, 76, 90], although many of those methods are specific to a particular

illumination model. Using the theoretical analysis described in this paper, we [73] have
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presented a general method for complex illumination, that handles the various components

of the lighting and BRDF in a principled manner to allow for BRDF estimation under

general lighting conditions. Furthermore, we will show that it is possible in theory to

separately estimate the lighting and BRDF, up to a global scale factor. We have been

able to use these ideas to develop a practical method [73] of factoring the light field to

simultaneously determine the lighting and BRDF for geometrically complex objects.

Frequency-Space Representations: Since we are going to treat reflection as a convolu-

tion and analyze it in frequency-space, we will briefly discuss previous work on frequency-

space representations. Since we will be primarily concerned with analyzing quantities like

the BRDF and distant lighting which can be parameterized as a function on the unit sphere,

the appropriate frequency-space representations are spherical harmonics [32, 34, 52]. The

use of spherical harmonics to represent the illumination and BRDF was pioneered by

Cabral et al. [7]. D’Zmura [17] analyzed reflection as a linear operator in terms of spherical

harmonics, and discussed some resulting ambiguities between reflectance and illumination.

We extend his work by explicitly deriving the frequency-space reflection equation (i.e. con-

volution formula) in this chapter, and by providing quantitative results for various special

cases in the next chapter. Our use of spherical harmonics to represent the lighting is similar

in some respects to previous methods such as that of Nimeroff et al. [63] that use steerable

linear basis functions. Spherical harmonics, as well as the closely related Zernike poly-

nomials, have also been used before in computer graphics for representing BRDFs by a

number of other authors [43, 79, 86].

Formal Analysis of Reflection: This paper conducts a formal study of the reflection

operator by showing mathematically that it can be described as a convolution, deriving an

analytic formula for the resulting convolution equation, and using this result to study the

well-posedness and conditioning of several inverse problems. As such, our approach is

similar in spirit to mathematical methods used to study inverse problems in other areas of

radiative transfer and transport theory such as hydrologic optics [67] and neutron scattering.

See McCormick [58] for a review.

Within computer graphics and vision, the closest previous theoretical work lies in the

object recognition community, where there has been a significant amount of interest in
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characterizing the appearance of a surface under all possible illumination conditions, usu-

ally under the assumption of Lambertian reflection. For instance, Belhumeur and Krieg-

man [4] have theoretically described this set of images in terms of an illumination cone,

while empirical results have been obtained by Hallinan [30] and Epstein et al. [18]. These

results suggest that the space spanned by images of a Lambertian object under all (dis-

tant) illumination conditions lies very close to a low-dimensional subspace. We will see

that our theoretical analysis will help in explaining these observations, and in extending

the predictions to arbitrary reflectance models. In independent work on face recognition,

simultaneous with our own, Basri and Jacobs [2] have described Lambertian reflection as a

convolution and obtained similar analytic results for that particular case.

This chapter builds on previous theoretical work by us on analyzing planar or flatland

light fields [70], on the reflected light field from a Lambertian surface [72], and on the

theory for the general 3D case with isotropic BRDFs [73]. The goal of this chapter is to

present a unified, complete and detailed account of the theory in the general case. We

describe a unified view of the 2D and 3D cases, including general anisotropic BRDFs, a

group-theoretic interpretation in terms of generalized convolutions, and the relationship to

the theory of Fredholm integral equations of the first kind, which have not been discussed

in our earlier papers.

2.2 Reflection Equation

In this section, we introduce the mathematical and physical preliminaries, and derive a

version of the reflection equation. In order to derive our analytic formulae, we must analyze

the properties of the reflected light field. The light field [20] is a fundamental quantity in

light transport and therefore has wide applicability for both forward and inverse problems in

a number of fields. A good introduction to the various radiometric quantities derived from

light fields is provided by McCluney [56], while Cohen and Wallace [12] introduce many

of the terms discussed here with motivation from a graphics perspective. Light fields have

been used directly for rendering images from photographs in computer graphics, without

considering the underlying geometry [21, 48], or by parameterizing the light field on the

object surface [88].
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After a discussion of the physical assumptions made, we first introduce the reflection

equation for the simpler flatland or 2D case, and then generalize the results to 3D. In the

next section, we will analyze the reflection equation in frequency-space.

2.2.1 Assumptions

We will assume curved convex homogeneous reflectors in a distant illumination field. Be-

low, we detail each of the assumptions.

Curved Surfaces: We will be concerned with the reflection of a distant illumination field

by curved surfaces. Specifically, we are interested in the variation of the reflected light field

as a function of surface orientation and exitant direction. Our goal is to analyze this varia-

tion in terms of the incident illumination and the surface BRDF. Our theory will be based on

the fact that different orientations of a curved surface correspond to different orientations

of the upper hemisphere and BRDF. Equivalently, each orientation of the surface corre-

sponds to a different integral over the lighting, and the reflected light field will therefore be

a function of surface orientation.

Convex Objects: The assumption of convexity ensures there is no shadowing or inter-

reflection. Therefore, the incident illumination is only because of the distant illumination

field. Convexity also allows us to parameterize the object simply by the surface orienta-

tion. For isotropic surfaces, the surface orientation is specified uniquely by the normal

vector. For anisotropic surfaces, we must also specify the direction of anisotropy, i.e. the

orientation of the local tangent frame.

It should be noted that our theory can also be applied to concave objects, simply by

using the surface normal (and the local tangent frame for anisotropic surfaces). However,

the effects of self-shadowing (cast shadows) and interreflections will not be considered.

Homogeneous Surfaces: We assume untextured surfaces with the same BRDF every-

where.
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Distant Illumination: The illumination field will be assumed to be generated by distant

sources, allowing us to use the same lighting function anywhere on the object surface. The

lighting can therefore be represented by a single environment map indexed by the incident

angle.

Discussion: We note that for the most part, our assumptions are very similar to those

made in most interactive graphics applications, including environment map rendering al-

gorithms such as those of Miller and Hoffman [59] and Cabral et al. [8]. Our assumptions

also accord closely with those usually made in computer vision and inverse rendering. The

only significant additional assumption is that of homogeneous surfaces. However, this is

not particularly restrictive since spatially varying BRDFs are often approximated in prac-

tical graphics or vision applications by using a spatially varying texture that simply mod-

ulates one or more components of the BRDF. This can be incorporated into the ensuing

theoretical analysis by merely multiplying the reflected light field by a texture dependent

on surface position. We believe that our assumptions are a good approximation to many

real-world situations, while being simple enough to treat analytically. Furthermore, it is

likely that the insights obtained from the analysis in this paper will be applicable even in

cases where the assumptions are not exactly satisfied. We will demonstrate in chapter 6 that

in practical applications, it is possible to extend methods derived from these assumptions

to be applicable in an even more general context.

We now proceed to derive the reflection equation for the 2D and 3D case under the

assumptions outlined above. Notation used in chapter 2, and reused throughout the dis-

sertation, is listed in table 1.1. We will use two types of coordinates. Unprimed global

coordinates denote angles with respect to a global reference frame. On the other hand,

primed local coordinates denote angles with respect to the local reference frame, defined

by the local surface normal and a tangent vector. These two coordinate systems are related

simply by a rotation.
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Figure 2.1: Schematic of reflection in 2D. On the left, we show the situation with respect to one
point on the surface (the north pole or 0◦ location, where global and local coordinates are the
same). The right figure shows the affect of the surface orientation α. Different orientations of
the surface correspond to rotations of the upper hemisphere and BRDF, with the global incident
direction θi corresponding to a rotation by α of the local incident direction θ′i. Note that we also
keep the local outgoing angle (between N and B) fixed between the two figures

2.2.2 Flatland 2D case

In this subsection, we consider the flatland or 2D case, assuming that all measurements and

illumination are restricted to a single plane. Considering the 2D case allows us to explain

the key concepts clearly, and show how they generalize to 3D. A diagram illustrating the

key concepts for the planar case is in figure 2.1.

In local coordinates, we can write the reflection equation as

B( �X, θ′o) =
∫ π/2

−π/2
L( �X, θ′i)ρ(θ

′
i, θ

′
o) cos θ

′
i dθ

′
i. (2.1)

Here, B is the reflected radiance, L is the incident radiance, i.e illumination, and ρ is

the BRDF or bi-directional reflectance distribution function of the surface, which in 2D

is a function of the local incident and outgoing angles (θ′i, θ
′
o). The limits of integration

correspond to the visible half-circle—the 2D analogue of the upper hemisphere in 3D.

We now make a number of substitutions in equation 2.1, based on our assumptions.

First, consider the assumption of a convex surface. This ensures there is no shadowing or

interreflection; this fact has implicitly been assumed in equation 2.1. The reflected radiance

therefore depends only on the distant illumination field L and the surface BRDF ρ. Next,
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consider the assumption of distant illumination. This implies that the reflected light field

depends directly only on the surface orientation, as described by the surface normal �N ,

and does not directly depend on the position �X . We may therefore reparameterize the

surface by its angular coordinates α, with �N = [sinα, cosα], i.e. B( �X, θ′o) → B(α, θ′o)

and L( �X, θ′i)→ L(α, θ′i). The assumption of distant sources also allows us to represent the

incident illumination by a single environment map for all surface positions, i.e. use a single

function L regardless of surface position. In other words, the lighting is a function only

of the global incident angle, L(α, θ′i) → L(θi). Finally, we define a transfer function ρ̂ =

ρ cos θ′i to absorb the cosine term in the integrand. With these modifications, equation 2.1

becomes

B(α, θ′o) =
∫ π/2

−π/2
L(θi)ρ̂(θ

′
i, θ

′
o) dθ

′
i. (2.2)

It is important to note that in equation 2.2, we have mixed local (primed) and global

(unprimed) coordinates. The lighting is a global function, and is naturally expressed in a

global coordinate frame as a function of global angles. On the other hand, the BRDF is nat-

urally expressed as a function of the local incident and reflected angles. When expressed in

the local coordinate frame, the BRDF is the same everywhere for a homogeneous surface.

Similarly, when expressed in the global coordinate frame, the lighting is the same every-

where, under the assumption of distant illumination. Integration can be conveniently done

over either local or global coordinates, but the upper hemisphere is easier to keep track of

in local coordinates.

Rotations—Converting between Local and Global coordinates: To do the integral in

equation 2.2, we must relate local and global coordinates. One can convert between these

by applying a rotation corresponding to the local surface normal α. The up-vector in local

coordinates, i.e 0′ is the surface normal. The corresponding global coordinates are clearly

α. We define Rα as an operator that rotates θ′i into global coordinates, and is given in 2D

simply by Rα(θ
′
i) = α + θ′i. To convert from global to local coordinates, we apply the

inverse rotation, i.e. R−α. To summarize,

θi = Rα(θ
′
i) = α+ θ′i

θ′i = R−1
α (θi) = −α+ θi. (2.3)
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It should be noted that the signs of the various quantities are taken into account in equa-

tion 2.3. Specifically, from the right of figure 2.1, it is clear that | θ′i |=| θi | + | α |. In

our sign convention, α is positive in figure 2.1, while θ′i and θi are negative. Substituting

| θ′i |= −θ′i and | θi |= −θi, we verify equation 2.3.

With the help of equation 2.3, we can express the incident angle dependence of equa-

tion 2.2 in either local coordinates entirely, or global coordinates entirely. It should be

noted that we always leave the outgoing angular dependence of the reflected light field in

local coordinates in order to match the BRDF transfer function.

B(α, θ′o) =
∫ π/2

−π/2
L (Rα(θ

′
i)) ρ̂ (θ

′
i, θ

′
o) dθ

′
i (2.4)

=
∫ π/2+α

−π/2+α
L (θi) ρ̂

(
R−1

α (θi), θ
′
o

)
dθi. (2.5)

By plugging in the appropriate relations for the rotation operator from equation 2.3, we can

obtain

B(α, θ′o) =
∫ π/2

−π/2
L (α+ θ′i) ρ̂ (θ

′
i, θ

′
o) dθ

′
i (2.6)

=
∫ π/2+α

−π/2+α
L (θi) ρ̂ (−α + θi, θ

′
o) dθi. (2.7)

Interpretation as Convolution: Equations 2.6 and 2.7 (and the equivalent forms in equa-

tions 2.4 and 2.5) are convolutions. The reflected light field can therefore be described

formally as a convolution of the incident illumination and the BRDF transfer function.

Equation 2.5 in global coordinates states that the reflected light field at a given surface

orientation corresponds to rotating the BRDF to that orientation, and then integrating over

the upper half-circle. In signal processing terms, the BRDF can be thought of as the filter,

while the lighting is the input signal. The reflected light field is obtained by filtering the

input signal (i.e. lighting) using the filter derived from the BRDF. Symmetrically, equa-

tion 2.4 in local coordinates states that the reflected light field at a given surface orientation

may be computed by rotating the lighting into the local coordinate system of the BRDF,

and then doing the integration over the upper half-circle.
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It is important to note that we are fundamentally dealing with rotations, as is brought

out by equations 2.4 and 2.5. For the 2D case, rotations are equivalent to translations, and

equations 2.6 and 2.7 are the familiar equations for translational convolution. The main

difficulty in formally generalizing the convolution interpretation to 3D is that the structure

of rotations is more complex. In fact, we will need to consider a generalization of the notion

of convolution in order to encompass rotational convolutions.

2.2.3 Generalization to 3D

The flatland development can be extended to 3D. In 3D, we can write the reflection equa-

tion, analogous to equation 2.1, as

B( �X, θ′o, φ
′
o) =

∫
Ω′

i

L( �X, θ′i, φ
′
i)ρ(θ

′
i, φ

′
i, θ

′
o, φ

′
o) cos θ

′
i dω

′
i. (2.8)

Note that the integral is now over the 3D upper hemisphere, instead of the 2D half-circle.

Also note that we must now also consider the (local) azimuthal angles φ′
i and φ′

o.

We can make the same substitutions that we did in 2D. We reparameterize the surface

position �X by its angular coordinates (α, β, γ). Here, the surface normal �N is given by

the standard formula �N = [sinα cos β, sinα sin β, cosα]. The third angular parameter γ

is important for anisotropic surfaces and controls the rotation of the local tangent-frame

about the surface normal. For isotropic surfaces, γ has no physical significance. Figure 2.2

illustrates the rotations corresponding to (α, β, γ). We may think of them as essentially

corresponding to the standard Euler-angle rotations about Z, Y and Z by angles α,β and

γ. As in 2D, we may now make the substitutions, B( �X, θ′o, φ
′
o) → B(α, β, γ, θ′o, φ

′
o) and

L( �X, θ′i, φ
′
i) → L(θi, φi), and define a transfer function to absorb the cosine term, ρ̂ =

ρ cos θ′i. We now obtain the 3D equivalent of equation 2.2,

B(α, β, γ, θ′o, φ
′
o) =

∫
Ω′

i

L(θi, φi)ρ̂(θ
′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (2.9)

Rotations—Converting between Local and Global coordinates: To do the integral

above, we need to apply a rotation to convert between local and global coordinates, just

as in 2D. The rotation operator is substantially more complicated in 3D, but the operations
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Figure 2.2: Diagram showing how the rotation corresponding to (α, β, γ) transforms between lo-
cal (primed) and global (unprimed) coordinates. The net rotation is composed of three independent
rotations about Z,Y,and Z, with the angles α, β, and γ corresponding directly to the Euler angles.

are conceptually very similar to those in flatland. The north pole (0′, 0′) or +Z axis in local

coordinates is the surface normal, and the corresponding global coordinates are (α, β). It

can be verified that a rotation of the form Rz(β)Ry(α) correctly performs this transforma-

tion, where the subscript z denotes rotation about the Z axis and the subscript y denotes

rotation about the Y axis. For full generality, the rotation between local and global coor-

dinates should also specify the transformation of the local tangent frame, so the general

rotation operator is given by Rα,β,γ = Rz(β)Ry(α)Rz(γ). This is essentially the Euler-

angle representation of rotations in 3D. We may now summarize these results, obtaining
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the 3D equivalent of equation 2.3,

(θi, φi) = Rα,β,γ(θ
′
i, φ

′
i) = Rz(β)Ry(α)Rz(γ) {θ′i, φ′

i}

(θ′i, φ
′
i) = R−1

α,β,γ(θi, φi) = Rz(−γ)Ry(−α)Rz(−β) {θi, φi} . (2.10)

It is now straightforward to substitute these results into equation 2.9, transforming the inte-

gral either entirely into local coordinates or entirely into global coordinates, and obtaining

the 3D analogue of equations 2.4 and 2.5,

B(α, β, γ, θ′o, φ
′
o) =

∫
Ω′

i

L (Rα,β,γ(θ
′
i, φ

′
i)) ρ̂(θ

′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i (2.11)

=
∫
Ωi

L(θi, φi)ρ̂
(
R−1

α,β,γ(θi, φi), θ
′
o, φ

′
o

)
dωi. (2.12)

As we have written them, these equations depend on spherical coordinates. It might

clarify matters somewhat to also present an alternate form in terms of rotations and unit

vectors in a coordinate-independent way. We simply use R for the rotation, which could be

written as a 3×3 rotation matrix, while ωi and ωo stand for unit vectors corresponding to the

incident and outgoing directions (with primes added for local coordinates). Equations 2.11

and 2.12 may then be written as

B(R, ω′
o) =

∫
Ω′

i

L (Rω′
i) ρ̂(ω

′
i, ω

′
o) dω

′
i (2.13)

=
∫
Ωi

L(ωi)ρ̂
(
R−1ωi, ω

′
o

)
dωi, (2.14)

where Rω′
i and R−1ωi are simply matrix-vector multiplications.

Interpretation as Convolution: In the spatial domain, convolution is the result generated

when a filter is translated over an input signal. However, we can generalize the notion of

convolution to other transformations Ta, where Ta is a function of a, and write

(f ⊗ g)(a) =
∫

t
f (Ta(t)) g(t) dt. (2.15)
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When Ta is a translation by a, we obtain the standard expression for spatial convolution.

When Ta is a rotation by the angle a, the above formula defines convolution in the angular

domain.

Therefore, equations 2.11 and 2.12 (or 2.13 and 2.14) represent rotational convolutions.

Equation 2.12 in global coordinates states that the reflected light field at a given surface

orientation corresponds to rotating the BRDF to that orientation, and then integrating over

the upper hemisphere. The BRDF can be thought of as the filter, while the lighting is the

input signal. Symmetrically, equation 2.11 in local coordinates states that the reflected

light field at a given surface orientation may be computed by rotating the lighting into the

local coordinate system of the BRDF, and then doing the hemispherical integration. These

observations are similar to those we made earlier for the 2D case.

Group-theoretic Interpretation as Generalized Convolution: In fact, it is possible to

formally generalize the notion of convolution to groups. Within this context, the standard

Fourier convolution formula can be seen as a special case for SO(2), the group of rotations

in 2D. More information may be found in books on group representation theory, such as

Fulton and Harris [19] (especially note exercise 3.32). One reference that focuses specif-

ically on the rotation group is Chirikjian and Kyatkin [10]. In the general case, we may

modify equation 2.15 slightly to write for compact groups,

(f ⊗ g)(s) =
∫

t
f(s ◦ t)g(t) dt, (2.16)

where s and t are elements of the group, the integration is over a suitable group measure,

and ◦ denotes group multiplication.

It is also possible to generalize the Fourier convolution formula in terms of represen-

tation matrices of the group in question. In our case, the relations do not exactly satisfy

equation 2.16, since we have both rotations (in the rotation group SO(3)) and unit vectors.

Therefore, for frequency space analysis in the 3D case, we will need both the representation

matrices of SO(3), and the associated basis functions for unit vectors on a sphere, which

are the spherical harmonics.
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2.3 Frequency-Space Analysis

Since the reflection equation can be viewed as a convolution, it is natural to analyze it in

frequency-space. We will first consider the 2D reflection equation, which can be analyzed

in terms of the familiar Fourier basis functions. We then show how this analysis generalizes

to 3D, using the spherical harmonics. Finally, we discuss a number of alternative forms of

the reflection equation, and associated convolution formulas, that may be better suited for

specific problems.

2.3.1 Fourier Analysis in 2D

We now carry out a Fourier analysis of the 2D reflection equation. We will define the

Fourier series of a function f by

Fk(θ) =
1√
2π

eIkθ

f(θ) =
∞∑

k=−∞
fkFk(θ)

fk =
∫ π

−π
f(θ)F ∗

k (θ)dθ. (2.17)

In the last line, the ∗ in the superscript stands for the complex conjugate. For the Fourier

basis functions, F ∗
k = F−k = (1/

√
2π) exp(−Ikθ). It should be noted that the relations in

equation 2.17 are similar for any orthonormal basis functions F , and we will later be able

to use much of the same machinery to define spherical harmonic expansions in 3D.

Decomposition into Fourier Series: We now consider the reflection equation, in the

form of equation 2.6. We will expand all quantities in terms of Fourier series.

We start by forming the Fourier expansion of the lighting, L, in global coordinates,

L(θi) =
∞∑

l=−∞
LlFl(θi). (2.18)
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To obtain the lighting in local coordinates, we may rotate the above expression,

L(θi) = L(α+ θ′i) =
∞∑

l=−∞
LlFl(α+ θ′i)

=
√
2π

∞∑
l=−∞

LlFl(α)Fl(θ
′
i). (2.19)

The last line follows from the form of the complex exponentials, or in other words, we

have Fl(α + θ′i) = (1/
√
2π) exp (Il(α+ θ′i)). This result shows that the effect of rotating

the lighting to align it with the local coordinate system is simply to multiply the Fourier

frequency coefficients by exp(Ilα).

Since no rotation is applied to B and ρ̂, their decomposition into a Fourier series is

simple,

B(α, θ′o) =
∞∑

l=−∞

∞∑
p=−∞

BlpFl(α)Fp(θ
′
o)

ρ̂(θ′i, θ
′
o) =

∞∑
l=−∞

∞∑
p=−∞

ρ̂lpF
∗
l (θ

′
i)Fp(θ

′
o).

(2.20)

Note that the domain of the basis functions here is [−π, π], so we develop the series for ρ̂

by assuming function values to be 0 outside the range for θ′i and θ′o of [−π
2
, π

2
]. Also, in the

expansion for ρ̂, the complex conjugate used in the first factor is to somewhat simplify the

final result.

Fourier-Space Reflection Equation: We are now ready to write equation 2.6 in terms

of Fourier coefficients. For the purposes of summation, we want to avoid confusion of

the indices for L and ρ̂. For this purpose, we will use the indices Ll and ρ̂l′p. We now

simply multiply out the expansions for L and ρ̂. After taking the summations, and terms

not depending on θ′i outside the integral, equation 2.6 now becomes

B(α, θ′o) =
√
2π

∞∑
l=−∞

∞∑
l′=−∞

∞∑
p=−∞

Llρ̂l′pFl(α)Fp(θ
′
o)

∫ π

−π
F ∗

l′ (θ
′
i)Fl(θ

′
i) dθ

′
i. (2.21)
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Note that the limits of the integral are now [−π, π] and not [−π
2
, π

2
]. This is because we

have already incorporated the fact that the BRDF is nonzero only over the upper half-circle

into its Fourier coefficients. Further note that by orthonormality of the Fourier basis, the

value of the integrand can be given as

∫ π

−π
F ′∗

l (θ
′
i)Fl(θ

′
i) dθ

′
i = δll′. (2.22)

In other words, we can set l′ = l since terms not satisfying this condition vanish. Making

this substitution in equation 2.21, we obtain

B(α, θ′o) =
√
2π

∞∑
l=−∞

∞∑
p=−∞

Llρ̂lpFl(α)Fp(θ
′
o). (2.23)

Now, it is a simple matter to equate coefficients in the Fourier expansion of B in order to

derive the Fourier-space reflection equation,

Blp =
√
2πLlρ̂lp. (2.24)

This result reiterates once more that the reflection equation can be viewed as a convolution

of the incident illumination and BRDF, and becomes a simple product in Fourier space,

with an analytic formula being given by equation 2.24.

An alternative form of equation 2.24 that may be more instructive results from holding

the local outgoing angle fixed, instead of expanding it also in terms of Fourier coefficients,

i.e. replacing the index p by the outgoing angle θ′o,

Bl(θ
′
o) =

√
2πLlρ̂l(θ

′
o). (2.25)

Note that a single value of θ′o in B(α, θ′o) corresponds to a slice of the reflected light field,

which is not the same as a single image from a fixed viewpoint—a single image would

instead correspond to fixing the global outgoing angle θo.

In summary, we have shown that the reflection equation in 2D reduces to the standard

convolution formula. Next, we will generalize these results to 3D using spherical harmonic

basis functions instead of the complex exponentials.
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2.3.2 Spherical Harmonic Analysis in 3D

To extend our frequency-space analysis to 3D, we must consider the structure of rotations

and vectors in 3D. In particular, the unit vectors corresponding to incident and reflected

directions lie on a sphere of unit magnitude. The appropriate signal-processing tools for

the sphere are spherical-harmonics, which are the equivalent for that domain to the Fourier

series in 2D (on a circle). These basis functions arise in connection with many physical

systems such as those found in quantum mechanics and electrodynamics. A summary of

the properties of spherical harmonics can therefore be found in many standard physics

textbooks [32, 34, 52].

Although not required for understanding the ensuing derivations, we should point out

that our frequency-space analysis is closely related mathematically to the representation

theory of the three-dimensional rotation group, SO(3). At the end of the previous section,

we already briefly touched on the group-theoretic interpretation of generalized convolution.

In the next subsection, we will return to this idea, trying to formally describe the 2D and

3D derivations as special cases of a generalized group-theoretic convolution formula.

Key Properties of Spherical Harmonics: Spherical harmonics are the analogue on the

sphere to the Fourier basis on the line or circle. The spherical harmonic Ylm is given by

Nlm =

√√√√2l + 1

4π

(l −m)!

(l +m)!

Ylm(θ, φ) = NlmPlm(cos θ)e
Imφ, (2.26)

where Nlm is a normalization factor. In the above equation, the azimuthal dependence is

expanded in terms of Fourier basis functions. The θ dependence is expanded in terms of

the associated Legendre functions Plm. The indices obey l ≥ 0 and −l ≤ m ≤ l. Thus,

there are 2l + 1 basis functions for given order l. Figure 2.3 shows the first 3 orders of

spherical harmonics, i.e. the first 9 basis functions corresponding to l = 0, 1, 2. They

may be written either as trigonometric functions of the spherical coordinates θ and φ or as

polynomials of the cartesian components x, y and z, with x2 + y2 + z2 = 1. In general, a

spherical harmonic Ylm is a polynomial of maximum degree l. Another useful relation is
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that Yl−m = (−1)mY ∗
lm. The first 3 orders (we give only terms with m ≥ 0) are given by

the following expressions,

Y00 =

√
1

4π

Y10 =

√
3

4π
cos θ =

√
3

4π
z

Y11 = −
√
3

8π
sin θeIφ = −

√
3

8π
(x+ Iy)

Y20 =
1

2

√
5

4π

(
3 cos2 θ − 1

)
=

1

2

√
5

4π

(
3z2 − 1

)

Y21 = −
√
15

8π
sin θ cos θeIφ = −

√
15

8π
z (x+ Iy)

Y22 =
1

2

√
15

8π
sin2 θe2Iφ =

1

2

√
15

8π
(x+ Iy)2 .

(2.27)

The spherical harmonics form an orthonormal basis in terms of which functions on the

sphere can be expanded,

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ)

flm =
∫ 2π

φ=0

∫ π

θ=0
f(θ, φ)Y ∗

lm(θ, φ) sin θ dθdφ. (2.28)

Note the close parallel with equation 2.17.

The rotation formula for spherical harmonics is

Ylm (Rα,β,γ(θ, φ)) =
l∑

m′=−l

Dl
mm′(α, β, γ)Ylm′(θ, φ). (2.29)

The important thing to note here is that the m indices are mixed—a spherical harmonic after

rotation must be expressed as a combination of other spherical harmonics with different m

indices. However, the l indices are not mixed; rotations of spherical harmonics with order

l are composed entirely of other spherical harmonics with order l. For given order l, Dl
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Figure 2.3: The first 3 orders of real spherical harmonics (l = 0, 1, 2) corresponding to a total of 9
basis functions. The spherical harmonics Ylm may be written either as trigonometric functions of
the spherical coordinates θ and φ or as polynomials of the cartesian components x, y and z, with
x2 + y2 + z2 = 1. In general, a spherical harmonic Ylm is a polynomial of maximum degree l.
In these images, we show only the front the sphere, with green denoting positive values and blue
denoting negative values. Also note that these images show the real form of the spherical harmonics.
The complex forms are given in equation 2.27.

is a matrix that tells us how a spherical harmonic transforms under rotation, i.e. how to

rewrite a rotated spherical harmonic as a linear combination of all the spherical harmonics

of the same order. In terms of group theory, the matrix Dl is the (2l + 1)-dimensional

representation of the rotation group SO(3). The matrices Dl therefore satisfy the formula,

Dl
mm′(α, β, γ) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(Rα,β,γ(θ, φ))Y

∗
lm′(θ, φ) sin θ dθ dφ. (2.30)

An analytic form for the matrices Dl can be found in standard references, such as Inui et

al. [32]. In particular, since Rα,β,γ = Rz(β)Ry(α)Rz(γ), the dependence of Dl on β and γ

is simple, since rotation of the spherical harmonics about the z−axis is straightforward,

Dl
mm′(α, β, γ) = dl

mm′(α)eImβeIm′γ, (2.31)

where dl is a matrix that defines how a spherical harmonic transforms under rotation about
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the y−axis. For the purposes of the exposition, we will not generally need to be concerned

with the precise formula for the matrix dl, and numerical calculations can compute it using

a simplified version of equation 2.30 without the z rotations (i.e. β = γ = 0),

dl
mm′(α) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(Ry(α)(θ, φ))Y

∗
lm′(θ, φ) sin θ dθ dφ. (2.32)

For completeness, we give below the relatively complicated analytic formula, as derived in
equation 7.48 of Inui et al. [32],

ξ = sin2 α

2

N(l,m,m′) = (−1)m−m′

√
(l + m)!

(l − m)!(l + m′)!(l − m′)!

dl
mm′(α) = N(l,m,m′) × ξ−(m−m′)/2(1 − ξ)−(m+m′)/2

(
d

dξ

)l−m

ξl−m′
(1 − ξ)l+m′

,(2.33)

as well as analytic formulae for the the first three representations (i.e. dl
mm′ with l = 0, 1, 2),

d0(α) = 1

d1(α) =




cos2
α

2

sin α√
2

sin2 α

2

− sinα
√

2
cos α

sin α
√

2

sin2 α

2
− sinα

√
2

cos2
α

2




d2(α) =




cos4 α
2

2 cos3 α
2

sin α
2

1
2

√
3
2

sin2 α 2 cos α
2

sin3 α
2

sin4 α
2

−2 cos3 α
2

sin α
2

cos2 α
2
(−1 + 2 cos α)

√
3
2

cos α sin α (1 + 2 cos α) sin2 α
2

2 cos α
2

sin3 α
2

1
2

√
3
2

sin2 α −
√

3
2

cos α sinα 1
2
(3 cos2 α − 1)

√
3
2

cos α sin α 1
2

√
3
2

sin2 α

−2 cos α
2

sin3 α
2

(1 + 2 cos α) sin2 α
2

−
√

3
2

cos α sinα cos2 α
2
(−1 + 2 cos α) 2 cos3 α

2
sin α

2

sin4 α
2

−2 cos α
2

sin3 α
2

1
2

√
3
2

sin2 α −2 cos3 α
2

sin α
2

cos4 α
2


 .

(2.34)

To derive some of the quantitative results in section 2.4 and the next chapter, we will re-

quire two important properties of the representation matrices Dl, which are derived in ap-

pendix A,

Dl
0m′(α, β, 0) = dl

0m′(α) =

√
4π

2l + 1
Y ∗

lm′(α, π)

Dl
m0(α, β, γ) = dl

m0(α)e
Imβ =

√
4π

2l + 1
Ylm(α, β). (2.35)
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Decomposition into Spherical Harmonics: As for the 2D case, we will now expand all

the quantities in terms of basis functions. We first expand the lighting in global coordinates,

L(θi, φi) =
∞∑
l=0

l∑
m=−l

LlmYlm(θi, φi). (2.36)

To obtain the lighting in local coordinates, we must rotate the above expression, just as we

did in 2D. Using equation 2.29, we get,

L(θi, φi) = L (Rα,β,γ(θ
′
i, φ

′
i)) =

∞∑
l=0

+l∑
m=−l

l∑
m′=−l

LlmDl
mm′(α, β, γ)Ylm′(θ′i, φ

′
i). (2.37)

We now represent the transfer function ρ̂ = ρ cos θ′i in terms of spherical harmonics.

As in 2D, we note that ρ̂ is nonzero only over the upper hemisphere, i.e. when cos θ′i > 0

and cos θ′o > 0. Also, as in 2D, we use a complex conjugate for the first factor, to simplify

the final results.

ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o) =

∞∑
l=0

l∑
n=−l

∞∑
p=0

p∑
q=−p

ρ̂ln,pqY
∗
ln(θ

′
i, φ

′
i)Ypq(θ

′
o, φ

′
o) (2.38)

Spherical Harmonic Reflection Equation: We can now write down the reflection equa-
tion, as given by equation 2.11, in terms of the expansions just defined. As in 2D, we
multiply the expansions for the lighting and BRDF. To avoid confusion between the in-
dices in this intermediate step, we will use Llm and ρ̂l′n,pq to obtain

B(α, β, γ, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
m′=−l

∞∑
l′=0

l′∑
n=−l′

∞∑
p=0

p∑
q=−p

Llmρ̂l′n,pqD
l
mm′(α, β, γ)Ypq(θ′o, φ

′
o)Tlm′l′n

Tlm′l′n =
∫ 2π

φ′
i
=0

∫ π

θ′
i
=0

Ylm′(θ′i, φ
′
i)Y

∗
l′n(θ′i, φ

′
i) sin θ′i dθ′idφ′

i

= δll′δm′n. (2.39)

The last line follows from orthonormality of the spherical harmonics. Therefore, we may

set l′ = l and n = m′ since terms not satisfying these conditions vanish. We then obtain

B(α, β, γ, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

Llmρ̂ln,pq

(
Dl

mn(α, β, γ)Ypq(θ
′
o, φ

′
o)

)
. (2.40)
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This result suggests that we should expand the reflected light field B in terms of the new

basis functions given by Clmnpq = Dl
mn(α, β, γ)Ypq(θ

′
o, φ

′
o). The appearance of the matrix

Dl in these basis functions is quite intuitive, coming directly from the rotation formula for

spherical harmonics. These basis functions are mixed in the sense that they are a product

of the matrices Dl and the spherical harmonics Ypq. This can be understood from realiz-

ing that the reflected direction is a unit vector described by two parameters (θ′o, φ
′
o), while

the surface parameterization is really a rotation, described by three parameters (α, β, γ).

Finally, we need to consider the normalization of these new basis functions. The spheri-

cal harmonics are already orthonormal. The orthogonality relation for the matrices Dl is

given in standard texts on group theory (for instance, equation 7.73 of Inui et al. [32]).

Specifically,

∫ 2π

γ=0

∫ 2π

β=0

∫ π

α=0

(
Dl

mn(α, β, γ)
)∗ (

Dl′

m′n′(α, β, γ)
)
sinαdα dβ dγ =

8π2

2l + 1
δll′δmm′δnn′ .

(2.41)
In the equation above, the group-invariant measure dµ(g) of the rotation group g = SO(3)

is sinα dα dβ dγ. The integral of this quantity µ(g) = 8π2, which can be easily verified.
Therefore, to obtain an orthonormal basis, we must normalize appropriately. Doing this,

Clmnpq =

√
2l + 1
8π2

Dl
mn(α, β, γ)Ypq(θ′o, φ

′
o)

B =
∞∑

l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

BlmnpqClmnpq(α, β, γ, θ′o, φ
′
o)

Blmnpq =
∫ 2π

φ′
o=0

∫ π

θ′
o=0

∫ 2π

γ=0

∫ 2π

β=0

∫ π

α=0

U(α, β, γ, θ′o, φ
′
o) sinα sin θ′o dα dβ dγ dθ′o dφ′

o

U(α, β, γ, θ′o, φ
′
o) = B(α, β, γ, θ′o, φ

′
o)C

∗
lmnpq(α, β, γ, θ′o, φ

′
o). (2.42)

Although this appears rather involved, it is a straightforward expansion of the reflected

light field in terms of orthonormal basis functions. As written, since we are assuming

anisotropic surfaces for full generality, the reflected light field is a function of five vari-

ables, as opposed to being a function of only two variables in 2D. We should note that it

is generally impractical to have the full range of values for the anisotropic parameter, i.e.

the tangent frame rotation, γ for every surface orientation. In fact, γ is often a function of

the surface orientation (α, β). However, our goal here is to write the completely general
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formulae. In the next subsection, we will derive an alternative form for isotropic surfaces

which corresponds more closely to observable quantities.

Finally, we can write down the frequency space reflection equation by comparing equa-

tions 2.40 and 2.42 and equating coefficients. This result is comparable to its 2D coun-

terpart, given in equation 2.24, and as in 2D, is a convolution. In frequency-space, the

reflected light field is obtained simply by multiplying together coefficients of the lighting

and BRDF, i.e. by convolving the incident illumination with the BRDF,

Blmnpq =

√
8π2

2l + 1
Llmρ̂ln,pq. (2.43)

As in 2D, an alternative result without expanding the output dependence may be more

instructive,

Blmn(θ
′
o, φ

′
o) =

√
8π2

2l + 1
Llmρ̂ln(θ

′
o, φ

′
o). (2.44)

We reiterate that the fixed local outgoing angle in the above equation does not correspond to

a single image, but to a more general slice of the reflected light field. In a single image, the

local viewing angle is different for different points in the image, depending on the relative

orientation between the surface normal and viewing direction. On the other hand, a single

image corresponds to a single global viewing direction, and hence a single global outgoing

angle.

In summary, we have shown that the direct illumination integral, or reflection equation,

can be viewed in signal processing terms as a convolution of the incident illumination and

BRDF, and have derived analytic formulae. These analytic results quantify the qualitative

observations made by many researchers in the past. In 2D, the formulae are in terms of the

standard Fourier basis. In 3D, we must instead use spherical harmonics and the represen-

tation matrices of the rotation group, deriving a generalized convolution formula. Still, the

extension from 2D to 3D is conceptually straightforward, and although the mathematics is

significantly more involved, the key idea that the reflected light field can be viewed in a

precise quantitative way as a convolution still holds.
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2.3.3 Group-theoretic Unified Analysis

While not required for understanding the rest of this chapter, it is insightful to attempt to

analyze the 2D and 3D derivations as special cases of a more general convolution formula

in terms of the representation theory of compact groups. Our analysis in this subsection

will be based on that in Fulton and Harris [19] and Chirikjian and Kyatkin [10].

Convolution can be defined on general compact groups using equation 2.16. To analyze

this in the frequency domain, we need a generalization of the Fourier transform. It is

possible to define

fl =
∫

G
f(g)Dl(g) dg. (2.45)

In this equation, fl is the generalization of the Fourier transform, corresponding to index

l, f(g) is the function defined on the group G of which g is a member, and Dl(g) is the

(irreducible) representation matrix labeled with index l, evaluated at the group element g.

Here, the group-invariant measure for integration is written dg or dµ(g).

To obtain some intuition, consider the flatland case where the group corresponds to

rotations in 2D, i.e. G = SO(2). The elements g are then simply the angles φ, and the

representation matrices are all 1-dimensional and correspond to the standard Fourier series,

i.e. Dl = eIlφ. Thus, equation 2.45 corresponds directly to the standard Fourier series in

2D. Now, consider the case where the group is that of 3D rotations, i.e. G = SO(3). In this

case, Dl corresponds to the 2l+ 1-dimensional representation, and is a (2l+ 1)× (2l+ 1)

representation matrix. The generalized Fourier transform is therefore matrix-valued. For a

general compact group, we can generalize the notion of the Fourier transform to a matrix-

valued function labeled by indices corresponding to the group representation. This reduces

to the standard Fourier series for the 2D or flatland case, since the group representations

are all one-dimensional and correspond directly to complex exponentials.

Once we have the generalization of the Fourier transform, one can derive [19] a convo-

lution formula corresponding to equation 2.16,

(f ⊗ g)l = fl × gl. (2.46)
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It should be noted that the multiplication on the right-hand side is now a matrix multi-

plication, since all coefficients are matrix-valued. In the 2D flatland case, these are just

standard Fourier coefficients, so we have a simple scalar multiplication, reducing to the

standard Fourier convolution formula. For 3D rotations, the convolution formula should

involve matrix multiplication of the generalized Fourier coefficients (obtained by integrat-

ing against the representation matrices of SO(3)).

However, it is important to note that the 3D case discussed in the previous subsection

does not correspond exactly either to equation 2.16 or 2.46. Specifically, all operations are

not carried out in the rotation group SO(3). Instead, we have rotations operating on unit

vectors. Thus, it is not possible to apply equation 2.46 directly, and a separate convolution

formula must be derived, as we have done in the previous subsection.

Note that we use the associated basis functions, i.e. spherical harmonics, and not the

group representations directly, as basis functions for the lighting and BRDF, since these

quantities are functions of directions or unit vectors, and not rotations. For the reflected

light field, which is a function of the rotation applied as well as the outgoing direction (a

unit vector), we use mixed basis functions that are a product of group representations of

SO(3) and the spherical harmonics. The convolution formula we derive in equation 2.43

is actually simpler than equation 2.46, since it does not require matrix multiplication.

In the remainder of this section, we will derive a number of alternative forms for equa-

tion 2.43 that may be more suitable for particular cases. Then, in the next section, we will

discuss the implications of equations 2.43 and 2.44 for forward and inverse problems in

computer graphics.

2.3.4 Alternative Forms

For the analysis of certain problems, it will be more convenient to rewrite equation 2.43

in a number of different ways. We have already seen one example, of considering the

outgoing angle fixed, as shown in equation 2.44. In this subsection, we consider a few

more alternative forms.
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Isotropic BRDFs

Isotropic BRDFs are those where rotating the local tangent frame makes no difference,

i.e. they are functions of only 3 variables, ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o) = ρ̂(θ′i, θ

′
o, | φ′

o − φ′
i |). With

respect to the reflected light field, the parameter γ, which controls the orientation of the

local tangent frame, has no physical significance for isotropic BRDFs.

To consider the simplifications that result from isotropy, we first analyze the BRDF co-

efficients ρ̂ln,pq. In the BRDF expansion of equation 2.38, only terms that satisfy isotropy,

i.e. are invariant with respect to adding an angle 
φ to both incident and outgoing az-

imuthal angles, are nonzero. From the form of the spherical harmonics, this requires that

n = q. Furthermore, since we are considering BRDFs that depend only on | φ′o − φ′
i |,

we should be able to negate both incident and outgoing azimuthal angles without changing

the result. This leads to the condition that ρ̂lq,pq = ρ̂l(−q)p(−q). Finally, we define a 3-index

BRDF coefficient by

ρ̂lpq = ρ̂lq,pq = ρ̂l(−q)p(−q). (2.47)

Note that isotropy reduces the dimensionality of the BRDF from 4D to 3D. This is reflected

in the fact that we now have only three independent indices. Furthermore, half the degrees

of freedom are constrained since we can negate the azimuthal angle without changing the

BRDF.

Next, we remove the dependence of the reflected light field on γ by arbitrarily setting

γ = 0. It can be verified that for isotropic surfaces, γ mathematically just controls the origin

or 0-angle for φ′
o and can therefore be set arbitrarily. Upon doing this, we can simplify a

number of quantities. First, the rotation operator is now given simply by

Rα,β = Rα,β,0 = Rz(β)Ry(α). (2.48)

Next, the representation matrices can be rewritten as

Dl
mn(α, β) = Dl

mn(α, β, 0) = dl
mn(α)e

Imβ. (2.49)

It should be noted that removing the dependence on γ weakens the orthogonality con-

dition (equation 2.41) on the representation matrices, since we no longer integrate over γ.
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The new orthonormality relation for these matrices is given by

∫ 2π

β=0

∫ π

α=0

(
Dl

mn(α, β)
)∗ (

Dl′
m′n(α, β)

)
sinαdα dβ =

4π

2l + 1
δll′δmm′ . (2.50)

In particular, the orthogonality relation for the index n no longer holds, which is why we

have used the index n for both D and D′ instead of using n and n′, as in equation 2.41. The

absence of an integral over γ leads to a slight weakening of the orthogonality relation, as

well as a somewhat different normalization than in equation 2.41. For the future discussion,

it will be convenient to define normalization constants by

Λl =

√
4π

2l + 1
. (2.51)

We now have the tools necessary to rewrite equation 2.43 for isotropic BRDFs. Since

we will be using the equations for isotropic BRDFs extensively in the rest of this disser-

tation, it will be worthwhile to briefly review the representations of the various quantities,

specialized to the isotropic case.

First, we define the expansions of the lighting in global coordinates, and the results

from rotating this expansion,

L(θi, φi) =
∞∑
l=0

l∑
m=−l

LlmYlm(θi, φi)

L(θi, φi) = L (Rα,β(θ
′
i, φ

′
i)) =

∞∑
l=0

+l∑
m=−l

l∑
m′=−l

LlmDl
mm′(α, β)Ylm′(θ′i, φ

′
i). (2.52)

Then, we write the expansion of the isotropic BRDF,

ρ̂(θ′i, θ
′
o, | φ′

o − φ′
i |) =

∞∑
l=0

∞∑
p=0

min(l,p)∑
q=−min(l,p)

ρ̂lpqY
∗
lq(θ

′
i, φ

′
i)Ypq(θ

′
o, φ

′
o). (2.53)

The reflected light field, which is now a 4D function, can be expanded using a product of

representation matrices and spherical harmonics,

Clmpq(α, β, θ
′
o, φ

′
o) = Λ−1

l Dl
mq(α, β)Ypq(θ

′
o, φ

′
o)
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B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

∞∑
p=0

min(l,p)∑
q=−min(l,p)

BlmpqClmpq(α, β, θ
′
o, φ

′
o)

Blmpq =
∫ 2π

φ′
o=0

∫ π

θ′o=0

∫ 2π

β=0

∫ π

α=0
U(α, β, θ′o, φ

′
o) sinα sin θ

′
o dα dβ dθ′o dφ

′
o

U(α, β, θ′o, φ
′
o) = B(α, β, θ′o, φ

′
o)C

∗
lmpq(α, β, θ

′
o, φ

′
o). (2.54)

It should be noted that the basis functions Clmpq are orthonormal in spite of the weakened

orthogonality of the functions Dl
mq, as expressed in equation 2.50. Note that the index q

in the definition of Clmpq is the same (coupled) for both factors Dl
mq and Ypq. This is a

consequence of isotropy, and is not true in the anisotropic case. Therefore, although the

representation matrices Dl no longer satisfy orthogonality over the index q (corresponding

to the index n in equation 2.50), orthogonality over the index q follows from the orthonor-

mality of the spherical harmonics Ypq.

Finally, we can derive an analytic expression (convolution formula) for the reflection

equation in terms of these coefficients,

Blmpq = ΛlLlmρ̂lpq. (2.55)

Apart from a slightly different normalization, and the removal of γ and the correspond-

ing index n, this is essentially the same as equation 2.43. We will be using this equation

for isotropic BRDFs extensively in the next chapter, where we quantitatively analyze the

reflection equation for many special cases of interest.

We may also try to derive an alternative form, analogous to equation 2.44, by holding
the outgoing elevation angle θ′o fixed. Since the isotropic BRDF depends only on | φ′o−φ′

i |,
and not directly on φ′

o, we do not hold φ′
o fixed, as we did in equation 2.44. We first define

the modified expansions,

ρ̂(θ′i, θ
′
o, | φ′

o − φ′
i |) =

∞∑
l=0

l∑
q=−l

ρ̂lq(θ′o)
(

1√
2π

Y ∗
lq(θ

′
i, φ

′
i) exp(Iqφ′

o)
)

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
q=−l

Blmq(θ′o)
(

1√
2π

Λ−1
l Dl

mq(α, β) exp(Iqφ′
o)

)
. (2.56)
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Then, we may write down the isotropic convolution formula corresponding to equation 2.44,

Blmq(θ
′
o) = ΛlLlmρ̂lq(θ

′
o). (2.57)

Reciprocity Preserving

One of the important properties of physical BRDFs is that they are reciprocal, i.e. sym-

metric with respect to interchange of incident and outgoing angles. However, the transfer

function ρ̂ = ρ cos θ′i as defined by us, does not preserve this reciprocity of the BRDF. To

make the transfer function reciprocal, we should multiply it by cos θ′o also. To preserve

correctness, we must then multiply the reflected light field by cos θ′o as well. Specifically,

we define

ρ̃ = ρ̂ cos θ′o = ρ cos θ′i cos θ
′
o

B̃ = B cos θ′o. (2.58)

With these definitions, all of the derivations presented so far still hold. In particular, the

convolution formulas in equation 2.43 and 2.55 hold with the replacements B → B̃, ρ̂ → ρ̃.

For example, equation 2.55 for isotropic BRDFs becomes

B̃lmpq = ΛlLlmρ̃lpq. (2.59)

The symmetry of the transfer function ensures that its coefficients are unchanged if the in-

dices corresponding to incident and outgoing angles are interchanged, i.e. ρ̃lpq = ρ̃plq. In

the more general anisotropic case, ρ̃ln,pq = ρ̃pq,ln. We will use the frequency-space reflec-

tion formula, as given by equation 2.59, whenever explicitly maintaining the reciprocity of

the BRDF is important.

Reparameterization by central BRDF direction

Consider first the special case of radially symmetric or 1D BRDFs, where the BRDF con-

sists of a single symmetric lobe of fixed shape, whose orientation depends only on a well-

defined central direction �C. In other words, the BRDF is given by a 1D function u as
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ρ̂ = u( �C · �L). Examples are Lambertian ρ̂ = �N · �L and Phong ρ̂ = (�R · �L)s models. If we

reparameterize the BRDF and reflected light field by �C, the BRDF becomes a function of

only 1 variable (θ′i with cos θ′i = �C · �L) instead of 3. Refer to figure 2.4 for an illustration.

Further, the reflected light field can be represented simply by a 2D reflection map B(α, β)

parameterized by �C = (α, β). In other words, after reparameterization, there is no explicit

exitant (outgoing) angular dependence for either the BRDF or reflected light field.
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Figure 2.4: Reparameterization involves recentering about the reflection vector. BRDFs become
more compact, and in special cases (Phong) become 1D functions.

We may now write the BRDF and equations for the reflected light field as

ρ̂(θ′i) =
∞∑
l=0

ρ̂lYl0(θ
′
i)

ρ̂l = 2π
∫ π/2

0
ρ̂(θ′i)Yl0(θ

′
i) sin θ

′
i dθ

′
i

B(α, β) =
∞∑
l=0

l∑
m=−l

l∑
q=−l

ρ̂lLlmDl
mq(α, β)

∫ 2π

0

∫ π

0
Ylq(θ

′
i, φ

′
i)Yl0(θ

′
i) sin θ

′
i dθ

′
idφ

′
i

=
∞∑
l=0

l∑
m=−l

ρ̂lLlmDl
m0(α, β). (2.60)

In computing ρ̂l, we have integrated out the azimuthal dependence, accounting for the

factor of 2π. In the last line, we have used orthonormality of the spherical harmonics.

Now, we use the second property of the matrices D from equation 2.35, i.e. Dl
m0(α, β) =
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ΛlYlm(α, β). Therefore, the reflected light field can be expanded simply in terms of spher-

ical harmonics,

B(α, β) =
∞∑
l=0

l∑
m=−l

BlmYlm(α, β). (2.61)

The required convolution formula now becomes

Blm = Λlρ̂lLlm. (2.62)

In the context of Lambertian BRDFs (for which no reparameterization is required), it

has been noted by Basri and Jacobs [2] that equation 2.62 is mathematically an instance of

the Funk-Hecke theorem (as stated, for instance in Groemer [24], page 98). However, that

theorem does not generalize to the other relations previously encountered. With respect

to equation 2.55, we have essentially just dropped the indices p and q corresponding to

the outgoing angular dependence. It is important to remember that the reflected light field

is now expanded in terms of spherical harmonics. B is simply a filtered version of L,

with each frequency l being attenuated by a different amount, corresponding to the BRDF

transfer function ρ̂l.

For general BRDFs, the radial symmetry property does not hold precisely, so they can-

not be reduced exactly to 1D functions, nor can B be written simply as a 2D reflection map.

Nevertheless, a reparameterization of the specular BRDF components by the reflection vec-

tor (or other central BRDF direction) still yields compact forms. To reparameterize, we

simply recenter the BRDF (and the reflection integral) about the reflection vector �R, rather

than the surface normal, as shown in figure 2.4. The reflection vector now takes the place

of the surface normal, i.e. �R = (α, β), and the dependence on the surface normal becomes

indirect (just as the dependence on �R is indirect in the standard parameterization). The

angles θ′i and θ′o are now given with respect to �R by cos θ′i = �R · �L and cos θ′o = �R · �V , with

B(α, β, θ′o, φ
′
o) a function of �R = (α, β) and ωo = (θ′o, φ

′
o). Once we have done this, we

can directly apply the general convolution formulas, such as equation 2.55.

This section has presented a frequency-space analysis of the reflection equation. We

have shown the simple quantitative form that results from this analysis, as embodied by

equations 2.43 and 2.55. The mathematical analysis leading to these results is the main
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contribution of this chapter, showing quantitatively that reflection can be viewed as a con-

volution. The next section gives an overview of the implications of these results for forward

and inverse problems in rendering. The next chapter will work out a number of special cases

of interest.

2.4 Implications

This section discusses the implications of the theoretical analysis developed in the previous

section. Our main focus will be on understanding the well-posedness and conditioning of

inverse problems, as well as the speedups obtained in forward problems. In this section,

we make some general observations. In the second part of the paper, we will quantitatively

analyze a number of special cases of interest.

We will deal here exclusively with the 3D case, since that is of greater practical impor-

tance. A preliminary analysis for the 2D case can be found in an earlier paper [70]. The

quantitative results in 2D and 3D are closely related, although the fact that the 3D treatment

is in terms of spherical harmonics, as opposed to the 2D treatment in terms of Fourier se-

ries, results in some important differences. For simplicity, we will also restrict the ensuing

discussion to the case of isotropic BRDFs. The extension to anisotropic surfaces can be

done using the equations derived earlier for the general anisotropic case.

2.4.1 Forward Rendering with Environment Maps

We first consider the problem of rendering with environment maps, i.e. general lighting

distributions. For the purposes of rendering, it is convenient to explicitly write the formula

for the reflected light field as

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

∞∑
p=0

min(l,p)∑
q=−min(l,p)

Llmρ̂lpq

(
Dl

mq(α, β)Ypq(θ
′
o, φ

′
o)

)
. (2.63)

If either the lighting or the BRDF is low frequency, the total number of terms in the

summation will be relatively small, and it may be possible to use equation 2.63 directly

for shading a pixel. In chapter 4, we will demonstrate the practicality of this approach for
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Lambertian BRDFs, where we can set p = q = 0, and use l ≤ 2, i.e. only 9 spherical

harmonic terms.

In the general case, frequency space analysis allows for setting sampling rates accu-

rately, and enables compact frequency domain representations. Further, just as image con-

volutions are often computed in the Fourier rather than the spatial domain, computing the

reflected light field is more efficient in frequency space, using equation 2.63, rather than in

angular space. Chapter 5 describes the practical implementation of these ideas.

2.4.2 Well-posedness and conditioning of Inverse Lighting and BRDF

In this subsection, we briefly discuss how to apply ideas from the theoretical analysis to

determine which inverse problems are well-posed, i.e. solvable, versus ill-posed, i.e. un-

solvable, and also determine the numerical conditioning properties. At the end of this

subsection, we will also relate these results to the general theory of linear integral equa-

tions. An important duality should be noted here. Forward problems for which an efficient

frequency domain solution is possible, such as those involving diffuse surfaces and/or soft

lighting, have corresponding inverse problems that are ill-conditioned. Turned around, ill-

conditioned inverse problems allow us to get a very good solution to the forward problem

by using very coarse low-frequency approximations of the initial conditions. For instance,

Lambertian surfaces act as low-pass filters, the precise form of which we will explore in

the next chapter, blurring the illumination. Therefore, high-frequency components of the

lighting are not essential to rendering images of diffuse objects, and we can make very

coarse low-frequency approximations to the lighting without significantly affecting the fi-

nal image. This leads to more efficient algorithms for computer graphics, and illustrates

one of the benefits in considering a signal-processing view of reflection.

Inverse-BRDF

We first address the question of BRDF estimation. Our goal is to consider this problem un-

der general illumination conditions, and understand when the BRDF can be recovered, i.e.

BRDF estimation is well posed, and when the BRDF cannot be recovered, i.e. estimation is

ill-posed. We would also like to know when BRDF recovery will be well-conditioned, i.e.
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numerically robust. An understanding of these issues is critical in designing BRDF estima-

tion algorithms that work under arbitrary lighting. Otherwise, we may devise algorithms

that attempt to estimate BRDF components that cannot be calculated, or whose estimation

is ill-conditioned.

For isotropic surfaces, a simple manipulation of equation 2.55 yields

ρ̂lpq = Λ−1
l

Blmpq

Llm
. (2.64)

In general, BRDF estimation will be well-posed, i.e. unambiguous as long as the denom-

inator on the right-hand side does not vanish. Of course, to be physically accurate, the

numerator will also become 0 if the denominator vanishes, so the right-hand side will be-

come indeterminate. From equation 2.64, we see that BRDF estimation is well posed as

long as for all l, there exists at least one value of m so that Llm �= 0. In other words, all

orders in the spherical harmonic expansion of the lighting should have at least one coeffi-

cient with nonzero amplitude. If any order l completely vanishes, the corresponding BRDF

coefficients cannot be estimated.

In signal processing terms, if the input signal (lighting) has no amplitude along certain

modes of the filter (BRDF), those modes cannot be estimated. BRDF recovery is well

conditioned when the spherical harmonic expansion of the lighting does not decay rapidly

with increasing frequency, i.e. when the lighting contains high frequencies like directional

sources or sharp edges, and is ill-conditioned for soft lighting. Equation 2.64 gives a precise

mathematical characterization of the conditions for BRDF estimation to be well-posed and

well-conditioned. These results are similar to those obtained by D’Zmura [17] who states

that there is an ambiguity regarding the BRDF in case of inadequate illumination. In our

framework, inadequate illumination corresponds to certain frequencies l of the lighting

completely vanishing.

Inverse Lighting

A similar analysis can be done for estimation of the lighting. Manipulation of equation 2.55

yields

Llm = Λ−1
l

Blmpq

ρ̂lpq

. (2.65)
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Inverse lighting will be well-posed so long as the denominator does not vanish for all p, q

for some l, i.e. so long as the spherical harmonic expansion of the BRDF transfer function

contains all orders. In signal processing terms, when the BRDF filter truncates certain fre-

quencies in the input lighting signal (for instance, if it were a low-pass filter), we cannot

determine those frequencies from the output signal. Inverse lighting is well-conditioned

when the BRDF has high-frequency content, i.e. its frequency spectrum decays slowly. In

physical terms, inverse lighting is well-conditioned when the BRDF contains sharp spec-

ularities, the ideal case of which is a mirror surface. On the other hand, inverse lighting

from matte or diffuse surfaces is ill-conditioned. Intuitively, highly specular surfaces act

as high-pass filters, so the resulting images have most of the high frequency content in the

lighting, and the lighting can be estimated. On the other hand, diffuse surfaces act as low-

pass filters, blurring the illumination and making it difficult or impossible to recover the

high frequencies.

Analysis in terms of theory of Fredholm Integral equations

We now briefly put our results on the well-posedness of inverse lighting and BRDF prob-

lems into a broader context with respect to the theory of Fredholm integral equations. In-

verting the reflection equation to solve for the lighting or BRDF is essentially a Fredholm

integral equation of the first kind. By contrast, the (forward) global illumination prob-

lem typically considered in rendering is a Fredhom integral equation of the second kind.

Fredholm integral equations of the first kind may be written generally as

b(s) =
∫

t
K(s, t)f(t) dt, (2.66)

where b(s) is the known quantity (observation), K(s, t) is the kernel or operator in the

equation, and f(t) is the function we seek to find. To make matters concrete, one may

think of f as the incident illumination L, with the kernel K as corresponding to the (ro-

tated) BRDF operator, and b(s) as corresponding to the reflected light field. Here, t would

represent the incident direction, and s would represent the surface orientation and outgoing

direction.
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The theory of linear integral equations, as for instance in Cochran [11], analyzes equa-

tion 2.66 based on the structure of the kernel. In particular, assume we may find a basis

function expansion of the form

b(s) =
n∑

i=1

biui(s)

K(s, t) =
n∑

i=1

Kiui(s)v
∗
i (t)

f(t) =
∞∑
i=1

fivi(t), (2.67)

where each of the sets of functions ui and vi (with v∗i being the complex conjugate) is

linearly independent. Here, n is the number of terms in, or rank of the kernel, K. If n is

finite, the kernel is referred to as degenerate. It should be noted that if the function sets

u and v were orthonormal, then we would have a result of the form bi = Kifi. In effect,

we have constructed an expansion of the form of equation 2.67 using orthonormal basis

functions involving group representations and spherical harmonics, thereby deriving the

convolution result.

As long as the kernel has finite rank n, it annihilates some terms in f , (for i > n),

and the integral equation is therefore ill-posed (has an infinity of solutions). If the kernel

has numerically finite rank, the integral equation is ill-conditioned. Our analysis can be

seen as trying to understand the rank of the kernel and its degeneracies in terms of signal

processing, thereby determining up to what order the function f can be recovered. In the

future, it may be possible to directly apply the theory of integral equations to analyze the

well-posedness and conditioning of inverse problems for which simple analytic formulae

such as our convolution relation are not readily available.

2.4.3 Light Field Factorization

Having analyzed estimation of the BRDF and lighting alone, we now consider the problem

of factorizing the light field, i.e simultaneously recovering the lighting and BRDF when

both are unknown. An analysis of this problem is very important theoretically in under-

standing the properties of the light field. There is also potential for practical applications in
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many different areas. Within BRDF estimation, being able to factor the light field allows

us to estimate BRDFs under uncontrolled unknown illumination, with the lighting being

recovered as part of the algorithm. Similarly, it would be useful to be able to recover the

lighting from an object of unknown BRDF. Factorization reveals the structure of the light

field, allowing for more intuitive editing operations to be carried out in order to synthesize

novel images for computer graphics. Factorization also reduces the dimensionality, and is

therefore useful in compressing light fields that are usually very large.

We first note that there is a global scale factor that we cannot recover. Multiplying the

lighting everywhere by some constant amount and dividing the BRDF uniformly by the

same amount leaves the reflected light field, which is a product of the two, unchanged. Of

course, physical considerations bound the scale factor, since the BRDF must remain energy

preserving. Nevertheless, within this general constraint, it is not possible to estimate the

absolute magnitudes of the lighting and BRDF. However, we will demonstrate that apart

from this ambiguity, the light field can indeed be factored, allowing us to simultaneously

determine both the lighting and the BRDF.

An important observation concerns the dimensionality of the various components. The

isotropic BRDF is defined on a 3D domain, while the lighting is a function of 2D. On the

other hand, the reflected light field is defined on a 4D domain. This indicates that there is a

great deal of redundancy in the reflected light field. The number of knowns, i.e. coefficients

of the reflected light field, is greater than the number of unknowns, i.e. coefficients of the

lighting and BRDF. This indicates that factorization should be tractable. Indeed, for fixed

order l, we can use known lighting coefficients Llm to find unknown BRDF coefficients

ρ̂lpq and vice-versa. In fact, we need only one known nonzero lighting or BRDF coefficient

for order l to bootstrap this process, since inverse lighting can use any value of (p, q) and

inverse-BRDF computation can use any value of m.

It would appear from equation 2.55 however, that there is an unrecoverable scale factor

for each order l, corresponding to the known coefficient we require. In other words, we

may multiply the lighting for each order l by some amount (which may be different for

different frequencies l) while dividing the BRDF by the same amount. However, there is

an important additional physical constraint. The BRDF must be reciprocal, i.e. symmetric

with respect to incident and outgoing angles. The corresponding condition in the frequency
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domain is that the BRDF coefficients must be symmetric with respect to interchange of the

indices corresponding to the incident and outgoing directions. To take advantage of this

symmetry, we will use the reciprocal form of the frequency-space equations, as defined in

equation 2.59.

We now derive an analytic formula for the lighting and BRDF in terms of coefficients

of the reflected light field. Since we cannot recover the global scale, we will arbitrarily

scale the DC term of the lighting so L00 = Λ−1
0 =

√
1/ (4π). Note that this scaling is

valid unless the DC term is 0, corresponding to no light—an uninteresting case. Using

equations 2.59, 2.64, and 2.65, we obtain

L00 = Λ−1
0 : Global Scale

ρ̃0p0 = B̃00p0 : Equation 2.64 (l = q = 0)

Llm = Λ−1
l

B̃lmpq

ρ̃lpq
: Equation 2.65

=
B̃lm00

ρ̃l00
: Set p = q = 0

=
B̃lm00

ρ̃0l0
: Reciprocity, ρ̃0l0 = ρ̃l00

= Λ−1
l

B̃lm00

B̃00l0

: Plug in from 2nd line

ρ̃lpq = Λ−1
l

B̃lmpq

Llm

: Equation 2.64

=
B̃lmpqB̃00l0

B̃lm00

: Substitute from above for Llm. (2.68)

Note that in the last line, any value of m may be used. If none of the terms above vanishes,

this gives an explicit formula for the lighting and BRDF in terms of coefficients of the

output light field. Assuming reciprocity of the BRDF is critical. Without it, we would not

be able to relate ρ̃0l0 and ρ̃l00 above, and we would need a separate scale factor for each

frequency l.

Therefore, up to global scale, the reflected light field can be factored into the light-

ing and the BRDF, provided the appropriate coefficients of the reflected light field do
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not vanish, i.e. the denominators above are nonzero. If the denominators do vanish, the

inverse-lighting or inverse-BRDF problems become ill-posed and consequently, the fac-

torization becomes ill-posed. Note that the above relations are one possible factorization

formula. We may still be able to factor the light field even if some of the ρ̃l00 terms vanish

in equation 2.68, by using different values of ρ̃lpq with p �= 0.

Of course, the results will be more and more ill-conditioned, the closer the reflected

light field coefficients in the denominators come to 0, and so, in practice, there is a max-

imum frequency up to which the recovery process will be possible. This maximum fre-

quency will depend on the frequency spectrum of the reflected light field, and hence on the

frequency spectra of the lighting and BRDF. When either inverse-lighting or inverse-BRDF

computations become ill-conditioned, so will the factorization. Therefore, the factorization

will work best for specular BRDFs and high-frequency lighting. In other cases, there will

remain some ambiguities, or ill-conditioning.

2.5 Conclusions and Future Work

In this chapter, we have presented a theoretical analysis of the structure of the reflected

light field from a convex homogeneous object under a distant illumination field. We have

shown that the reflected light field can be formally described as a convolution of the incident

illumination and the BRDF, and derived an analytic frequency space convolution formula.

This means that reflection can be viewed in signal processing terms as a filtering operation

between the lighting and the BRDF to produce the output light field. Furthermore, inverse

rendering to estimate the lighting or BRDF from the reflected light field can be understood

as deconvolution. This result provides a novel viewpoint for many forward and inverse

rendering problems, and allows us to understand the duality between forward and inverse

problems, wherein an ill-conditioned inverse problem may lead to an efficient solution to

a forward problem. We have also discussed the implications for inverse problems such as

lighting recovery, BRDF recovery, light field factorization, and forward rendering problems

such as environment map prefiltering and rendering. The next chapter will make these ideas

concrete for many special cases, deriving analytic formulae for the frequency spectra of

many common BRDF and lighting models. Following that, the rest of this dissertation will
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develop practical implications of the theoretical analysis from this chapter, showing how

frequency domain methods may be used for forward and inverse rendering.

It should be noted that the analysis in this chapter is based on the specific assumptions

noted here, and is only one way in which the reflection operator can be analyzed. Other

researchers have derived analytic formulae for many useful special cases that go beyond

our assumptions. For instance, Soler and Sillion [80] derive a convolution relation for

calculating soft shadows assuming planar objects. Arvo [1] and Chen and Arvo [9] develop

methods for computing irradiance from planar luminaires including near-field effects which

we do not treat here. In the future, it would be interesting to consider perturbative methods

that could unify our results with some of these previous analytical derivations.

More generally, we have studied the computational properties of the reflection operator—

given a complex illumination field and arbitrary BRDF—in the frequency domain. How-

ever, there are many other ways these computational fundamentals of reflection can be

studied. For instance, it might be worthwhile to consider the differential properties of re-

flection, and to study perceptual metrics rather than physical ones. Another important area

is the formal study of the conditioning of forward and inverse problems, possibly directly

from an eigenanalysis of the kernel of the Fredholm integral equation. We believe this for-

mal analysis will be increasingly important in deriving robust and efficient algorithms in

the future. While we have made a first step in this direction, other issues such as how our

results change when we have only a limited fraction of the reflected light field available, or

can move our viewpoint only in a narrow range, need to be studied. In summary, we believe

there are a number of domains in graphics and vision that benefit greatly from a fundamen-

tal understanding of the reflection operator. We believe the work described in this chapter

is a first step in putting an analysis of reflection on a strong mathematical foundation.


