
Chapter 5

Frequency Space Environment Map

Rendering

In the previous chapter on irradiance environment maps, we have seen how frequency-

space analysis can be used to efficiently compute and represent convolutions of the incident

illumination with the low-pass Lambertian reflection function, i.e. clamped cosine. An ob-

vious question is whether a similar approach is possible for general BRDFs. In this chapter,

we will present such a method. We will therefore have shown that the signal-processing

ideas can be used to significantly increase the quality of interactive rendering. Since we

are using frequency space methods to render with environment maps, we have entitled this

chapter Frequency Space Environment Map Rendering. The next chapter of the disserta-

tion will switch from forward to inverse rendering, extending and applying the theoretical

framework to determining lighting and BRDFs from sequences of real photographs.

This chapter presents a new method for real-time rendering of objects with complex

isotropic BRDFs under distant natural illumination, as specified by an environment map.

Our approach is based on spherical frequency space analysis and includes three significant

improvements over previous work. Firstly, we are able to theoretically analyze required

sampling rates and resolutions, which have traditionally been determined in an ad-hoc man-

ner. We also introduce a new compact representation, which we call a spherical harmonic

reflection map (SHRM), for efficient representation and rendering. Finally, we show how to
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Figure 5.1: These images, showing many different lighting conditions and BRDFs, were each
rendered at approximately 30 frames per second using our Spherical Harmonic Reflection Map
(SHRM) representation. From left to right, a simplified microfacet BRDF, krylon blue (using Mc-
Cool et al.’s reconstruction from measurements at Cornell), orange and velvet (CURET database),
and an anisotropic BRDF (based on the Kajiya-Kay model). The environment maps are the Grace
Cathedral, St. Peter’s Basilica, the Uffizi gallery, and a Eucalyptus grove, courtesy Paul Debevec.
The armadillo model is from Venkat Krishnamurthy.

rapidly prefilter the environment map to compute the SHRM—our frequency domain pre-

filtering algorithm is generally orders of magnitude faster than previous angular (spatial)

domain approaches.

The rest of this chapter is organized as follows. We introduce the problem in section

1, followed by a discussion of previous work in section 2. Section 3 introduces the pre-

liminaries and background required. Section 4 describes our new SHRM representation,

section 5 discusses an analysis of sampling rates in order to set frequency space orders and

resolutions, and section 6 describes our efficient frequency domain prefiltering algorithms.

Section 7 presents our results using a number of different environment maps and BRDFs.

Finally, we conclude this chapter and discuss future work in section 8.

5.1 Introduction

Our goals are real-time rendering with complex natural illumination and realistic, possibly

measured, BRDFs. The closest previous work is that of Cabral et al. [8], who extended

standard environment maps by interactively warping and combining a sparse 2D set of

prerendered images. These precomputed images were obtained by prefiltering the environ-

ment map, i.e. integrating the product of the BRDF and lighting over the visible (upper)

hemisphere for each image pixel, with each pixel corresponding to a particular surface nor-

mal direction. Subsequently, Kautz et al. [38, 40] proposed alternative implementations
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and improved prefiltering methods.

This paper introduces a new frequency space paradigm for prefiltering and rendering

environment mapped images with general isotropic BRDFs. We show that frequency space

analysis allows for setting sampling rates accurately, and enables compact representations.

Further, just as image convolutions are often computed in the Fourier rather than the spatial

domain, prefiltering is more efficient in frequency rather than angular space. Our main

contributions are:

Theoretical analysis of sampling rates and resolutions: Most previous work has deter-

mined reflection map resolutions, or the number of reflection maps required, in an ad-hoc

manner. By using a signal-processing framework, we are able to perform error analysis,

that allows us to set sampling rates and resolutions accurately.

Efficient representation and rendering with Spherical Harmonic Reflection Maps:

We introduce spherical harmonic reflection maps (SHRMs) as a compact representation.

Instead of a single color, each pixel stores coefficients of a spherical harmonic expansion

encoding view-dependence of the reflection map. An observation that emerges from the

theoretical analysis is that for almost all BRDFs, a very low order spherical harmonic ex-

pansion suffices. Thus, SHRMs can be evaluated in real-time for rendering. Further, they

are significantly more compact and accurate than previous methods [8, 38] that use an

explicit 1D or 2D set of images.

Fast prefiltering: One of the drawbacks of current environment mapping techniques is

the significant computational time required for prefiltering, which can run into hours, and

preclude the use of these approaches in applications involving lighting and material design,

or dynamic lighting. We introduce new prefiltering methods based on spherical harmonic

transforms, and show both empirically, and analytically by computational complexity anal-

ysis, that our algorithms are orders of magnitude faster than previous work.

We present a complete theoretical analysis and practical algorithm pipeline, incorporat-

ing all three contributions. It is also possible to separately (incrementally) incorporate any

one (or two) of the improvements into previous methods.
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5.2 Related Work

Angular space environment map rendering has a long history in graphics, including early

work by Blinn and Newell [5], Miller and Hoffman [59], and Greene [22]. Hakura et

al. [28] propose location and geometry-dependent environment maps for local reflections.

Our goals are different in that we want to capture the effects of complex BRDFs and use

any object geometry, but it should be possible in future to combine the methods for local

reflections and complex BRDFs.

As noted by Cabral et al. [8], environment mapping can be viewed as reflection-space

image-based rendering, and is therefore related to a number of IBR methods like surface

light fields [60, 64, 88]. A surface light field stores the outgoing radiance distribution for

each point on a geometric model. Our representation is essentially equivalent to the surface

light field of a sphere. We store the reflected radiance distribution for each normal direction,

allowing our representation to be mapped on to any object geometry.

Our work also relates to recent research on hardware rendering with factored BRDFs [37,

57]. However, these methods require the BRDF to at least approximately satisfy a particu-

lar factored form. These previous methods also do not support complex illumination.

5.3 Preliminaries

In this section, we first discuss the reflection equation and introduce the basic framework for

our method. We then describe our BRDF parameterization, and discuss previous 4D func-

tion representations. We use the same notation as in the rest of the dissertation, summarized

in table 1.1. In addition, there is some new notation used in this chapter, summarized in

table 5.1.

Assumptions: We make a number of simplifying assumptions common in real-time ren-

dering in general, and environment mapping [8, 38, 40, 59] in particular. Specifically, we

assume distant illumination and isotropic BRDFs, and restrict ourselves to direct lighting,

ignoring interreflection and self-shadowing. We will also not explicitly considered tex-

tured objects, but it is easy to use texture-mapping to modulate the net reflectance, simply
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B̂(α, β, θo, φo) Reflected light field in terms of fixed global viewing direction
F Maximum order l of coefficients ρ̂lpq,Blmpq

P Maximum order p in spherical harmonic expansion
S Angular resolution (S > F )
T Number of images in angular space (T > P )
W Angular width of BRDF
ε Error (unaccounted energy in approximation)
Ca Angular space computational cost
Cf Frequency domain computational cost

Table 5.1: Notation used in chapter 5.

by multiplying the texture and the reflected light field computed by our methods. It should

be noted that it is not easy to modulate BRDF parameters, only the net reflectance.

Reflection Equation: Given our assumptions, we may drop spatial dependence, and

write the standard reflection equation (c.f. equation 2.9),

B(α, β, γ, θ′o) =
∫
Ω′

i

L(θi, φi)ρ̂(θ
′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (5.1)

As usual, L is the incident radiance, ρ̂ is the BRDF transfer function, and B is the reflected

light field. (α, β) correspond to the global coordinates of the surface normal, (θi, φi) are

the global coordinates of the incident light direction, and (θ′i, φ
′
i) and (θ′o, φ

′
o) are local

incident and outgoing directions. Applying the standard rotation to align local and global

coordinates, we obtain (c.f. equation 2.11),

B(α, β, θ′o, φ
′
o) =

∫
Ω′

i

L (Rα,β(θ′i, φ
′
i)) ρ̂(θ

′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (5.2)

When the viewer is distant, it is often useful to rewrite the reflected light field in terms

of the global viewing direction �V = (θo, φo). Note that so far in this dissertation, we have

considered local outgoing angles only, so this is a new notation. To distinguish it from the

familiar notation in terms of local angles, we denote the reflected light field, parameterized

by global outgoing direction as B̂. We now have,
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(θ′o, φ
′
o) = R−1

α,β (θo, φo)

B̂ (α, β; θo, φo) = B(α, β, θ′o, φ
′
o)

= B
(
α, β;R−1

α,β (θo, φo)
)
. (5.3)

Our general approach (and that of previous work [8, 38]) is to represent the incident

lighting L by an environment map. The environment map is prefiltered to compute some

representation of B (or B̃), followed by interactive rendering with this representation.

The rest of this chapter covers a number of issues that must be addressed. First, we must

find the appropriate (re)parameterization for B and ρ̂. Next, we must determine how to

represent B in a compact manner suitable for interactive rendering. For this, it is important

to analyze the required sampling rates and output resolutions. Finally, we must determine

how to efficiently compute our representation of B, i.e. rapidly prefilter the environment

map. An overview of our entire algorithm pipeline is shown in figure 5.2.

5.3.1 Reparameterization by central BRDF direction

Our goal is to reparameterize the BRDF and reflected light field so that they become rel-

atively simple and compact, and possibly lower-dimensional functions. Reparameterizing

also allows us to eliminate the warping step required by Cabral et al. [8]. To do this, we

reparameterize by the central BRDF direction, commonly the reflection vector, as per the

discussion in section 2.3.4. We repeat below the important points and discuss some relevant

details. Please refer to figure 2.4 in chapter 2 for an illustration of the ideas.

Consider first the special case of radially symmetric or 1D BRDFs, where the BRDF

consists of a single symmetric lobe of fixed shape, whose orientation depends only on a

well-defined central direction �C. In other words, the BRDF is given by a 1D function

u as ρ̂ = u(�C · �L). Examples are Lambertian ρ̂ = �N · �L and Phong ρ̂ = (�R · �L)s

models. If we reparameterize by �C, the BRDF becomes a function of only 1 variable (θi

with cos θi = �C · �L) instead of 3. Further, the reflected light field can be represented simply

by a 2D reflection map B(α, β) parameterized by �C = (α, β). Note that we will often use
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�R, the reflection of the viewing direction about the surface normal, as a synonym for �C

since that is the most common case; however our analysis applies generally.

For general BRDFs, the radial symmetry property does not hold precisely, so they can-

not be reduced exactly to 1D functions, nor can B be written simply as a 2D reflection map.

Nevertheless, a reparameterization by the reflection vector still yields compact forms. As

can be seen for the �N · �H model shown in the lower part of figure 2.4, most of the variation

in the BRDF is still over only a single variable (θi) after reparameterization, while there is

very little variation over θo (or φ) for fixed θi. Further, most of the variation in B remains

over (α, β), with only low-frequency variation over the other two variables (θo, φo).

To reparameterize, we simply recenter the BRDF (and the reflection integral) about the

reflection vector, rather than the surface normal, as shown in figure 2.4. The reflection

vector now takes the place of the surface normal, i.e. �R = (α, β), and the dependence on

the surface normal becomes indirect (just as the dependence on �R is indirect in the standard

parameterization). The angles θ′i and θ′o are now given with respect to �R by cos θ′i = �R · �L
and cos θ′o = �R · �V , with B(α, β, θ′o, φ

′
o) a function of �R = (α, β) and (θ′o, φ

′
o).

Note that, although this paper does not address general 4D anisotropic BRDFs, repa-

rameterization by the tangent vector �T can be used in special cases to reduce anisotropic

BRDFs to 1D or 2D functions, amenable to treatment by our algorithm pipeline. For in-

stance, consider the Kajiya-Kay [35] model. This BRDF is an anisotropic extension of the

Phong model, and depends on �T · �L and �T · �V . We may reparameterize by the tangent vec-

tor, just as we did above with the reflection vector. Then, cos θ′i = �T · �L and cos θ′o = �T · �V ,

with the BRDF being given by ρ̂ = coss(θ′i − θ′o). The BRDF is now a simple 2D function,

which is only slightly more complex than the reparameterized 1D Phong BRDF.

An important requirement of our reparameterization is that it be suitable for both the

BRDF ρ̂ and the reflected light field B. Thus, Rusinkiewicz’s [74] reparameterization of

BRDFs, based on the half angle vector �H , cannot be used since it is unsuitable for the

reflected light field. �H depends on the incident light direction, while B depends only

on the the viewing direction and surface normal (or reflection vector). Our approach is

motivated by the “reflective transformation” used by Wood et al. [88] to reparameterize the

outgoing radiance of surface light fields by �R. However, our final representations differ

significantly. In their case, the surface light field is parameterized by object geometry and
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reflection vector �R, while in our case, the “orientation light field” is parameterized by the

reflection vector �R and viewing vector �V .

5.3.2 4D function representations

Our goal is to compactly represent B(α, β, θ′o, φ
′
o) in a manner suitable for interactive ren-

dering, while exploiting its characteristics. As noted previously [8], the variation over

(α, β) may be rapid (high-frequency), while that over (θ′o, φ
′
o) is usually slow (low-frequency),

reducing to constant (no variation) for radially symmetric 1D BRDFs. There have been a

number of representations for 4D functions proposed in the graphics community, primar-

ily for image-based rendering. The main categories are listed below. Table 5.2 compares

tabular, compressed, factored, coefficient-based, as well as our SHRM representation, in

terms of simplicity, compactness of the representation, efficiency for rendering, ease of

error analysis, and speed for computation (prefiltering).

Explicit tabular representation: We may simply tabulate B(α, β, θ′o, φ
′
o) on a 4D grid.

Cabral et al. [8] use a sparse 2D set of standard 2D reflection maps. However, a very large

amount of data will be required to accurately tabulate a 4D light field. Cabral et al. [8]

use only 12 reflection maps, trading accuracy for compactness. Kautz and McCool [38]

approximate the BRDF as a 2D function ρ̂ = u(θ′i, θ
′
o) having no azimuthal dependence to

create a 3D texture B(α, β, θ′o). This lower-dimensional representation is more compact,

but loses some generality, and can still require a large amount of data. Interactive rendering

with these methods usually simply involves a texture lookup and interpolation.

Compressed forms: Compression based on vector-quantization or MPEG-like methods

can be used to reduce the size of a tabular representation, as done for surface light fields [60,

88]. or multidimensional animations [27]. Care must be taken that the compressed form

can be rendered interactively. Note that both computation of and error analysis on the

compressed form require us to first compute the dense uncompressed 4D light field, which

can be a computation and data-intensive operation.
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Method Simple Compact Rendering Analysis Speed
Tabular Yes No Yes No No
Compressed No Yes Maybe * No
Factored Yes Yes Yes * No
Coefficients Yes Yes No Yes Yes
SHRM Yes Yes Yes Yes Yes

Table 5.2: Comparison of different 4D representations. The columns stand for simplic-
ity/intuitiveness, compactness, efficiency for rendering, ease of error analysis, and speed of com-
putation (prefiltering). We use ∗ for error analysis of compressed and factored representations
because, while error analysis is straightforward, it requires knowledge of a densely sampled 4D
light field, and cannot be applied directly.

Factored representation: Factorization can be seen as a simple compression technique

that yields compact results suitable for interactive rendering using texture mapping. Pre-

vious methods that can be seen as factorizations include eigen-textures [64], polynomial

texture maps [53], and BRDF factorizations [37, 57]. The 4D light field is written as the

sum of a few terms, each being the product of two 2D functions (textures),

B(α, β, θ′o, φ
′
o) =

∑
a

ga(α, β)ha(θ
′
o, φ

′
o). (5.4)

The trick is to find the factors (2D textures) ga and ha so only a small number of terms are

needed. Rendering can be done interactively by multiplying together texture maps g and h.

Basis function coefficients: Factored representations can be viewed as a basis-function

expansion. To see this, we first introduce a representation purely in terms of basis function

coefficients:

B(α, β, θ′o, φ
′
o) =

∑
a

∑
b

cabdb(α, β)ha(θ
′
o, φ

′
o). (5.5)

The basis functions are db and ha with coefficients cab. We need only store cab, and can eval-

uate the basis functions procedurally. This is a simple compact form. However, interactive

rendering is difficult since there will usually be a large number of coefficients. We may

reduce the number of terms by doing the summation over b to get a factored representation
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identical to equation 5.4, defining

ga(α, β) =
∑

b

cabdb(α, β). (5.6)

5.4 Spherical Harmonic Reflection Maps

In this section, we introduce the spherical harmonic reflection map or SHRM representa-

tion, which is a compact factored representation derived from a spherical harmonic basis

function expansion. Figure 5.2 shows an overview of our entire pipeline. S and T stand
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Figure 5.2: An overview of our entire pipeline. S and T are angular resolutions, while F and P
are orders of the spherical harmonic expansions.

for angular resolutions while F and P stand for orders of the spherical harmonic expan-

sions, which are determined using the theoretical analysis in section 5.5. The inputs to the

algorithm are tabulated values of the lighting L(θ, φ) and 3D isotropic BRDF ρ̂(θ′i, θ
′
o, φ).

We then use our fast prefiltering algorithm, described in detail in section 5.6, to compute

the SHRM. This is done by first computing the spherical harmonic lighting coefficients

Llm and BRDF coefficients ρ̂lpq. We then use the spherical frequency-space convolution

formula derived in chapter 2, which may be viewed as the frequency domain analog of

equation 5.2, to compute reflected light field coefficients Blmpq (c.f. equation 2.55),

Blmpq = ΛlLlmρ̂lpq. (5.7)

Now, if we want to expand the coefficients to get the entire reflected light field, we

know that (c.f. equation 2.54)
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B(α, β, θ′o, φ
′
o) =

∑
l,m,p,q

ΛlLlmρ̂lpqΛ
−1
l Dl

mq(α, β)Ypq(θ
′
o, φ

′
o)

=
∑
lmpq

Llmρ̂lpq

(
Dl

mq(α, β)Ypq(θ
′
o, φ

′
o)
)
. (5.8)

We expand the right-hand side partially (over indices l and m), defining

Bpq(α, β) =
∑
l,m

Llmρ̂lpqD
l
mq(α, β). (5.9)

Finally, we may write down the equation for the SHRM as

B(α, β, θo, φo) =
PB∑
p=0

p∑
q=−p

Bpq(α, β)Ypq(θ
′
o, φ

′
o). (5.10)

In this equation, Bpq(α, β) is one coefficient in the SHRM, and PB ≥ 0 is the maximum

order of the expansion, with the SHRM containing a total of (PB + 1)2 terms. Figure 5.3

illustrates the idea behind SHRMs. Each pixel (α, β) in a reflection (cube)map has a par-

ticular distribution of outgoing radiance B(α, β, θ′o, φ
′
o). This distribution is encoded by

the SHRM as a spherical harmonic expansion in (θ′o, φ
′
o), with coefficients Bpq(α, β). For

the special case of radially symmetric 1D BRDFs, there is no dependence on (θ′o, φ
′
o) after

reparameterization, so we need only the DC or constant term B00(α, β), and the SHRM

reduces to a simple 2D reflection map.

So far, we have considered local SHRMs, depending on local outgoing angles (θ′o, φ
′
o),

which are different for each (α, β). It is often convenient to assume the viewer is distant

and compute global SHRMs, dependent on a global viewing direction (θo, φo).

B̂(α, β, θo, φo) =
PB∑
p=0

p∑
q=−p

B̂pq(α, β)Ypq(θo, φo). (5.11)

The advantage of equation 5.11 over equation 5.10 lies in ease of evaluation for render-

ing, since Ypq(θo, φo) can be evaluated once per frame, instead of per pixel. In fact, we will

show in section 5.7.5 that this allows global SHRMs to be rendered using a single dynamic
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Figure 5.3: The idea behind SHRMs. Each pixel (α, β) in the reflection cubemap has some distri-
bution of reflected light. This distribution is encoded as a low-order spherical harmonic expansion
in (θ′o, φ′

o) for every pixel, with coefficients Bpq(α, β). To avoid clutter, this diagram uses only a
3x3 resolution in the reflection map and shows the outgoing distribution for only four of the pixels.

reflection map, with standard reflection mapping hardware.

We still need to know how to determine global SHRM coefficients B̂pq(α, β). The

spherical convolution formula in equations 5.7 or 2.55 apply only to local SHRMs. How-

ever, we may rotate coefficients to compute the global SHRM. We make use of equa-

tions 5.3 and 5.10, with the subscript q changed to s for later convenience,

B̂ (α, β, θo, φo) =
PB∑
p=0

p∑
s=−p

Bps(α, β)Yps

(
R−1

α,β(θo, φo)
)
. (5.12)

From this expression, we can determine the modified (rotated) coefficients of the global

SHRM separately for each orientation (α, β). For this, we need to know how to apply the

inverse rotation in the equation above, analogous to the forward rotation formula used in
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equation 2.29. We may derive

Yps

(
R−1

α,β(θo, φo)
)

= Yps (Ry(−α)Rz(−β){θo, φo})

=
p∑

q=−p

Dp
sq(−α)Ypq(Rz(−β){θo, φo})

=
p∑

q=−p

Dp
sq(−α)e−IqβYpq(θo, φo). (5.13)

Finally, putting equation 5.12 and 5.13, we obtain

B̂pq(α, β) =
p∑

s=−p

(
Dp

sq(−α)e−Iqβ
)
Bps(α, β). (5.14)

Advantages: SHRMs are a hybrid form, midway between a pure coefficient-based ap-

proach, and an explicit tabular representation. We believe this is a good point in the design

space, and our representation has the following significant advantages:

• Compact, Efficient and Accurate: An important observation from the theoretical

analysis is that for essentially all BRDFs, a very low value of PB (usually ≤ 3)

suffices for high accuracy. This is the formal basis for using a low order spheri-

cal harmonic expansion in the SHRM, and ensures that our representation is very

compact and accurate compared to previous approaches, as well as being efficient to

evaluate for real-time rendering.

• Error analysis and number of coefficients/resolutions: Unlike for other compres-

sion and factorization techniques, the error analysis in section 5.5 does not first re-

quire computation of a dense 4D reflected light field, and allows us to easily deter-

mine the correct order PB of the spherical harmonic expansion and the resolutions of

the reflection maps.

• Rapid computation: In section 5.6, we show how the SHRM can be computed using

frequency domain prefiltering, orders of magnitude faster than previous approaches.
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5.5 Analysis of sampling rates/resolutions

In this section, we present our framework for analyzing the required sampling rates, i.e.

the number of coefficients needed in our spherical harmonic expansions. At the end of the

section, we will justify the SHRM representation based on our analysis.

The sampling rates will depend on the frequency content of the lighting and BRDF. Fig-

ure 5.4 shows spheres rendered with progressively blurred illumination (along the y axis)

and a progressively more diffuse BRDF (along the x axis). It can be seen that the highest

frequencies in the reflected light field are determined approximately by the minimum of the

highest frequencies in the lighting and BRDF. This is not surprising, since we may view

the BRDF as a low pass filter acting on the lighting signal.

As summarized in figure 5.2, we assume the input lighting L(θ, φ) is represented on

an SL × SL grid, where SL is the grid angular resolution, and that the 3D isotropic BRDF

ρ̂(θ′i, θ
′
o, φ) is represented on a grid of size Sρ̂ × Tρ̂ × Tρ̂ where Sρ̂ is the angular resolution

with respect to θ′i and Tρ̂ is the angular resolution with respect to (θo, φ). For simplicity,

we will consider the lighting and BRDF to be represented in latitude-longitude form, i.e.

simply as tabulated values on an equally-spaced grid 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

Converting to less distorted forms like cubemaps for practical use on graphics hardware is

a straightforward table lookup.

Our prefiltering algorithm computes the lighting coefficients Llm to order FL (i.e. FL is

the maximum value of l) and BRDF coefficients ρ̂lpq to orders Fρ̂ and Pρ̂ (i.e. l ≤ Fρ̂ and

p ≤ Pρ̂). The light field coefficients Blmpq are computed to orders FB and PB . Finally,

we generate the SHRM Bpq(α, β), with the angular size in (α, β) being SB × SB , and the

spherical harmonic expansion up to order PB . Radially symmetric 1D BRDFs can be seen

as special cases of this general framework with Tρ̂ = 1, and Pρ̂ = PB = 0.
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Figure 5.4: Renderings with different lighting and BRDF conditions. The highest frequency
in the images is approximately the minimum of the highest frequencies in the lighting and BRDF.
Specifically, all spheres inside a yellow delimiter look similar.

5.5.1 Order of spherical harmonic expansions

We now analyze required orders F and P in our spherical harmonic expansions. First,

consider the lighting. The total energy of the lighting signal is given by

∫ π

θ=0

∫ 2π

φ=0
L2(θ, φ) sin θ dθdφ =

∞∑
l=0

l∑
m=−l

| Llm |2 . (5.15)

Once we compute the total energy in the lighting, we can estimate the error ε in an order

FL spherical harmonic expansion by considering what fraction of the total lighting energy

is captured up to order FL. To obtain an accuracy 1 − ε, we require that

FL∑
l=0

l∑
m=−l

| Llm |2≥ (1 − ε)
∫ π

θ=0

∫ 2π

φ=0
L2(θ, φ) sin θ dθdφ. (5.16)

For any given input illumination L(θ, φ) and frequency FL, it is easy to determine what
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the error ε is, and check if it is below threshold. Conversely, if we fix the error threshold

ε, we can compute the required sampling rate or order FL as the minimum frequency for

which the above equation holds. Note that the number of coefficients required measures the

frequency width of the signal, and ε measures the missing (residual) information content.

A similar method may be used for analyzing the BRDF. We give below the separate

results for the 1D radially symmetric and 3D isotropic cases,

Fρ̂∑
l=0

| ρ̂l |2≥ (1 − ε)2π
∫ π/2

θi=0
ρ̂2(θi) sin θi dθi. (5.17)

Fρ̂∑
l=0

Pρ̂∑
p=0

min(l,p)∑
q=−min(l,p)

| ρ̂lpq |2≥

(1 − ε)2π
∫ π

0

∫ π

0

∫ 2π

0
ρ̂2(θi, θo, φ) sin θi sin θo dθidθodφ. (5.18)

The remaining issue is how to combine the information for lighting and BRDFs to

determine appropriate orders for the reflected light field B. We list below two possible

approaches.

• Minimum of orders or errors: Consider the case where ε = 0 for either the lighting

or BRDF, i.e. one or both is bandlimited. The reflected light field is then exactly

reproduced by using an expansion to order (FB, PB) = (min(FL, Fρ̂), Pρ̂). This

formalizes the intuition that we need to sample densely enough to catch the highest

frequency present simultaneously in both the lighting signal and BRDF filter. This

analysis does not apply rigorously when neither signal is bandlimited, but simply

decays with increasing frequency. Nevertheless, in practice, taking the minimum of

orders for a given error ε is still a good heuristic. Conversely, for a given order of

expansion, we can estimate the error εB = min(εL, ερ̂).

Since the lighting signal usually contains substantial high frequency content, while

the BRDF acts as a low-pass filter, this method often reduces simply to capturing

1 − ε of the BRDF energy, i.e. choosing FB, PB = Fρ̂, Pρ̂ or setting εB = ερ̂.

• Bound residual energy: For completeness, we discuss a more rigorous numerical
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scheme, which can be proven to give conservative estimates. The scheme is based

on bounding the residual unaccounted for energy in the reflected light field. One

disadvantage of this method is that, unlike the previous method, we first need to

actually calculate the coefficients Blmpq of the reflected light field. Thus, this method

is most useful as a final sanity check on the validity of the earlier heuristic.

To derive this bound, we consider an expansion to order F with errors for lighting and

BRDF given by εL and ερ̂. Denote the total BRDF and lighting energies by ρ̂tot and

Ltot. Since the reflected light field coefficients are simply a product of lighting and

BRDF terms, the worst case for the residual energy occurs when it is all concentrated

in mode F + 1. This residual energy, denoted by Bres, and a conservative error

estimate εB are

Bres = ΛF+1 (εLLtot) (ερ̂ρ̂tot)

εB ≤ Bres∑F
l=0

∑l
m=−l |Blm|2 + Bres

. (5.19)

This is for the radially symmetric case; in general, we simply use Blmpq in place of

Blm. Note that εB tends to 0 as Bres tends to 0. But the latter quantity is a product of

ερ̂ and εL, and therefore always tends to 0 as F increases.

We use a simple example to illustrate these methods. For a particular illumination (the

Grace Cathedral), and a Phong BRDF (exponent s = 32), we computed approximations to

the lighting, BRDF, and reflected light field for increasing values of order F = FL = Fρ̂ =

FB . Since the BRDF is radially symmetric, P = Pρ̂ = PB = 0. We also computed the

reflected light field accurately, by using a very high order F = 30, so we could determine

the errors of lower-order approximations. Figure 5.5 plots the accuracy (top curve) of an

order F approximation of B, as well as estimates of this accuracy obtained by taking the

minimum of BRDF and light errors at order F , and by bounding the residual energy. We see

that both accuracy estimates are conservative but fairly tight, especially for small errors or

high accuracies (at higher frequencies). Further, taking the minimum of lighting and BRDF

errors is almost always equivalent simply to using the BRDF error. Therefore, we choose

the simplest approach of using the BRDF error, requiring ερ̂ be lower than a tolerance that
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the user has selected.
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Figure 5.5: Accuracy (1−ε) versus frequency F for an order F approximation of the reflected light
field B , and estimates of that accuracy obtained by taking the minimum error for BRDF and light-
ing, and by using the conservative bound based on residual energy. We have not separately plotted
using the BRDF error only, as this gives almost exactly the same curve as taking the minimum error
for BRDF and lighting.

5.5.2 Justification for SHRM representation

We seek to determine the best point in the spectrum of time/space or angular/frequency

tradeoffs. For this, we must understand how to relate angular space resolutions S and T to

frequency-space orders F and P . As a simple illustration, consider irradiance maps from

Lambertian BRDFs. It has been shown [2, 72] that an order 2 spherical harmonic expansion

suffices. However, a 3×3 irradiance map will clearly be inadequate. In practice, irradiance

maps are usually represented at angular resolutions higher than 16 × 16. Experimenting

with different resolutions, we have found that in general, one requires S ∼ 10F (and

T ∼ 10P ).

Therefore, a significantly more compact size for B is obtained using spherical harmonic
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coefficients rather than an explicit 4D tabular representation. The other extreme in the spec-

trum of time-space tradeoffs—using a purely coefficient-based approach—is also usually1

undesirable. Efficient rendering of 2D reflection maps having high frequency content, such

as specular reflection maps from Phong BRDFs, is difficult directly from the spherical har-

monic expansion, since O(F 2) terms must be added per pixel, with F generally larger than

10. Rendering the 4D light field purely from coefficients is even harder, requiring O(F2P 2)

terms.

Hence, we believe an intermediate representation, allowing for both compact represen-

tation, and fast rendering, is optimal. In order to determine the best representation for B,

we must know the common values for orders F and P (and hence resolutions S and T ). Our

results in section 5.7 show that for practically all currently available analytic and measured

BRDFs, values of F ≤ 30 and P ≤ 5 suffice for an accuracy greater than 90%. There-

fore, it is best to encode the view dependence (θ′o, φ
′
o) as a compact (and easily evaluated)

spherical harmonic expansion consisting of (P + 1)2 terms, while explicitly representing

the high-frequency dependence on (α, β). This is the approach taken by SHRMs, where

each pixel (α, β) stores coefficients Bpq(α, β) of an order P spherical harmonic expansion.

5.6 Prefiltering

We now describe our efficient frequency space prefiltering algorithms to create the SHRM

and efficiently implement the pipeline in figure 5.2. Frequency space representations allow

for very efficient computations and are also very compact, requiring evaluation of fewer

terms. Hence our algorithms are much faster than previous angular-space methods. We

will present an analysis of the computational complexity of our algorithms, and end this

section by validating our conclusions on the Phong BRDF.

1For very diffuse BRDFs (Fρ̂ and Pρ̂ both very small), a purely coefficient-based approach may be ac-
ceptable. The most notable example is the Lambertian BRDF (Fρ̂ = 2, Pρ̂ = 0), where a 9 term spherical
harmonic expansion suffices, as seen in the previous chapter.
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5.6.1 Main steps and insights

Our prefiltering method has two main components. First, we must efficiently convert be-

tween angular and frequency space descriptions. Second, we must efficiently compute

coefficients of the reflected light field from lighting and BRDF coefficients. Both compo-

nents can be performed rapidly because of the insights below. The algorithm itself is just

a direct three step efficient implementation of the pipeline of figure 5.2. Implementation

details, and the time complexities of the various steps, are found in section 5.6.2.

Linear time complexity of convolution formula: The reflected light field coefficients

Blmpq can be computed in time linear in the number of output coefficients Blmpq simply by

applying the spherical convolution formula in equation 5.7.

Fast conversion to and from spherical harmonics: We still need to convert from an

angular space representation of L(θ, φ) and ρ̂(θi, θo, φ) to the spherical harmonic coeffi-

cients, as well as generate the SHRM from Blmpq. As an example, consider computation of

lighting coefficients Llm. For any l, m we have

Llm =
∫ π

θ=0

∫ 2π

φ=0
L(θ, φ)Y ∗

lm(θ, φ) sin θ dθdφ. (5.20)

The cost of performing this integral is O(S2
L). Since we must do this for all coefficients, it

would appear the total cost would be O(F 2
LS

2
L). In fact, we can amortize the cost to compute

all the coefficients in O(FLS
2
L) time by writing the spherical harmonics as products of

functions in θ and φ, and then separating the computations in θ and φ. The basic idea is to

compute in succession:

∀m, θ : Lm(θ) =
∫ 2π

φ=0
L(θ, φ)e−Imφ dφ

∀l,m : Llm =
∫ π

θ=0
Lm(θ)flm(θ) sin θ dθ. (5.21)

Here, the spherical harmonic Ylm(θ, φ) = flm(θ)eImφ. The first step involves a loop over

(2FL+1)SL elements, each step of which requires numerical integration by adding together

SL values. Thus, the cost is O(FLS
2
L). A similar argument shows that the second step takes
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time of O(F 2
LSL). Since FL < SL, the first step dominates, and the total complexity is

O(FLS
2
L). Note that a similar approach can also be used to efficiently compute BRDF

coefficients, and for the inverse transform to compute the SHRM. Fast spherical harmonic

transform methods [61], analogous to the Fast Fourier Transform, may reduce the cost

further2 to logarithmic in FL, i.e O(S2
L log2 SL) ∼ O(S2

L log2 FL). However, these methods

are complicated, and although asymptotically faster, have relatively large constant cost

factors. Therefore, they are unlikely to be significantly faster for the low frequencies F ∼
30 relevant for us.

5.6.2 Prefiltering Algorithm

Below, we give full details of our prefiltering algorithm, which is a three-step process that

implements the pipeline in figure 5.2.

Step 1. Compute lighting and BRDF coefficients: We go from the inputs L(θ, φ) and

ρ̂(θi, θo, φ) to the spherical harmonic coefficients Llm and ρ̂lpq. We first compute the spher-

ical harmonic coefficients of the BRDF using the following three step algorithm.

ρ̂q(θi, θo) = 2π
∫ 2π

0
ρ̂(θi, θo, φ) cos qφ dφ

ρ̂pq(θi) =
∫ π

0
ρ̂q(θi, θo)fpq(θo) sin θo dθo

ρ̂lpq =
∫ π

0
ρ̂pq(θi)flq(θi) sin θi dθi. (5.22)

The computational costs of the three terms in the above sequence are given by, respectively,

O(Pρ̂Sρ̂T
2
ρ̂ ), O(P 2

ρ̂Sρ̂Tρ̂), and O(Fρ̂P
2
ρ̂ Sρ̂). Since Pρ̂ < Tρ̂, the first term dominates the sec-

ond, and the net cost is O
(
Pρ̂Sρ̂(T

2
ρ̂ + Fρ̂Pρ̂)

)
. For most non radially-symmetric BRDFs,

T 2
ρ̂ > Fρ̂Pρ̂ (for instance, use Tρ̂ ∼ 10, Fρ̂ ∼ 20 and Pρ̂ ∼ 3), so the first term dominates

and the total cost is O(Pρ̂Sρ̂T
2
ρ̂ ).

If our error tolerance ε is satisfied, we see how far Pρ̂ can be reduced to still satisfy

the error tolerance, and then also reduce Fρ̂ as much as possible. We can then set FB and

2Since SL ∼ 10FL, log SL ∼ log FL. Also note that simply using an FFT in step 1 will not suffice, since
step 2 does not have logarithmic complexity.
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PB according to the minimal values of Fρ̂ and Pρ̂. If the error is initially larger than ε, we

repeat the algorithm with larger values for Fρ̂ and Pρ̂. Since computing BRDF coefficients

is not the dominant algorithm cost, this recomputation does not significantly affect the total

time, nor does using large initial values for Fρ̂ and Pρ̂.

Finally, we compute the lighting coefficients in time O(FBS2
L). Note that we have al-

ready determined FB , so we are not required to consider higher frequencies for the lighting,

which is why we use FB instead of FL.

Step 2. Find reflected light field coefficients: We now find Blmpq = Llmρ̂lpq in time

O(F 2
BP 2

B). Note that we have dropped the constant Λl compared to equation 5.7 to avoid

dealing with the factors of Λ−1
l and Λl.

Step 3. Compute SHRM: We now compute the local SHRM. We need to compute

Bpq(α, β) =
∞∑
l=0

l∑
m=−l

Blmpq

(
Dl

mq(α)eImβ
)
, (5.23)

which can be done efficiently as shown below,

Bmpq(α) =
FB∑

l=|m|
BlmpqD

l
mq(α)

Bpq(α, β) =
FB∑

m=−FB

Bmpq(α)eImβ. (5.24)

From this, we can compute the global SHRM B̃pq(α, β) using equation 5.14. The costs of

the two terms in the above sequence are O(F2
BP 2

BSB) and O(FBP 2
BS2

B). Since SB > FB ,

the net cost is O(FBP 2
BS2

B). The cost for this step is also the dominant cost for the entire

algorithm.

Radially symmetric BRDFs: For the special case of BRDFs like Lambertian and Phong

models, Tρ̂ = 1 and Pρ̂ = PB = 0. Technically, the complexity formulae above should use

P + 1 instead of P , to yield meaningful results for radially symmetric BRDFs. For these

models, step 1 takes time of O(Fρ̂Sρ̂) to compute BRDF coefficients ρ̂l, and time O(FBS2
L)
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to compute lighting coefficients Llm. Step 2 takes O(F 2
B) time. Finally, the SHRM in step 3

includes only the constant term and is therefore a simple reflection map B(α, β), computed

in time O(FBS2
B). The dominant cost here is to convert to and from spherical harmonic

representations. Assuming we downsample the environment map if necessary so SL ∼ SB ,

the total time is O(FBS2
B) or O(FB) per output image pixel.

Conversion between SHRMs and explicit forms: It is possible to incorporate the pre-

filtering and rendering phases of our algorithm separately into existing systems. SHRMs

may be created from explicit representations simply by fitting coefficients or integrating. If

the implementer wants to use only our fast prefiltering method, but render using previous

explicit representations, they can compute tabular representations from SHRMs. Cabral’s

twelve prerendered reflection maps may be computed very rapidly using equation 5.35,

with (θ̃o, φ̃o) set to vertices of an icosahedron. Kautz and McCool’s [38] 3D texture is

computed by expanding

B(α, β, θo) =
PB∑
p=0

Bp0(α, β)Yp0(θo). (5.25)

This takes time O(PB) per output texel. Using fast conversion methods, we can also ex-

plicitly generate TB × TB reflection maps (a full 4D light field) in time O(PB) per output

pixel, for a total cost of O(PBT 2
BS2

B).

5.6.3 Computational complexity

The cost of previous angular domain algorithms is O(WS2
L) per pixel in the output, since

they perform a hemispherical integral for each pixel. Here, W is the fraction of the illu-

mination pixels that need be considered, corresponding to the angular width of the BRDF,

with W → 0 for a mirror, and W = 1/2 if one considers the entire visible hemisphere. In

appendix C, we derive the cost for our frequency space algorithm3, which is much lower,

being O(FB) or O(PB) per pixel. Table 5.3 summarizes our main results.

3If we were to use fast spherical harmonic transform methods [61], the asymptotic complexity per output
pixel would be O(log2 FB) or O(log2 PB) instead.
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Type Angular Frequency
Cost /pixel Cost /pixel

1D BRDF WS2
LS

2
B WS2

L FBS2
B FB

SHRM FBP 2
BS2

B FB

3D BRDF WS2
LT

2
BS2

B WS2
L PBT 2

BS2
B PB

Table 5.3: Computational complexity of prefiltering. We show both total costs and costs per pixel.
The angular costs correspond to hemispherical integration, with W being the BRDF angular width.
The frequency space costs are for our method.

Radially Symmetric 1D BRDFs: The output reflection map size is SB × SB . Standard

hemispherical integration is quadratic in the output size, since we must examine O(WS2
L)

illumination pixels per output pixel and4 SL ≥ SB. By contrast, our frequency space

prefiltering algorithm requires only O(FB) time per output pixel. Since FB � SB < SL,

this method is only slightly super-linear, being substantially sub-quadratic in the output

size.

SHRM creation: The SHRM is a new representation, not created by traditional prefilter-

ing algorithms. We can still compare our prefiltering cost with the theoretical minimal

complexity. As for 1D BRDFs, the cost of our method is O(FB) per output pixel per

coefficient.

3D BRDFs, explicit reflection maps: In order to compare to angular domain methods,

we must produce the same output. We can use the SHRM to explicitly compute a set of

TB×TB reflection maps (with TB ∼ 10PB), similar to the explicit representations of Cabral

et al. [8] or Kautz and McCool [38]5. The cost of traditional prefiltering remains O(WS2
L)

per output pixel. On the other hand, our method takes O(PB) time per pixel. Since PB ≤ 3

in most cases, it can be regarded a constant. Hence, our method is quasi-linear in the

output size. This is a speedup of three to four orders of magnitude—the difference between

near-interactive computation in a few seconds, and prefiltering times in hours reported by

Cabral et al. [8] and other authors.

4One way to compute FB is min(FL, Fρ̂) so FB ≤ FL and SB ≤ SL.
5Since their representation is 3D, we should compute only TB reflection maps.



118 CHAPTER 5. FREQUENCY SPACE ENVIRONMENT MAP RENDERING

5.6.4 Validation with Phong BRDF

In this subsection, we validate our theoretical computational complexity analysis on the

simple radially symmetric Phong model. In this case, Pρ̂ = PB = 0 and the SHRM

reduces to a standard 2D reflection map B(α, β). In the results section, we show timings,

including for more general 3D isotropic BRDFs.

The normalized and reparameterized Phong BRDF is defined by

ρ̂ =
s + 1

2π
coss θi, (5.26)

where coss θi = (�R · �L)s. BRDF coefficients ρ̂l can be derived analytically [73], and an

accurate approximation is

ρ̂l ≈ Λ−1
l exp

[
− l2

2s

]
. (5.27)

In the frequency domain, the order F = FB = Fρ̂ for an error ε is found by the

following sequence of steps,

F∑
l=0

ρ̂2
l = (1 − ε)

∞∑
l=0

ρ̂2
l

∫ F

0
le−l2/s dl ≈ (1 − ε)

∫ ∞

0
le−l2/s dl

1 − e−F 2/s ≈ 1 − ε

F ≈
√
−s log ε. (5.28)

Ignoring the constant
√
− log ε, the prefiltering cost of our frequency space algorithm

is therefore

Cf = O(FBS2
B) = O(S2

B

√
s). (5.29)

In the angular domain, we may truncate the BRDF, so (1 − ε) of the angular domain

energy lies in θi ≤ θ∗i . We find the angular width W and θ∗i by the following steps,
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∫ θ∗i

0
coss θi sin θi dθi = (1 − ε)

∫ π/2

0
coss θi sin θi dθi

1 − coss+1 θ∗i = 1 − ε

cos θ∗i = ε1/(s+1)

W =
2π

4π

∫ θ∗i

0
sin θi dθi =

1

2

(
1 − ε1/(s+1)

)
. (5.30)

We now assume s is large (1/s → 0) and perform a Taylor series expansion,

W ∼
(
1 − ε1/(s+1)

)
=

(
1 −

[
1 +

log ε

s + 1

])
≈ − log ε

s
. (5.31)

Ignoring the factor of log ε, the angular domain prefiltering cost is

Ca = O(WS2
LS

2
B) = O

(
S2

LS
2
B

s

)
. (5.32)

We note that the frequency space cost Cf increases with increasing Phong exponent

as
√
s, while the angular space cost Ca decreases with increasing Phong exponent as 1/s.

This is entirely expected, since sharp specular surfaces (large s) have a BRDF which is

very local in the angular domain but requires a large number of coefficients to represent

in the frequency domain. Conversely, rough surfaces (small s) are very easily handled in

the frequency domain, but their BRDFs have a large angular width. Therefore, for s < s∗,

our frequency domain methods are to be preferred and for s > s∗, conventional angular

domain techniques are preferable. s∗ can be found by equating equations 5.29 and 5.32,

S2
B

√
s∗ ∼ S2

LS
2
B/s∗ ⇒ s∗ ∼ S

4/3
L . (5.33)

What does this mean numerically? Assume a small size of SL = 100. We then obtain

s∗ ≈ 464. Therefore, in essentially all practical cases of interest, our frequency domain

algorithm is superior to conventional angular domain methods, often by one to two orders

of magnitude. Of course, the actual numerical value for s∗ depends on the constant cost

factors associated with the respective implementations. Our empirical tests, discussed in
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section 5.7.4, show that the practical value of s∗ is actually even higher than predicted.

5.7 Results

We have tested our method using a number of different lighting conditions and BRDFs.

This section reports our main results.

5.7.1 Number of coefficients for analytic BRDFs

The practical values of the orders in the spherical harmonic expansion of the BRDF Fρ̂

and Pρ̂ (and hence FB and PB) will depend on the form of the BRDF, with slowly varying

BRDFs requiring fewer coefficients. As a basic test to determine reasonable empirical

values, we considered three general analytic BRDFs.

Microfacet: Consider a simplified microfacet [84] model,

ρ̂ =
1

4πσ2
e−(θh/σ)2 , (5.34)

where θh = cos−1( �N · �H) is the angle between the normal and the half-angle vector.

Approximations to reflection maps with different values of P = Pρ̂ = PB are shown in

figure 5.6. As expected, the accuracy improves as we use higher values of P . Specifically,

P = 2 suffices to produce very accurate results, with the BRDF error ε < .03. Recall from

section 5.5.1 that we use the BRDF accuracy as a conservative estimate of the accuracy of

the reflected light field. For this BRDF, F = Fρ̂ = FB is given approximately by F ∼ σ−1,

and ranges from 10 to 30 for common values of σ ∼ 0.1. These values of F and P are

typical for most BRDFs. In general, P is very small, while F is usually much larger.

Lafortune BRDF: We also tested the model of [44], with coefficients obtained from the

skin measurements of Marschner et al. [55]. Although the behavior is more interesting,

with much stronger specularities exhibited toward grazing angles, a value of P = 4 still

suffices for an error ε < .03.



5.7. RESULTS 121
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Figure 5.6: Comparing images obtained with different values for P for a simplified microfacet
BRDF model with surface roughness σ = 0.2. These images correspond to two particular views,
i.e. values of (θo, φo). The percentages are fractions of the total energy (1−ε) of the BRDF captured
for that P , which we use as a conservative estimate of the accuracy of the reflected light field. The
exact images at the bottom were computed by a full hemispherical angular-space integral for each
image pixel. For this and subsequent figures, the difference images are not amplified, and we used
FB = 30 and SB = 128.

Kajiya-Kay model: Finally, we tried the Kajiya-Kay [35] model, which is an anisotropic

variant of the Phong BRDF, and depends on incident and outgoing angles with respect to the
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tangent vector. As discussed in section 5.3.1, we may reparameterize by the tangent vector,

to derive ρ̂ = coss(θi − θo). While this paper does not consider general 4D anisotropic

BRDFs, we can handle the Kajiya-Kay BRDF, since it is mathematically analogous to a

(2D) isotropic BRDF after reparameterization. Unlike for ordinary Phong-like BRDFs, we

cannot apply any further reflective reparameterization. Therefore, the value of P required

is large (we found P = 8 for s = 32 and ε < .03). However, there is no azimuthal

dependence, so we require only P + 1 terms Bp0(α, β) in the SHRM instead of (P + 1)2

(i.e. q = 0, with no dependence on φo). Hence, the SHRM is still a very efficient and

compact representation.

5.7.2 Number of coefficients for measured BRDFs

To further evaluate the accuracy of our approximations, we used the CURET database [14].

This database consists of 61 BRDFs and BTFs, corresponding to a variety of materials. For

each sample, there are 205 BRDF measurements, which may be interpolated by fitting

order 8 Zernike polynomials to create a complete BRDF description [43].

Figure 5.7 is a bar chart showing, for each of the 61 samples, the accuracy of a BRDF

approximation6 with Fρ̂ = 30 and values of Pρ̂ ranging from 0 to 5. In 56 cases, the accu-

racy for Fρ̂ = 30 and Pρ̂ = 5 was greater than 90% (ε < 0.1), and was usually significantly

higher (in most cases, ε < .05 for Pρ̂ = 3). The remaining 5 examples (9-frosted glass, 23-

lettuce leaf, 33-slate a, 41-brick b, 57-peacock feather) were all significantly anisotropic.

Therefore, we conclude that for almost all BRDFs of interest, an order PB ≤ 5 suffices

for the SHRM, with F ≤ 30. In fact, for most BRDFs, a quadratic or cubic (second or third

order with PB = 2 or 3) spherical harmonic expansion in the SHRM suffices.

6We reparameterized all BRDFs by the reflection vector. Our results demonstrate that this reparame-
terization is suitable even if the BRDF is not primarily reflective, or consists of both diffuse and specular
components. The specular components are compactly represented, while the diffuse components are low
frequency anyway.
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5.7.3 SHRM accuracy

We now compare images created with SHRMs to the correct image, and to previous ap-

proaches. First, figure 5.8 compares our method to Kautz and McCool’s [38] 3D texture-

mapping technique7, where they approximate the BRDF—and hence, the reflected light

field—as having no azimuthal dependence. For the relatively complex velvet BRDF (CURET

database) in figure 5.8, their approximation introduces large errors, while the SHRM with

PB = 5 is accurate.

Figure 5.9 compares our approach to the correct image and Cabral’s icosahedral inter-

polation. For sharply-varying BRDFs, such as those exhibiting strong near-grazing specu-

larities, or complex anisotropic behavior, Cabral’s approximation can lead to large errors,

while our approach still gives accurate results.

In our approach, the theoretical analysis can be used to systematically trade off accuracy

for compactness and efficiency. Specifically, if Kautz and McCool’s [38] approximation of

2D BRDFs with no azimuthal dependence suffices (q = 0), we get a 3D SHRM with only

PB + 1 terms instead of (PB + 1)2. If Cabral et al.’s [8] icosahedral set of 12 reflection

maps suffices, we can use a very small number of terms (PB = 1 or 2) in the SHRM.

5.7.4 Speed of prefiltering

We first consider Phong BRDFs, experimentally validating the theoretical conclusions of

section 5.6.4. For our frequency domain algorithm, we used ε = .01, conservatively set-

ting FB = 1 +
√

6s. For the angular domain, we were more aggressive, setting ε = .05.

The resolution SL and SB of the inputs and final results were 128, i.e. we generated output

Phong reflection maps at 128 × 128 resolution. According to the theory, this is an appro-

priate resolution for s = 32 and s = 64 (i.e. FB ≈ 12), and is therefore the most suitable

single resolution for the entire range of Phong exponents. The numerical running times

reported in table 5.4 obviously depend on our implementation and hardware. However,

we believe the ratio in running times of angular and frequency domain methods is quite

representative. Furthermore, the timing data can be fit almost precisely to the theoretical

7We use their single lobe model, with the BRDF being an arbitrary 2D function ρ̂ = u(θi, θo). This is
essentially equivalent to setting q = 0 in the local SHRM, using only the azimuthally independent terms.
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predictions of equations 5.29 and 5.32. The results indicate that our prefiltering method is

usually two orders of magnitude faster than angular-space methods, and that Phong BRDFs

can be prefiltered at close to real-time rates using our approach.

Exponent s Time (sec) Ratio
Angular Frequency (Ang/Freq)

8 67.28 0.081 830.6
16 38.03 0.114 333.6
32 21.80 0.159 137.1
64 11.94 0.227 52.6

128 7.17 0.328 21.9
256 3.55 0.461 7.7
512 2.28 0.686 3.3

Table 5.4: Comparison of timings of angular and frequency-space prefiltering for different values
of the Phong exponent s. The timings are on a 1.4GHz Pentium IV.

As predicted by complexity analysis, the speedups are even more dramatic for the gen-

eral case—illustrated using the microfacet model of equation 5.34. In table 5.5, we compare

computation time for our approach and conventional methods. It can be seen that even the

cost for creating the entire SHRM is much less than the cost of hemispherical integration

for a single reflection map. When the cost to explicitly create multiple reflection maps is

considered, our approach is three to four orders of magnitude faster.

σ FB, PB angular-space frequency-space
Time (s) Time/Image (s) Time (s) SHRM (s)

.1 24,3 923 9.23 2.70 1.55

.2 12,2 2744 27.44 1.55 0.72

.3 7,2 5731 57.31 1.49 0.67

.4 5,2 9034 90.34 1.47 0.65

.5 5,2 12580 125.80 1.45 0.64

Table 5.5: Times for angular-space and our frequency-space prefiltering , with TB = 10. The
six columns are the value of the roughness σ, the order of expansion FB, PB for ε < .03, the total
angular-space computational time to create TB×TB = 100 reflection maps, the angular-space time
per reflection map, the total frequency-space time, and the frequency-space time for SHRM creation
(but not explicit generation of reflection maps). Our approach is orders of magnitude faster, and
even creation of the entire SHRM is usually faster than generating only a single image in angular
space.
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5.7.5 Real-time rendering

There are several possibilities for real-time rendering. We could simply evaluate equa-

tion 5.10 in software for each pixel of the final image. If hardware multitexturing support

is available, we may represent the spherical harmonics Ypq(θo, φo) and the local SHRM

coefficients Bpq(α, β) by 2D texture maps. Since we are reparameterizing by the reflection

vector, we will sometimes also refer to Bpq(α, β) as reflection maps. If PB = 2, there

would be 9 terms in the SHRM, corresponding to a total of 18 texture maps. We would

then use graphics hardware to accumulate 9 terms, with each term being the product of two

texture maps, i.e. Bpq(α, β)Ypq(θo, φo). Since this algorithm is essentially that previously

used for rendering factored BRDFs [37, 57], the same code can now be easily adapted for

arbitrary isotropic BRDFs and complex illumination.

A simpler approach is possible when the viewer can be assumed distant, using the

global SHRM in equation 5.11. The spherical harmonics Ypq(θ̃o, φ̃o) need be evaluated

only once per frame, for given viewpoint (θ̃o, φ̃o), instead of at each vertex or pixel. In fact,

it is possible to render the scene using only a single reflection mapping pass. The key idea

is to explicitly sum equation 5.11 to create a single dynamic 2D reflection map B̃(α, β),

which is updated for every frame, i.e. each new viewpoint (θ̃o, φ̃o),

B̃(α, β) =
PB∑
p=0

p∑
q=−p

B̃pq(α, β)Ypq(θ̃o, φ̃o). (5.35)

Our implementation extends the Stanford real-time programmable shading system [68]

to render with global SHRMs using equation 5.35. An advantage of our approach is that

standard reflection maps can be upgraded to SHRMs with no change in the external shader

programs. Internally, we simply update the reflection map for each frame. We compute

equation 5.35 in software, which allows us to easily consider high-dynamic range, and

avoids hardware precision and clamping issues. In the figures, the high-dynamic range

backgrounds are tone-mapped, but the objects themselves are computed and shaded using

a linear scale.

We used a 1.4 GHz Pentium IV running Linux, with an NVIDIA Geforce2 GTS graph-

ics card, for our tests. The reflection (cube)map B̃(α, β) was computed at a resolution of
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64 × 64 × 6, which is an appropriate resolution for most BRDFs, i.e. F ∼ 20. Since there

is real-time cube mapping hardware, the major cost is that for computing equation 5.35 in

software per frame. We are able to achieve frame rates of approximately 30 frames per

second, with real-time speeds even in scenes with multiple SHRMs. Figure 5.1 shows a

number of examples.

5.8 Conclusions and Future Work

In this chapter, we have presented new frequency-space algorithms for real-time rendering

of complex isotropic BRDFs under arbitrary distant illumination, and have validated our

approach using many different BRDFs and lighting conditions. Our contributions include

theoretical analysis that allows us to precisely determine the orders of our spherical har-

monic expansions, the new compact and efficient SHRM representation for the reflected

light field, and very fast prefiltering algorithms based on spherical harmonic transforms.

We have integrated the three contributions into a complete frequency-space pipeline, as per

figure 5.2. However, it is also easy to convert between SHRMs and previous explicit rep-

resentations. Therefore, the contributions of this paper are relatively independent, and can

also be incorporated separately.

There are several interesting similarities and differences between the SHRM and sur-

face light field representations. In fact, the SHRM can be seen as a surface light field on a

sphere. The main advantage of the SHRM is that it is independent of geometry, i.e. it can

be mapped on to any object geometry using the surface normal.

On the other hand, surface light fields have a number of advantages over SHRMs. They

capture the effects of spatially varying illumination, which includes non-uniform lighting,

as well as geometry-specific interreflection and self-shadowing effects.

Another difference between SHRMS and surface light fields is that our method is pri-

marily a synthetic approach, while surface light fields represent collected data. Of course,

it is possible to convert a surface light field on a sphere to an SHRM, or to synthesize a

surface light field given the geometry, reflectance and illumination.

Since surface light fields are so large, they must be compressed. It has been widely
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assumed that the optimal compression algorithm for light fields will be based on model-

based prediction and coding. SHRMs expose the structure of the reflected light field in

terms of the frequency properties of the illumination and BRDF. It is therefore interesting

to compare spherical harmonic basis functions to PCA-based compression and factorization

methods used for BRDFs [37] and surface light fields [64, 88].

The main advantage of SHRMs is that the theoretical analysis gives insight into the

intrinsic complexity of the reflected light field, given the complexities of the illumination

and reflection functions. This allows us to directly compute the SHRM with the right

order and resolution. Furthermore, our approach is much more efficient than computing a

full PCA on the entire reflected light field. This is because brute-force PCA computation

requires a dense 4D reflected light field as input, and requires computing a singular-value

decomposition, which is an expensive operation. Our approach, in contrast, only computes

the terms that are needed and uses very fast prefiltering methods.

On the other hand, our method uses a predetermined basis—the spherical harmonics,

while PCA-based methods have the advantage of finding an optimal basis to represent a

data set, assuming no a priori knowledge. As future work, it would be interesting to see if

PCA can be run directly on the SHRM in order to compute a compact final representation

efficiently, thus getting the best features of both PCA, and our SHRM representation.

Several aspects of this paper are likely to have broader implications in the general con-

text of rendering. SHRMs are related to Sillion et al.’s [79] spherical harmonic representa-

tion of outgoing light for radiosity computations, but differ in storing Bpq as a function of

orientation (α, β), rather than at each vertex of a geometric model. Because we reparame-

terize by the reflection vector, our representation is much more compact. SHRMs are also

similar in spirit to the representation of Malzbender et al. [53]. Like us, they have a 4D

function with rapid variation over two dimensions (for them, texture), and slow variation

over the other two (for them, illumination). Since spherical harmonics are polynomials of

the cartesian components, their (quadratic) polynomial texture maps can be seen as a subset

of our representation.

One drawback of synthetic IBR is the long time required for precomputation, which

precludes dynamic lighting or interactive manipulation of material properties. Our new

prefiltering method takes an important step in addressing this problem for environment
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maps. However, we do not currently take into account near-field lighting, interreflection or

self-shadowing. In the future, we wish to address these limitations, adapting our prefiltering

method to rapidly compute synthetic surface light fields.

For the special case of radially symmetric BRDFs, Kautz et al. [40] have proposed using

hardware-assisted 2D image convolution. However, while BRDFs are shift-invariant filters

on the spherical domain, they are not shift-invariant in the plane, since projection on to a 2D

image introduces distortion [40], and may lead to inconsistencies—for instance, rotating

the lighting may not correspond simply to rotating the prefiltered image. Our prefiltering

algorithm can be viewed as spherical image processing on the incident illumination, con-

volving it with the BRDF filter. Our speedups are not surprising, given that planar image

convolutions are often more efficiently computed in the Fourier domain. Other approaches

to speed up prefiltering are hierarchical methods [40] and spherical wavelets [78]. How-

ever, there is no wavelet or hierarchical convolution formula, so frequency domain meth-

ods are more appropriate for environment mapping. and will give asymptotically better

results according to our computational complexity analysis. Further, hierarchical methods

can be seen as effectively determining angular resolutions appropriately for a given error

tolerance, which we are able to formally analyze.

There has been considerable recent interest in real-time rendering with complex illumi-

nation and material models. In work simultaneous with ours, Latta and Kolb [47] have used

homomorphic factorization to represent the reflected light field as aa product of textures.

As pointed out in the text, the SHRM may be seen as a sum of a number of terms, each

being the product of factors depending on the reflected and viewing directions. Having a

small number of terms, determined by error analysis, allows greater accuracy. A further

significant advantage of the SHRM is that it can be computed extremely efficiently. On the

other hand, Latta and Kolb’s approach [47] of factoring after computing a dense reflected

light field representation has the advantage of allowing for a number of different factor-

izations, such as using the surface normal instead of the viewing direction, which may be

more suitable for diffuse BRDFs. Also, simultaneous with our work, Sloan et al. [66] have

restricted themselves to low-frequency lighting, but shown how complex light transport

such as shadows and interreflection may be precomputed and then rendered in real-time.



5.8. CONCLUSIONS AND FUTURE WORK 129

The SHRM differs in that we consider natural illumination, which has significant high-

frequency content, but assume no shadowing or interreflection.

In the future, we would like to combine and extend the functionality of these different

approaches, so we may handle general near-field illumination, spatially varying realistic

materials, and physically-correct light transport including shadows and interreflection. We

would also like to adapt the methods of this paper, such as the sampling rate analysis and

the SHRM representation, to other image-based rendering problems in graphics.

In summary, natural illumination and accurate BRDFs are of growing importance in

interactive applications, and this chapter has presented a complete frequency-space pipeline

to enable this.

In the these last two chapters, we have seen the application of the signal-processing

framework to problems in interactive forward rendering. The next chapter applies the

framework to inverse rendering—estimating illumination and material properties from im-

ages.
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Figure 5.7: Accuracy of a spherical harmonic BRDF approximation for all 61 BRDFs in the
CURET database. We show 6 values of Pρ̂ ranging from 0 to 5 from left to right. The low orders
for Pρ̂ are shown with light gray diamonds, while a black circle shows the highest order P̂ρ = 5.
Note that the rightmost circle corresponds to an accuracy greater than 90% in 56 of the 61 rows.
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Difference images

Correct image SHRM 2D BRDF (Kautz)

Figure 5.8: Comparing the correct image on the left to those created using SHRMs (middle) and
the 2D BRDF approximation of Kautz and McCool (right).
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Difference images

Difference images

Correct image SHRM Cabral

Figure 5.9: Comparing the correct image to those created using SHRMs and icosahedral interpo-
lation (Cabral’s method). We see that the SHRM image is accurate, while Cabral’s approximation
is inadequate for sharp near-grazing reflections (top), and for complex BRDFs like the anisotropic
Kajiya-Kay model (bottom).


