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Abstract

The study of the computational aspects of reflection, and especially the interaction be-
tween reflection and illumination, is of fundamental importance in both computer graphics
and vision. In computer graphics, the interaction between the incident illumination and the
reflective properties of asurfaceisabasic building block in most rendering algorithms, i.e.
methods that create synthetic computer-generated images. In computer vision, we often
want to undo the effects of the reflection operator, i.e. to invert the interaction between the
surface reflective properties and lighting. In other words, we often want to perform in-
verse rendering—the estimation of material and lighting properties from real photographs.
Inverse rendering is also of increasing importance in graphics, where we wish to obtain
accurate input illumination and reflectance modelsfor (forward) rendering.

This dissertation describes a new way of looking at reflection on a curved surface, as a
special type of convolution of the incident illumination and the reflective properties of the
surface (technically, the bi-directional reflectance distribution function or BRDF). The first
part of the dissertation is devoted to atheoretical analysis of the reflection operator, leading
for the first time to a formalization of these ideas, with the derivation of a convolution
theorem in terms of the spherical harmonic coefficients of the lighting and BRDF. This
allows us to introduce a signal-processing framework for reflection, wherein the incident
lighting is the signal, the BRDF is the filter, and the reflected light is obtained by filtering
the input illumination (signal) using the frequency response of the BRDF filter.

Theremainder of the dissertation describes applications of the signal-processing frame-
work to forward and inverse rendering problems in computer graphics. First, we address
the forward rendering problem, showing how our framework can be used for computing
and displaying synthetic imagesin real-time with natural illumination and physically-based
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BRDFs. Next, we extend and apply our framework to inverse rendering. We demonstrate
estimation of realistic lighting and reflective properties from photographs, and show how
this approach can be used to synthesize very realistic images under novel lighting and

viewing conditions.
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