
A SIGNAL-PROCESSING FRAMEWORK FOR

FORWARD AND INVERSE RENDERING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ravi Ramamoorthi

August 2002



c© Copyright by Ravi Ramamoorthi 2002

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Pat Hanrahan
(Principal Adviser)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Marc Levoy

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Jitendra Malik
(UC Berkeley)

Approved for the University Committee on Graduate Studies:

iii



Abstract

The study of the computational aspects of reflection, and especially the interaction be-

tween reflection and illumination, is of fundamental importance in both computer graphics

and vision. In computer graphics, the interaction between the incident illumination and the

reflective properties of a surface is a basic building block in most rendering algorithms, i.e.

methods that create synthetic computer-generated images. In computer vision, we often

want to undo the effects of the reflection operator, i.e. to invert the interaction between the

surface reflective properties and lighting. In other words, we often want to perform in-

verse rendering—the estimation of material and lighting properties from real photographs.

Inverse rendering is also of increasing importance in graphics, where we wish to obtain

accurate input illumination and reflectance models for (forward) rendering.

This dissertation describes a new way of looking at reflection on a curved surface, as a

special type of convolution of the incident illumination and the reflective properties of the

surface (technically, the bi-directional reflectance distribution function or BRDF). The first

part of the dissertation is devoted to a theoretical analysis of the reflection operator, leading

for the first time to a formalization of these ideas, with the derivation of a convolution

theorem in terms of the spherical harmonic coefficients of the lighting and BRDF. This

allows us to introduce a signal-processing framework for reflection, wherein the incident

lighting is the signal, the BRDF is the filter, and the reflected light is obtained by filtering

the input illumination (signal) using the frequency response of the BRDF filter.

The remainder of the dissertation describes applications of the signal-processing frame-

work to forward and inverse rendering problems in computer graphics. First, we address

the forward rendering problem, showing how our framework can be used for computing

and displaying synthetic images in real-time with natural illumination and physically-based

iv



BRDFs. Next, we extend and apply our framework to inverse rendering. We demonstrate

estimation of realistic lighting and reflective properties from photographs, and show how

this approach can be used to synthesize very realistic images under novel lighting and

viewing conditions.
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Chapter 1

Introduction

The central problem in computer graphics is creating, or rendering, realistic computer-

generated images that are indistinguishable from real photographs, a goal referred to as

photorealism. Applications of photorealistic rendering extend from entertainment such as

movies and games, to simulation, training and virtual reality applications, to visualization

and computer-aided design and modeling. Progress towards photorealism in rendering

involves two main aspects. First, one must develop an algorithm for physically accurate

light transport simulation. However, the output from the algorithm is only as good as the

inputs. Therefore, photorealistic rendering also requires accurate input models for object

geometry, lighting and the reflective properties of surfaces.

Over the past two decades, there has been a signficant body of work in computer graph-

ics on accurate light transport algorithms, with increasingly impressive results. One con-

sequence has been the increasing realism of computer-generated special effects in movies,

where it is often difficult or impossible to tell real from simulated.

However, in spite of this impressive progress, it is still far from routine to create pho-

torealistic computer-generated images. Firstly, most light transport simulations are slow.

Within the context of interactive imagery, such as with hardware rendering, it is very rare to

find images rendered with natural illumination or physically accurate reflection functions.

This gap between interactivity and realism impedes applications such as virtual lighting or

material design for visualization and entertainment applications.

A second difficulty, which is often the limiting problem in realism today, is that of

1



2 CHAPTER 1. INTRODUCTION

obtaining accurate input models for geometry, illumination and reflective properties. En-

tertainment applications such as movies often require very laborious fine-tuning of these

parameters. One of the best ways of obtaining high-quality input illumination and material

data is through measurements of scene attributes from real photographs. The idea of using

real data in graphics is one that is beginning to permeate all aspects of the field. Within the

context of animation, real motions are often measured using motion capture technology,

and then retargetted to new characters or situations. For geometry, it is becoming more

common to use range scanning to measure the 3D shapes of real objects for use in com-

puter graphics. Similarly, measuring rendering attributes—lighting, textures and reflective

properties—from real photographs is increasingly important. Since our goal is to invert the

traditional rendering process, and estimate illumination and reflectance from real images,

we refer to the approach as inverse rendering. Whether traditional or image-based render-

ing algorithms are used, rendered images now use measurements from real objects, and

therefore appear very similar to real scenes.

In recent years, there has been significant interest in acquiring material models using

inverse rendering. However, most previous work has been conducted in highly controlled

lighting conditions, usually by careful active positioning of a single point source. Indeed,

complex realistic lighting environments are rarely used in either forward or inverse ren-

dering. While our primary motivation derives from computer graphics, many of the same

ideas and observations apply to computer vision and perception. Within these fields, we

often seek to perform inverse rendering in order to use intrinsic reflection and illumination

parameters for modeling and recognition. Although it can be shown that the perception of

shape and material properties may be qualitatively different under natural lighting condi-

tions than artificial laboratory settings, most vision algorithms work only under very simple

lighting assumptions—usually a single point light source without any shadowing.

It is our thesis that a deeper understanding of the computational nature of reflection

and illumination helps to address these difficulties and restrictions in a number of areas in

computer graphics and vision. This dissertation is about a new way of looking at reflection

on a curved surface, as a special type of convolution of the incident illumination and the

reflective properties of the surface. Although this idea has long been known qualitatively,

this is the first time this notion of reflection as convolution has been formalized with an
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analytic convolution formula in the spherical domain. The dissertation includes both a

theoretical analysis of reflection in terms of signal-processing, and practical applications of

this frequency domain analysis to problems in forward and inverse rendering. In the rest of

this chapter, we briefly discuss the main areas represented in the dissertation, summarizing

our contributions and giving an outline of the rest of the dissertation. At the end of the

chapter, table 1.1 summarizes the notation used in the rest of the dissertation.

1.1 Theoretical analysis of Reflection: Signal Processing

The computational study of the interaction of light with matter is a basic building block

in rendering algorithms in computer graphics, as well as of interest in both computer vi-

sion and perception. In computer vision, previous theoretical work has mainly focussed

on the problem of estimating shape from images, with relatively little work on estimating

material properties or lighting. In computer graphics, the theory for forward global illumi-

nation calculations, involving all forms of indirect lighting, has been fairly well developed.

The foundation for this analysis is the rendering equation [35]. However, there has been

relatively little theoretical work on inverse problems or on the simpler reflection equation,

which deals with the direct illumination incident on a surface.

It should be noted that there is a significant amount of qualitative knowledge regarding

the properties of the reflection operator. For instance, we usually represent reflections from

a diffuse surface at low resolutions [59] since the reflection from a matte, or technically

Lambertian, surface blurs the illumination. Similarly, we realize that it is essentially im-

possible to accurately estimate the lighting from an image of a Lambertian surface; instead,

we use mirror surfaces, i.e. gazing spheres.

In this dissertation, we formalize these observations and present a mathematical theory

of reflection for general complex lighting environments and arbitrary reflection functions

in terms of signal-processing. Specifically, we describe a signal-processing framework for

analyzing the reflected light field from a homogeneous convex curved surface under distant

illumination. Under these assumptions, we are able to derive an analytic formula for the

reflected light field in terms of the spherical harmonic coefficients of the BRDF and the

lighting. Our formulation leads to the following theoretical results:
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Signal-Processing Framework for Reflection as Convolution: Chapter 2 derives our

signal-processing framework for reflection. The reflected light field can therefore be thought

of in a precise quantitative way as obtained by convolving the lighting and reflective prop-

erties of the surface (technically, the bi-directional reflectance distribution function or

BRDF), i.e. by filtering the incident illumination using the BRDF. Mathematically, we

are able to express the frequency-space coefficients of the reflected light field as a product

of the spherical harmonic coefficients of the illumination and the BRDF. We believe this

is a useful way of analyzing many forward and inverse problems. In particular, forward

rendering can be viewed as convolution and inverse rendering as deconvolution.

Analytic frequency-space formulae for common lighting conditions and BRDFs Chap-

ter 3 derives analytic formulae for the spherical harmonic coefficients of many common

lighting and BRDF models. Besides being of practical interest, these formulae allow us to

reason precisely about forward and inverse rendering in the frequency domain.

Well-posedness and Conditioning of Forward and Inverse Problems: Inverse prob-

lems can be ill-posed—there may be several solutions. They are also often numerically

ill-conditioned, which may make devising practical algorithms infeasible. From our signal-

processing framework, and the analytic formulae derived by us for common lighting and

BRDF models, we are able to analyze the well-posedness and conditioning of a number

of inverse problems. This analysis is presented in chapter 3, and explains many previous

empirical observations, as well as serving as a guideline for future research in inverse ren-

dering. We expect fruitful areas of research to be those problems that are well-conditioned.

Additional assumptions will likely be required to address ill-conditioned or ill-posed in-

verse problems. This analysis is also of interest for forward rendering. An ill-conditioned

inverse problem corresponds to a forward problem where the final results are not sensitive

to certain components of the initial conditions. This often allows us to approximate the

initial conditions—such as the incident illumination—in a principled way, giving rise to

more efficient forward rendering algorithms.
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Figure 1.1: A scene rendered in real time using our approach, described in chapter 5. The illu-
mination is measured light in the Grace Cathedral in San Francisco, obtained by photographing
a mirror sphere, courtesy of Paul Debevec. The surface reflective properties include a number of
measured BRDFs.

1.2 Forward Rendering

Lighting in most real scenes is complex, coming from a variety of sources including area

lights and large continuous lighting distributions like skylight. But current graphics hard-

ware only supports point or directional light sources, and very simple unphysical surface

reflection models. One reason is the lack of simple procedural formulas for efficiently com-

puting the reflected light from general lighting distributions. Instead, an integration over

the visible hemisphere must be done for each pixel in the final image.

Chapters 4 and 5 apply the signal-processing framework to interactive rendering with

natural illumination and physically-based reflection functions. An example image is shown

in figure 1.1. That image includes natural illumination and a number of physically-based

or measured surface reflective properties.

As is common with interactive rendering, we neglect the effects of global effects like
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cast shadows (self-shadowing) and interreflections, and restrict ourselves to distant illu-

mination. Since the illumination corresponds to captured light in an environment, such

rendering methods are frequently referred to as environment mapping.

Chapter 4 demonstrates how our signal-processing framework can be applied to irradi-

ance environment maps, corresponding to the reflection from perfectly diffuse or Lamber-

tian surfaces. The key to our approach is the rapid computation of an analytic approxima-

tion to the irradiance environment map. For rendering, we demonstrate a simple procedural

algorithm that runs at interactive frame rates, and is amenable to hardware implementation.

Our novel representation also suggests new approaches to lighting design and image-based

rendering.

Chapter 5 introduces a new paradigm for prefiltering and rendering environment mapped

images with general isotropic BRDFs. Our approach uses spherical frequency domain

methods, based on the earlier theoretical derivations. Our method has many advantages

over the angular (spatial) domain approaches:

Theoretical analysis of sampling rates and resolutions: Most previous work has deter-

mined reflection map resolutions, or the number of reflection maps required, in an ad-hoc

manner. By using our signal-processing framework, we are able to perform error analysis,

that allows us to set sampling rates and resolutions accurately.

Efficient representation and rendering with Spherical Harmonic Reflection Maps:

We introduce spherical harmonic reflection maps (SHRMs) as a compact representation.

Instead of a single color, each pixel stores coefficients of a spherical harmonic expansion

encoding view-dependence of the reflection map. An important observation that emerges

from the theoretical analysis is that for almost all BRDFs, a very low order spherical har-

monic expansion suffices. Thus, SHRMs can be evaluated in real-time for rendering. Fur-

ther, they are significantly more compact and accurate than previous methods.

Fast precomputation (prefiltering): One of the drawbacks of current environment map-

ping techniques is the significant computational time required for prefiltering, or precom-

puting reflection maps, which can run into hours, and preclude the use of these approaches
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Figure 1.2: Inverse Rendering. On the left, we show a conceptual description, while the right
shows how illumination may be manipulated to create realistic new synthetic images.

in applications involving lighting and material design, or dynamic lighting. We introduce

new prefiltering methods based on spherical harmonic transforms, and show both empiri-

cally, and analytically by computational complexity analysis, that our algorithms are orders

of magnitude faster than previous work.

1.3 Inverse Rendering

Finally, chapter 6 discusses practical inverse rendering methods for estimating illumination

and reflective properties from sequences of images. The general idea in inverse rendering

is illustrated in figure 1.2. On the left, we show a conceptual description. The inputs are

photographs of the object of interest, and a geometric model. The outputs are the reflective

properties, visualized by rendering a sphere with the same BRDF, and the illumination,

visualized by showing an image of a chrome-steel or mirror sphere. On the right, we show

how new renderings can be created under novel lighting conditions using the measured

BRDF from the real object. We simply need to use a standard physically based rendering

algorithm, with the input BRDF model that obtained by inverse rendering.

There are a number of applications of this approach. Firstly, it allows us to take input

photographs and relight the scene, or include real objects in synthetic scenes with novel

illumination and viewing conditions. This has applications in developing new methods for

image-processing, and in entertainment and virtual reality applications, besides the useful-

ness in creating realistic computer-generated images.
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The dissertation uses the theoretical framework described earlier, and the formal anal-

ysis of the conditioning of inverse problems, to derive new robust practical algorithms for

inverse rendering. Our specific practical contributions are:

Complex Illumination: As stated in the introduction, one of our primary motivations

is to perform inverse rendering under complex illumination, allowing these methods to be

used in arbitrary indoor and outdoor settings. We present a number of improved algorithms

for inverse rendering under complex lighting conditions.

New Practical Representations And Algorithms: The theoretical analysis is used to

develop a new low-parameter practical representation that simultaneously uses the spatial

or angular domain and the frequency domain. Using this representation, we develop a

number of new inverse rendering algorithms that use both the spatial and the frequency

domain.

Simultaneous Determination Of Lighting And BRDF: In many practical applications,

it might be useful to determine reflective properties without knowing the lighting, or to

determine both simultanously. We present the first method to determine BRDF parame-

ters of complex geometric models under unknown illumination, simultaneously finding the

lighting.
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�L, �N, �V , �R Global incident, normal, viewing, reflected directions
B Reflected radiance
Blp Coefficients of Fourier expansion of B in 2D
Blmpq, Blmnpq Coefficients of isotropic, anisotropic basis-function expansion of B in 3D
L Incoming radiance
Ll Coefficients of Fourier expansion of L in 2D
Llm Coefficients of spherical-harmonic expansion of L in 3D
ρ Surface BRDF
ρ̂ BRDF multiplied by cosine of incident angle
ρ̂lp Coefficients of Fourier expansion of ρ̂ in 2D
ρ̂lpq, ρ̂ln;pq Coefficients of isotropic, anisotropic spherical-harmonic expansion of ρ̂
θ′i, θi Incident elevation angle in local, global coordinates
φ′
i, φi Incident azimuthal angle in local, global coordinates

θ′o, θo Outgoing elevation angle in local, global coordinates
φ′
o, φo Outgoing azimuthal angle in local, global coordinates
�X Surface position
α Surface normal parameterization—elevation angle
β Surface normal parameterization—azimuthal angle
γ Orientation of tangent frame for anisotropic surfaces
Rα Rotation operator for surface orientation α in 2D
Rα,β , Rα,β,γ Rotation operator for surface normal (α, β) or tangent frame (α, β, γ) in 3D
Fk(θ) Fourier basis function (complex exponential)
F ∗
k (θ) Complex Conjugate of Fourier basis function

Ylm(θ, φ) Spherical Harmonic
Y ∗
lm(θ, φ) Complex Conjugate of Spherical Harmonic

flm(θ) Normalized θ dependence of Ylm
Dl
mn(α, β, γ) Representation matrix of dimension 2l + 1 for rotation group SO(3)

dlmn(α) DL
mm′ for y-axis rotations

Λl Normalization constant,
√

4π/(2l + 1)
I

√
−1

Table 1.1: Common notation used throughout the dissertation.



Chapter 2

Reflection as Convolution

In the introduction to this dissertation, we have discussed a number of problems in com-

puter graphics and vision, where having a deeper theoretical understanding of the re-

flection operator is important. These include inverse rendering problems—determining

lighting distributions and bidirectional reflectance distribution functions (BRDFs) from

photographs—and forward rendering problems such as rendering with environment maps,

and image-based rendering.

In computer graphics, the theory for forward global illumination calculations has been

fairly well developed, based on Kajiya’s rendering equation [35]. However, very little

work has gone into addressing the theory of inverse problems, or on studying the theoret-

ical properties of the simpler reflection equation, which deals with the direct illumination

incident on a surface. We believe that this lack of a formal mathematical understanding

of the properties of the reflection equation is one of the reasons why complex, realistic

lighting environments and reflection functions are rarely used either in forward or inverse

rendering.

While a formal theoretical basis has hitherto been lacking, reflection is of deep interest

in both graphics and vision, and there is a significant body of qualitative and empirical

information available. For instance, in their seminal 1984 work on environment map pre-

filtering and rendering, Miller and Hoffman [59] qualitatively observed that reflection was

a convolution of the incident illumination and the reflective properties (BRDF) of the sur-

face. Subsequently, similar qualitative observations have been made by Cabral et al. [7, 8],

10



11

D’Zmura [17] and others. However, in spite of the long history of these observations, this

notion has never previously been formalized.

Another interesting observation concerns the “blurring” that occurs in the reflection

from a Lambertian (diffuse) surface. Miller and Hoffman [59] used this idea to represent

irradiance maps, proportional to the reflected light from a Lambertian surface, at low res-

olutions. However, the precise resolution necessary was never formally determined. More

recently, within the context of lighting-invariant object recognition, a number of computer

vision researchers [18, 30, 91] have observed empirically that the space of images of a dif-

fuse object under all possible lighting conditions is very low-dimensional. Intuitively, we

do not see the high frequencies of the environment in reflections from a diffuse surface.

However, the precise nature of what is happening computationally has not previously been

understood.

The goal of this chapter is to formalize these observations and present a mathemati-

cal theory of reflection for general complex lighting environments and arbitrary BRDFs.

Specifically, we describe a signal-processing framework for analyzing the reflected light

field from a homogeneous convex curved surface under distant illumination. Under these

assumptions, we are able to derive an analytic formula for the reflected light field in terms

of the spherical harmonic coefficients of the BRDF and the lighting. The reflected light

field can therefore be thought of in a precise quantitative way as obtained by convolving

the lighting and BRDF, i.e. by filtering the incident illumination using the BRDF. Mathe-

matically, we are able to express the frequency-space coefficients of the reflected light field

as a product of the spherical harmonic coefficients of the illumination and the BRDF.

We believe this is a useful way of analyzing many forward and inverse problems. In

particular, forward rendering can be viewed as convolution and inverse rendering as de-

convolution. Furthermore, in the next chapter, we are able to derive analytic formulae for

the spherical harmonic coefficients of many common BRDF and lighting models. From

this formal analysis, we are able to determine precise conditions under which estimation of

BRDFs and lighting distributions are well posed and well-conditioned. This analysis also

has implications for forward rendering—especially the efficient rendering of objects under

complex lighting conditions specified by environment maps.

The goal of this and the following chapter are to present a unified, detailed and complete
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description of the mathematical foundation underlying the rest of the dissertation. We will

briefly point out the practical implications of the results derived in this chapter, but will refer

the reader to later in the dissertation for implementation details. The rest of this chapter

is organized as follows. In section 1, we discuss previous work. Section 2 introduces

the reflection equation in 2D and 3D, showing how it can be viewed as a convolution.

Section 3 carries out a formal frequency-space analysis of the reflection equation, deriving

the frequency space convolution formulae. Section 4 briefly discusses general implications

for forward and inverse rendering. Finally, section 5 concludes this chapter and discusses

future theoretical work. The next chapter will derive analytic formulae for the spherical

harmonic coefficients of many common lighting and BRDF models, applying the results to

theoretically analyzing the well-posedness and conditioning of many problems in inverse

rendering.

2.1 Previous Work

In this section, we briefly discuss previous work. Since the reflection operator is of fun-

damental interest in a number of fields, the relevant previous work is fairly diverse. We

start out by considering rendering with environment maps, where there is a long history

of regarding reflection as a convolution, although this idea has not previously been math-

ematically formalized. We then describe some relevant work in inverse rendering, one

of the main applications of our theory. Finally, we discuss frequency-space methods for

reflection, and previous work on a formal theoretical analysis.

Forward Rendering by Environment Mapping: The theoretical analysis in this pa-

per employs essentially the same assumptions typically made in rendering with environ-

ment maps, i.e. distant illumination—allowing the lighting to be represented by a single

environment map—incident on curved surfaces. Blinn and Newell [5] first used environ-

ment maps to efficiently find reflections of distant objects. The technique was generalized

by Miller and Hoffman [59] and Greene [22] who precomputed diffuse and specular re-

flection maps, allowing for images with complex realistic lighting and a combination of

Lambertian and Phong BRDFs to be synthesized. Cabral et al. [7] later extended this
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general method to computing reflections from bump-mapped surfaces, and to computing

environment-mapped images with arbitrary BRDFs [8]. It should be noted that both Miller

and Hoffman [59], and Cabral et al. [7, 8] qualitatively described the reflection maps as

obtained by convolving the lighting with the BRDF. In this paper, we will formalize these

ideas, making the notion of convolution precise, and derive analytic formulae.

Inverse Rendering: We now turn our attention to the inverse problem—estimating

BRDF and lighting properties from photographs. Inverse rendering is one of the main

practical applications of, and original motivation for, our theoretical analysis. Besides be-

ing of fundamental interest in computer vision, inverse rendering is important in computer

graphics since the realism of images is nowadays often limited by the quality of input mod-

els. Inverse rendering yields the promise of providing very accurate input models since

these come from measurements of real photographs.

Perhaps the simplest inverse rendering method is the use of a mirror sphere to find the

lighting, first introduced by Miller and Hoffman [59]. A more sophisticated inverse lighting

approach is that of Marschner and Greenberg [54], who try to find the lighting under the

assumption of a Lambertian BRDF. D’Zmura [17] proposes estimating spherical harmonic

coefficients of the lighting.

Most work in inverse rendering has focused on BRDF [62] estimation. Recently, image-

based BRDF measurement methods have been proposed in 2D by Lu et al. [51] and in

3D by Marschner et al. [55]. If the entire BRDF is measured, it may be represented by

tabulating its values. An alternative representation is by low-parameter models such as

those of Ward [85] or Torrance and Sparrow [84]. Parametric models are often preferred

in practice since they are compact, and are simpler to estimate. A number of methods [14,

15, 77, 89] have been proposed to estimate parametric BRDF models, often along with a

modulating texture.

However, it should be noted that all of the methods described above use a single point

source. One of the main goals of the theoretical analysis in this paper is to enable the use

of inverse rendering with complex lighting. Recently, there has been some work in this

area [16, 50, 64, 75, 76, 90], although many of those methods are specific to a particular

illumination model. Using the theoretical analysis described in this paper, we [73] have
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presented a general method for complex illumination, that handles the various components

of the lighting and BRDF in a principled manner to allow for BRDF estimation under

general lighting conditions. Furthermore, we will show that it is possible in theory to

separately estimate the lighting and BRDF, up to a global scale factor. We have been

able to use these ideas to develop a practical method [73] of factoring the light field to

simultaneously determine the lighting and BRDF for geometrically complex objects.

Frequency-Space Representations: Since we are going to treat reflection as a convolu-

tion and analyze it in frequency-space, we will briefly discuss previous work on frequency-

space representations. Since we will be primarily concerned with analyzing quantities like

the BRDF and distant lighting which can be parameterized as a function on the unit sphere,

the appropriate frequency-space representations are spherical harmonics [32, 34, 52]. The

use of spherical harmonics to represent the illumination and BRDF was pioneered by

Cabral et al. [7]. D’Zmura [17] analyzed reflection as a linear operator in terms of spherical

harmonics, and discussed some resulting ambiguities between reflectance and illumination.

We extend his work by explicitly deriving the frequency-space reflection equation (i.e. con-

volution formula) in this chapter, and by providing quantitative results for various special

cases in the next chapter. Our use of spherical harmonics to represent the lighting is similar

in some respects to previous methods such as that of Nimeroff et al. [63] that use steerable

linear basis functions. Spherical harmonics, as well as the closely related Zernike poly-

nomials, have also been used before in computer graphics for representing BRDFs by a

number of other authors [43, 79, 86].

Formal Analysis of Reflection: This paper conducts a formal study of the reflection

operator by showing mathematically that it can be described as a convolution, deriving an

analytic formula for the resulting convolution equation, and using this result to study the

well-posedness and conditioning of several inverse problems. As such, our approach is

similar in spirit to mathematical methods used to study inverse problems in other areas of

radiative transfer and transport theory such as hydrologic optics [67] and neutron scattering.

See McCormick [58] for a review.

Within computer graphics and vision, the closest previous theoretical work lies in the

object recognition community, where there has been a significant amount of interest in



2.2. REFLECTION EQUATION 15

characterizing the appearance of a surface under all possible illumination conditions, usu-

ally under the assumption of Lambertian reflection. For instance, Belhumeur and Krieg-

man [4] have theoretically described this set of images in terms of an illumination cone,

while empirical results have been obtained by Hallinan [30] and Epstein et al. [18]. These

results suggest that the space spanned by images of a Lambertian object under all (dis-

tant) illumination conditions lies very close to a low-dimensional subspace. We will see

that our theoretical analysis will help in explaining these observations, and in extending

the predictions to arbitrary reflectance models. In independent work on face recognition,

simultaneous with our own, Basri and Jacobs [2] have described Lambertian reflection as a

convolution and obtained similar analytic results for that particular case.

This chapter builds on previous theoretical work by us on analyzing planar or flatland

light fields [70], on the reflected light field from a Lambertian surface [72], and on the

theory for the general 3D case with isotropic BRDFs [73]. The goal of this chapter is to

present a unified, complete and detailed account of the theory in the general case. We

describe a unified view of the 2D and 3D cases, including general anisotropic BRDFs, a

group-theoretic interpretation in terms of generalized convolutions, and the relationship to

the theory of Fredholm integral equations of the first kind, which have not been discussed

in our earlier papers.

2.2 Reflection Equation

In this section, we introduce the mathematical and physical preliminaries, and derive a

version of the reflection equation. In order to derive our analytic formulae, we must analyze

the properties of the reflected light field. The light field [20] is a fundamental quantity in

light transport and therefore has wide applicability for both forward and inverse problems in

a number of fields. A good introduction to the various radiometric quantities derived from

light fields is provided by McCluney [56], while Cohen and Wallace [12] introduce many

of the terms discussed here with motivation from a graphics perspective. Light fields have

been used directly for rendering images from photographs in computer graphics, without

considering the underlying geometry [21, 48], or by parameterizing the light field on the

object surface [88].
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After a discussion of the physical assumptions made, we first introduce the reflection

equation for the simpler flatland or 2D case, and then generalize the results to 3D. In the

next section, we will analyze the reflection equation in frequency-space.

2.2.1 Assumptions

We will assume curved convex homogeneous reflectors in a distant illumination field. Be-

low, we detail each of the assumptions.

Curved Surfaces: We will be concerned with the reflection of a distant illumination field

by curved surfaces. Specifically, we are interested in the variation of the reflected light field

as a function of surface orientation and exitant direction. Our goal is to analyze this varia-

tion in terms of the incident illumination and the surface BRDF. Our theory will be based on

the fact that different orientations of a curved surface correspond to different orientations

of the upper hemisphere and BRDF. Equivalently, each orientation of the surface corre-

sponds to a different integral over the lighting, and the reflected light field will therefore be

a function of surface orientation.

Convex Objects: The assumption of convexity ensures there is no shadowing or inter-

reflection. Therefore, the incident illumination is only because of the distant illumination

field. Convexity also allows us to parameterize the object simply by the surface orienta-

tion. For isotropic surfaces, the surface orientation is specified uniquely by the normal

vector. For anisotropic surfaces, we must also specify the direction of anisotropy, i.e. the

orientation of the local tangent frame.

It should be noted that our theory can also be applied to concave objects, simply by

using the surface normal (and the local tangent frame for anisotropic surfaces). However,

the effects of self-shadowing (cast shadows) and interreflections will not be considered.

Homogeneous Surfaces: We assume untextured surfaces with the same BRDF every-

where.
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Distant Illumination: The illumination field will be assumed to be generated by distant

sources, allowing us to use the same lighting function anywhere on the object surface. The

lighting can therefore be represented by a single environment map indexed by the incident

angle.

Discussion: We note that for the most part, our assumptions are very similar to those

made in most interactive graphics applications, including environment map rendering al-

gorithms such as those of Miller and Hoffman [59] and Cabral et al. [8]. Our assumptions

also accord closely with those usually made in computer vision and inverse rendering. The

only significant additional assumption is that of homogeneous surfaces. However, this is

not particularly restrictive since spatially varying BRDFs are often approximated in prac-

tical graphics or vision applications by using a spatially varying texture that simply mod-

ulates one or more components of the BRDF. This can be incorporated into the ensuing

theoretical analysis by merely multiplying the reflected light field by a texture dependent

on surface position. We believe that our assumptions are a good approximation to many

real-world situations, while being simple enough to treat analytically. Furthermore, it is

likely that the insights obtained from the analysis in this paper will be applicable even in

cases where the assumptions are not exactly satisfied. We will demonstrate in chapter 6 that

in practical applications, it is possible to extend methods derived from these assumptions

to be applicable in an even more general context.

We now proceed to derive the reflection equation for the 2D and 3D case under the

assumptions outlined above. Notation used in chapter 2, and reused throughout the dis-

sertation, is listed in table 1.1. We will use two types of coordinates. Unprimed global

coordinates denote angles with respect to a global reference frame. On the other hand,

primed local coordinates denote angles with respect to the local reference frame, defined

by the local surface normal and a tangent vector. These two coordinate systems are related

simply by a rotation.
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Figure 2.1: Schematic of reflection in 2D. On the left, we show the situation with respect to one
point on the surface (the north pole or 0◦ location, where global and local coordinates are the
same). The right figure shows the affect of the surface orientation α. Different orientations of
the surface correspond to rotations of the upper hemisphere and BRDF, with the global incident
direction θi corresponding to a rotation by α of the local incident direction θ′i. Note that we also
keep the local outgoing angle (between N and B) fixed between the two figures

2.2.2 Flatland 2D case

In this subsection, we consider the flatland or 2D case, assuming that all measurements and

illumination are restricted to a single plane. Considering the 2D case allows us to explain

the key concepts clearly, and show how they generalize to 3D. A diagram illustrating the

key concepts for the planar case is in figure 2.1.

In local coordinates, we can write the reflection equation as

B( 
X, θ′o) =
∫ π/2
−π/2

L( 
X, θ′i)ρ(θ
′
i, θ

′
o) cos θ

′
i dθ

′
i. (2.1)

Here, B is the reflected radiance, L is the incident radiance, i.e illumination, and ρ is

the BRDF or bi-directional reflectance distribution function of the surface, which in 2D

is a function of the local incident and outgoing angles (θ′i, θ
′
o). The limits of integration

correspond to the visible half-circle—the 2D analogue of the upper hemisphere in 3D.

We now make a number of substitutions in equation 2.1, based on our assumptions.

First, consider the assumption of a convex surface. This ensures there is no shadowing or

interreflection; this fact has implicitly been assumed in equation 2.1. The reflected radiance

therefore depends only on the distant illumination field L and the surface BRDF ρ. Next,
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consider the assumption of distant illumination. This implies that the reflected light field

depends directly only on the surface orientation, as described by the surface normal 
N ,

and does not directly depend on the position 
X . We may therefore reparameterize the

surface by its angular coordinates α, with 
N = [sinα, cosα], i.e. B( 
X, θ′o) → B(α, θ′o)

and L( 
X, θ′i)→ L(α, θ′i). The assumption of distant sources also allows us to represent the

incident illumination by a single environment map for all surface positions, i.e. use a single

function L regardless of surface position. In other words, the lighting is a function only

of the global incident angle, L(α, θ′i) → L(θi). Finally, we define a transfer function ρ̂ =

ρ cos θ′i to absorb the cosine term in the integrand. With these modifications, equation 2.1

becomes

B(α, θ′o) =
∫ π/2
−π/2

L(θi)ρ̂(θ
′
i, θ

′
o) dθ

′
i. (2.2)

It is important to note that in equation 2.2, we have mixed local (primed) and global

(unprimed) coordinates. The lighting is a global function, and is naturally expressed in a

global coordinate frame as a function of global angles. On the other hand, the BRDF is nat-

urally expressed as a function of the local incident and reflected angles. When expressed in

the local coordinate frame, the BRDF is the same everywhere for a homogeneous surface.

Similarly, when expressed in the global coordinate frame, the lighting is the same every-

where, under the assumption of distant illumination. Integration can be conveniently done

over either local or global coordinates, but the upper hemisphere is easier to keep track of

in local coordinates.

Rotations—Converting between Local and Global coordinates: To do the integral in

equation 2.2, we must relate local and global coordinates. One can convert between these

by applying a rotation corresponding to the local surface normal α. The up-vector in local

coordinates, i.e 0′ is the surface normal. The corresponding global coordinates are clearly

α. We define Rα as an operator that rotates θ′i into global coordinates, and is given in 2D

simply by Rα(θ′i) = α + θ′i. To convert from global to local coordinates, we apply the

inverse rotation, i.e. R−α. To summarize,

θi = Rα(θ
′
i) = α+ θ′i

θ′i = R−1
α (θi) = −α+ θi. (2.3)
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It should be noted that the signs of the various quantities are taken into account in equa-

tion 2.3. Specifically, from the right of figure 2.1, it is clear that | θ′i |=| θi | + | α |. In

our sign convention, α is positive in figure 2.1, while θ′i and θi are negative. Substituting

| θ′i |= −θ′i and | θi |= −θi, we verify equation 2.3.

With the help of equation 2.3, we can express the incident angle dependence of equa-

tion 2.2 in either local coordinates entirely, or global coordinates entirely. It should be

noted that we always leave the outgoing angular dependence of the reflected light field in

local coordinates in order to match the BRDF transfer function.

B(α, θ′o) =
∫ π/2
−π/2

L (Rα(θ
′
i)) ρ̂ (θ

′
i, θ

′
o) dθ

′
i (2.4)

=
∫ π/2+α
−π/2+α

L (θi) ρ̂
(
R−1
α (θi), θ

′
o

)
dθi. (2.5)

By plugging in the appropriate relations for the rotation operator from equation 2.3, we can

obtain

B(α, θ′o) =
∫ π/2
−π/2

L (α+ θ′i) ρ̂ (θ
′
i, θ

′
o) dθ

′
i (2.6)

=
∫ π/2+α
−π/2+α

L (θi) ρ̂ (−α + θi, θ′o) dθi. (2.7)

Interpretation as Convolution: Equations 2.6 and 2.7 (and the equivalent forms in equa-

tions 2.4 and 2.5) are convolutions. The reflected light field can therefore be described

formally as a convolution of the incident illumination and the BRDF transfer function.

Equation 2.5 in global coordinates states that the reflected light field at a given surface

orientation corresponds to rotating the BRDF to that orientation, and then integrating over

the upper half-circle. In signal processing terms, the BRDF can be thought of as the filter,

while the lighting is the input signal. The reflected light field is obtained by filtering the

input signal (i.e. lighting) using the filter derived from the BRDF. Symmetrically, equa-

tion 2.4 in local coordinates states that the reflected light field at a given surface orientation

may be computed by rotating the lighting into the local coordinate system of the BRDF,

and then doing the integration over the upper half-circle.
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It is important to note that we are fundamentally dealing with rotations, as is brought

out by equations 2.4 and 2.5. For the 2D case, rotations are equivalent to translations, and

equations 2.6 and 2.7 are the familiar equations for translational convolution. The main

difficulty in formally generalizing the convolution interpretation to 3D is that the structure

of rotations is more complex. In fact, we will need to consider a generalization of the notion

of convolution in order to encompass rotational convolutions.

2.2.3 Generalization to 3D

The flatland development can be extended to 3D. In 3D, we can write the reflection equa-

tion, analogous to equation 2.1, as

B( 
X, θ′o, φ
′
o) =

∫
Ω′

i

L( 
X, θ′i, φ
′
i)ρ(θ

′
i, φ

′
i, θ

′
o, φ

′
o) cos θ

′
i dω

′
i. (2.8)

Note that the integral is now over the 3D upper hemisphere, instead of the 2D half-circle.

Also note that we must now also consider the (local) azimuthal angles φ′i and φ′o.

We can make the same substitutions that we did in 2D. We reparameterize the surface

position 
X by its angular coordinates (α, β, γ). Here, the surface normal 
N is given by

the standard formula 
N = [sinα cos β, sinα sin β, cosα]. The third angular parameter γ

is important for anisotropic surfaces and controls the rotation of the local tangent-frame

about the surface normal. For isotropic surfaces, γ has no physical significance. Figure 2.2

illustrates the rotations corresponding to (α, β, γ). We may think of them as essentially

corresponding to the standard Euler-angle rotations about Z, Y and Z by angles α,β and

γ. As in 2D, we may now make the substitutions, B( 
X, θ′o, φ
′
o) → B(α, β, γ, θ′o, φ

′
o) and

L( 
X, θ′i, φ
′
i) → L(θi, φi), and define a transfer function to absorb the cosine term, ρ̂ =

ρ cos θ′i. We now obtain the 3D equivalent of equation 2.2,

B(α, β, γ, θ′o, φ
′
o) =

∫
Ω′

i

L(θi, φi)ρ̂(θ
′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (2.9)

Rotations—Converting between Local and Global coordinates: To do the integral

above, we need to apply a rotation to convert between local and global coordinates, just

as in 2D. The rotation operator is substantially more complicated in 3D, but the operations
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Z

α
Y’

β

Z’

γ

X’

X

Y

Figure 2.2: Diagram showing how the rotation corresponding to (α, β, γ) transforms between lo-
cal (primed) and global (unprimed) coordinates. The net rotation is composed of three independent
rotations about Z,Y,and Z, with the angles α, β, and γ corresponding directly to the Euler angles.

are conceptually very similar to those in flatland. The north pole (0′, 0′) or +Z axis in local

coordinates is the surface normal, and the corresponding global coordinates are (α, β). It

can be verified that a rotation of the form Rz(β)Ry(α) correctly performs this transforma-

tion, where the subscript z denotes rotation about the Z axis and the subscript y denotes

rotation about the Y axis. For full generality, the rotation between local and global coor-

dinates should also specify the transformation of the local tangent frame, so the general

rotation operator is given by Rα,β,γ = Rz(β)Ry(α)Rz(γ). This is essentially the Euler-

angle representation of rotations in 3D. We may now summarize these results, obtaining
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the 3D equivalent of equation 2.3,

(θi, φi) = Rα,β,γ(θ
′
i, φ

′
i) = Rz(β)Ry(α)Rz(γ) {θ′i, φ′i}

(θ′i, φ
′
i) = R−1

α,β,γ(θi, φi) = Rz(−γ)Ry(−α)Rz(−β) {θi, φi} . (2.10)

It is now straightforward to substitute these results into equation 2.9, transforming the inte-

gral either entirely into local coordinates or entirely into global coordinates, and obtaining

the 3D analogue of equations 2.4 and 2.5,

B(α, β, γ, θ′o, φ
′
o) =

∫
Ω′

i

L (Rα,β,γ(θ
′
i, φ

′
i)) ρ̂(θ

′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i (2.11)

=
∫
Ωi

L(θi, φi)ρ̂
(
R−1
α,β,γ(θi, φi), θ

′
o, φ

′
o

)
dωi. (2.12)

As we have written them, these equations depend on spherical coordinates. It might

clarify matters somewhat to also present an alternate form in terms of rotations and unit

vectors in a coordinate-independent way. We simply use R for the rotation, which could be

written as a 3×3 rotation matrix, while ωi and ωo stand for unit vectors corresponding to the

incident and outgoing directions (with primes added for local coordinates). Equations 2.11

and 2.12 may then be written as

B(R, ω′
o) =

∫
Ω′

i

L (Rω′
i) ρ̂(ω

′
i, ω

′
o) dω

′
i (2.13)

=
∫
Ωi

L(ωi)ρ̂
(
R−1ωi, ω

′
o

)
dωi, (2.14)

where Rω′
i and R−1ωi are simply matrix-vector multiplications.

Interpretation as Convolution: In the spatial domain, convolution is the result generated

when a filter is translated over an input signal. However, we can generalize the notion of

convolution to other transformations Ta, where Ta is a function of a, and write

(f ⊗ g)(a) =
∫
t
f (Ta(t)) g(t) dt. (2.15)
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When Ta is a translation by a, we obtain the standard expression for spatial convolution.

When Ta is a rotation by the angle a, the above formula defines convolution in the angular

domain.

Therefore, equations 2.11 and 2.12 (or 2.13 and 2.14) represent rotational convolutions.

Equation 2.12 in global coordinates states that the reflected light field at a given surface

orientation corresponds to rotating the BRDF to that orientation, and then integrating over

the upper hemisphere. The BRDF can be thought of as the filter, while the lighting is the

input signal. Symmetrically, equation 2.11 in local coordinates states that the reflected

light field at a given surface orientation may be computed by rotating the lighting into the

local coordinate system of the BRDF, and then doing the hemispherical integration. These

observations are similar to those we made earlier for the 2D case.

Group-theoretic Interpretation as Generalized Convolution: In fact, it is possible to

formally generalize the notion of convolution to groups. Within this context, the standard

Fourier convolution formula can be seen as a special case for SO(2), the group of rotations

in 2D. More information may be found in books on group representation theory, such as

Fulton and Harris [19] (especially note exercise 3.32). One reference that focuses specif-

ically on the rotation group is Chirikjian and Kyatkin [10]. In the general case, we may

modify equation 2.15 slightly to write for compact groups,

(f ⊗ g)(s) =
∫
t
f(s ◦ t)g(t) dt, (2.16)

where s and t are elements of the group, the integration is over a suitable group measure,

and ◦ denotes group multiplication.

It is also possible to generalize the Fourier convolution formula in terms of represen-

tation matrices of the group in question. In our case, the relations do not exactly satisfy

equation 2.16, since we have both rotations (in the rotation group SO(3)) and unit vectors.

Therefore, for frequency space analysis in the 3D case, we will need both the representation

matrices of SO(3), and the associated basis functions for unit vectors on a sphere, which

are the spherical harmonics.
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2.3 Frequency-Space Analysis

Since the reflection equation can be viewed as a convolution, it is natural to analyze it in

frequency-space. We will first consider the 2D reflection equation, which can be analyzed

in terms of the familiar Fourier basis functions. We then show how this analysis generalizes

to 3D, using the spherical harmonics. Finally, we discuss a number of alternative forms of

the reflection equation, and associated convolution formulas, that may be better suited for

specific problems.

2.3.1 Fourier Analysis in 2D

We now carry out a Fourier analysis of the 2D reflection equation. We will define the

Fourier series of a function f by

Fk(θ) =
1√
2π
eIkθ

f(θ) =
∞∑

k=−∞
fkFk(θ)

fk =
∫ π
−π
f(θ)F ∗

k (θ)dθ. (2.17)

In the last line, the ∗ in the superscript stands for the complex conjugate. For the Fourier

basis functions, F ∗
k = F−k = (1/

√
2π) exp(−Ikθ). It should be noted that the relations in

equation 2.17 are similar for any orthonormal basis functions F , and we will later be able

to use much of the same machinery to define spherical harmonic expansions in 3D.

Decomposition into Fourier Series: We now consider the reflection equation, in the

form of equation 2.6. We will expand all quantities in terms of Fourier series.

We start by forming the Fourier expansion of the lighting, L, in global coordinates,

L(θi) =
∞∑

l=−∞
LlFl(θi). (2.18)
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To obtain the lighting in local coordinates, we may rotate the above expression,

L(θi) = L(α+ θ
′
i) =

∞∑
l=−∞

LlFl(α+ θ
′
i)

=
√
2π

∞∑
l=−∞

LlFl(α)Fl(θ
′
i). (2.19)

The last line follows from the form of the complex exponentials, or in other words, we

have Fl(α + θ′i) = (1/
√
2π) exp (Il(α+ θ′i)). This result shows that the effect of rotating

the lighting to align it with the local coordinate system is simply to multiply the Fourier

frequency coefficients by exp(Ilα).

Since no rotation is applied to B and ρ̂, their decomposition into a Fourier series is

simple,

B(α, θ′o) =
∞∑

l=−∞

∞∑
p=−∞

BlpFl(α)Fp(θ
′
o)

ρ̂(θ′i, θ
′
o) =

∞∑
l=−∞

∞∑
p=−∞

ρ̂lpF
∗
l (θ

′
i)Fp(θ

′
o).

(2.20)

Note that the domain of the basis functions here is [−π, π], so we develop the series for ρ̂

by assuming function values to be 0 outside the range for θ′i and θ′o of [−π
2
, π

2
]. Also, in the

expansion for ρ̂, the complex conjugate used in the first factor is to somewhat simplify the

final result.

Fourier-Space Reflection Equation: We are now ready to write equation 2.6 in terms

of Fourier coefficients. For the purposes of summation, we want to avoid confusion of

the indices for L and ρ̂. For this purpose, we will use the indices Ll and ρ̂l′p. We now

simply multiply out the expansions for L and ρ̂. After taking the summations, and terms

not depending on θ′i outside the integral, equation 2.6 now becomes

B(α, θ′o) =
√
2π

∞∑
l=−∞

∞∑
l′=−∞

∞∑
p=−∞

Llρ̂l′pFl(α)Fp(θ
′
o)
∫ π
−π
F ∗
l′ (θ

′
i)Fl(θ

′
i) dθ

′
i. (2.21)
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Note that the limits of the integral are now [−π, π] and not [−π
2
, π

2
]. This is because we

have already incorporated the fact that the BRDF is nonzero only over the upper half-circle

into its Fourier coefficients. Further note that by orthonormality of the Fourier basis, the

value of the integrand can be given as

∫ π
−π
F ′∗
l (θ

′
i)Fl(θ

′
i) dθ

′
i = δll′. (2.22)

In other words, we can set l′ = l since terms not satisfying this condition vanish. Making

this substitution in equation 2.21, we obtain

B(α, θ′o) =
√
2π

∞∑
l=−∞

∞∑
p=−∞

Llρ̂lpFl(α)Fp(θ
′
o). (2.23)

Now, it is a simple matter to equate coefficients in the Fourier expansion of B in order to

derive the Fourier-space reflection equation,

Blp =
√
2πLlρ̂lp. (2.24)

This result reiterates once more that the reflection equation can be viewed as a convolution

of the incident illumination and BRDF, and becomes a simple product in Fourier space,

with an analytic formula being given by equation 2.24.

An alternative form of equation 2.24 that may be more instructive results from holding

the local outgoing angle fixed, instead of expanding it also in terms of Fourier coefficients,

i.e. replacing the index p by the outgoing angle θ′o,

Bl(θ
′
o) =

√
2πLlρ̂l(θ

′
o). (2.25)

Note that a single value of θ′o in B(α, θ′o) corresponds to a slice of the reflected light field,

which is not the same as a single image from a fixed viewpoint—a single image would

instead correspond to fixing the global outgoing angle θo.

In summary, we have shown that the reflection equation in 2D reduces to the standard

convolution formula. Next, we will generalize these results to 3D using spherical harmonic

basis functions instead of the complex exponentials.



28 CHAPTER 2. REFLECTION AS CONVOLUTION

2.3.2 Spherical Harmonic Analysis in 3D

To extend our frequency-space analysis to 3D, we must consider the structure of rotations

and vectors in 3D. In particular, the unit vectors corresponding to incident and reflected

directions lie on a sphere of unit magnitude. The appropriate signal-processing tools for

the sphere are spherical-harmonics, which are the equivalent for that domain to the Fourier

series in 2D (on a circle). These basis functions arise in connection with many physical

systems such as those found in quantum mechanics and electrodynamics. A summary of

the properties of spherical harmonics can therefore be found in many standard physics

textbooks [32, 34, 52].

Although not required for understanding the ensuing derivations, we should point out

that our frequency-space analysis is closely related mathematically to the representation

theory of the three-dimensional rotation group, SO(3). At the end of the previous section,

we already briefly touched on the group-theoretic interpretation of generalized convolution.

In the next subsection, we will return to this idea, trying to formally describe the 2D and

3D derivations as special cases of a generalized group-theoretic convolution formula.

Key Properties of Spherical Harmonics: Spherical harmonics are the analogue on the

sphere to the Fourier basis on the line or circle. The spherical harmonic Ylm is given by

Nlm =

√√√√2l + 1
4π

(l −m)!
(l +m)!

Ylm(θ, φ) = NlmPlm(cos θ)e
Imφ, (2.26)

where Nlm is a normalization factor. In the above equation, the azimuthal dependence is

expanded in terms of Fourier basis functions. The θ dependence is expanded in terms of

the associated Legendre functions Plm. The indices obey l ≥ 0 and −l ≤ m ≤ l. Thus,

there are 2l + 1 basis functions for given order l. Figure 2.3 shows the first 3 orders of

spherical harmonics, i.e. the first 9 basis functions corresponding to l = 0, 1, 2. They

may be written either as trigonometric functions of the spherical coordinates θ and φ or as

polynomials of the cartesian components x, y and z, with x2 + y2 + z2 = 1. In general, a

spherical harmonic Ylm is a polynomial of maximum degree l. Another useful relation is
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that Yl−m = (−1)mY ∗
lm. The first 3 orders (we give only terms with m ≥ 0) are given by

the following expressions,

Y00 =

√
1

4π

Y10 =

√
3

4π
cos θ =

√
3

4π
z

Y11 = −
√
3

8π
sin θeIφ = −

√
3

8π
(x+ Iy)

Y20 =
1

2

√
5

4π

(
3 cos2 θ − 1

)
=

1

2

√
5

4π

(
3z2 − 1

)

Y21 = −
√
15

8π
sin θ cos θeIφ = −

√
15

8π
z (x+ Iy)

Y22 =
1

2

√
15

8π
sin2 θe2Iφ =

1

2

√
15

8π
(x+ Iy)2 .

(2.27)

The spherical harmonics form an orthonormal basis in terms of which functions on the

sphere can be expanded,

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ)

flm =
∫ 2π

φ=0

∫ π
θ=0
f(θ, φ)Y ∗

lm(θ, φ) sin θ dθdφ. (2.28)

Note the close parallel with equation 2.17.

The rotation formula for spherical harmonics is

Ylm (Rα,β,γ(θ, φ)) =
l∑

m′=−l
Dlmm′(α, β, γ)Ylm′(θ, φ). (2.29)

The important thing to note here is that them indices are mixed—a spherical harmonic after

rotation must be expressed as a combination of other spherical harmonics with differentm

indices. However, the l indices are not mixed; rotations of spherical harmonics with order

l are composed entirely of other spherical harmonics with order l. For given order l, Dl
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Figure 2.3: The first 3 orders of real spherical harmonics (l = 0, 1, 2) corresponding to a total of 9
basis functions. The spherical harmonics Ylm may be written either as trigonometric functions of
the spherical coordinates θ and φ or as polynomials of the cartesian components x, y and z, with
x2 + y2 + z2 = 1. In general, a spherical harmonic Ylm is a polynomial of maximum degree l.
In these images, we show only the front the sphere, with green denoting positive values and blue
denoting negative values. Also note that these images show the real form of the spherical harmonics.
The complex forms are given in equation 2.27.

is a matrix that tells us how a spherical harmonic transforms under rotation, i.e. how to

rewrite a rotated spherical harmonic as a linear combination of all the spherical harmonics

of the same order. In terms of group theory, the matrix Dl is the (2l + 1)-dimensional

representation of the rotation group SO(3). The matricesDl therefore satisfy the formula,

Dlmm′(α, β, γ) =
∫ 2π

φ=0

∫ π
θ=0
Ylm(Rα,β,γ(θ, φ))Y

∗
lm′(θ, φ) sin θ dθ dφ. (2.30)

An analytic form for the matrices Dl can be found in standard references, such as Inui et

al. [32]. In particular, since Rα,β,γ = Rz(β)Ry(α)Rz(γ), the dependence ofDl on β and γ

is simple, since rotation of the spherical harmonics about the z−axis is straightforward,

Dlmm′(α, β, γ) = dlmm′(α)eImβeIm
′γ, (2.31)

where dl is a matrix that defines how a spherical harmonic transforms under rotation about
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the y−axis. For the purposes of the exposition, we will not generally need to be concerned

with the precise formula for the matrix dl, and numerical calculations can compute it using

a simplified version of equation 2.30 without the z rotations (i.e. β = γ = 0),

dlmm′(α) =
∫ 2π

φ=0

∫ π
θ=0
Ylm(Ry(α)(θ, φ))Y

∗
lm′(θ, φ) sin θ dθ dφ. (2.32)

For completeness, we give below the relatively complicated analytic formula, as derived in
equation 7.48 of Inui et al. [32],

ξ = sin2 α

2

N(l,m,m′) = (−1)m−m′

√
(l + m)!

(l −m)!(l + m′)!(l −m′)!

dl
mm′(α) = N(l,m,m′) × ξ−(m−m′)/2(1 − ξ)−(m+m′)/2

(
d

dξ

)l−m

ξl−m′
(1 − ξ)l+m′

,(2.33)

as well as analytic formulae for the the first three representations (i.e. dlmm′ with l = 0, 1, 2),

d0(α) = 1

d1(α) =




cos2
α

2

sinα√
2

sin2 α

2

− sinα
√

2
cosα

sinα
√

2

sin2 α

2
− sinα

√
2

cos2
α

2




d2(α) =




cos4 α
2

2 cos3 α
2

sin α
2

1
2

√
3
2

sin2 α 2 cos α
2

sin3 α
2

sin4 α
2

−2 cos3 α
2

sin α
2

cos2 α
2
(−1 + 2 cosα)

√
3
2

cosα sinα (1 + 2 cosα) sin2 α
2

2 cos α
2

sin3 α
2

1
2

√
3
2

sin2 α −
√

3
2

cosα sinα 1
2
(3 cos2 α− 1)

√
3
2

cosα sinα 1
2

√
3
2

sin2 α

−2 cos α
2

sin3 α
2

(1 + 2 cosα) sin2 α
2

−
√

3
2

cosα sinα cos2 α
2
(−1 + 2 cosα) 2 cos3 α

2
sin α

2

sin4 α
2

−2 cos α
2

sin3 α
2

1
2

√
3
2

sin2 α −2 cos3 α
2

sin α
2

cos4 α
2


 .

(2.34)

To derive some of the quantitative results in section 2.4 and the next chapter, we will re-

quire two important properties of the representation matrices Dl, which are derived in ap-

pendix A,

Dl0m′(α, β, 0) = dl0m′(α) =

√
4π

2l + 1
Y ∗
lm′(α, π)

Dlm0(α, β, γ) = dlm0(α)e
Imβ =

√
4π

2l + 1
Ylm(α, β). (2.35)
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Decomposition into Spherical Harmonics: As for the 2D case, we will now expand all

the quantities in terms of basis functions. We first expand the lighting in global coordinates,

L(θi, φi) =
∞∑
l=0

l∑
m=−l

LlmYlm(θi, φi). (2.36)

To obtain the lighting in local coordinates, we must rotate the above expression, just as we

did in 2D. Using equation 2.29, we get,

L(θi, φi) = L (Rα,β,γ(θ
′
i, φ

′
i)) =

∞∑
l=0

+l∑
m=−l

l∑
m′=−l

LlmD
l
mm′(α, β, γ)Ylm′(θ′i, φ

′
i). (2.37)

We now represent the transfer function ρ̂ = ρ cos θ′i in terms of spherical harmonics.

As in 2D, we note that ρ̂ is nonzero only over the upper hemisphere, i.e. when cos θ′i > 0

and cos θ′o > 0. Also, as in 2D, we use a complex conjugate for the first factor, to simplify

the final results.

ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o) =

∞∑
l=0

l∑
n=−l

∞∑
p=0

p∑
q=−p

ρ̂ln,pqY
∗
ln(θ

′
i, φ

′
i)Ypq(θ

′
o, φ

′
o) (2.38)

Spherical Harmonic Reflection Equation: We can now write down the reflection equa-
tion, as given by equation 2.11, in terms of the expansions just defined. As in 2D, we
multiply the expansions for the lighting and BRDF. To avoid confusion between the in-
dices in this intermediate step, we will use Llm and ρ̂l′n,pq to obtain

B(α, β, γ, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
m′=−l

∞∑
l′=0

l′∑
n=−l′

∞∑
p=0

p∑
q=−p

Llmρ̂l′n,pqD
l
mm′(α, β, γ)Ypq(θ′o, φ

′
o)Tlm′l′n

Tlm′l′n =
∫ 2π

φ′
i
=0

∫ π

θ′
i
=0

Ylm′(θ′i, φ
′
i)Y

∗
l′n(θ′i, φ

′
i) sin θ′i dθ

′
idφ

′
i

= δll′δm′n. (2.39)

The last line follows from orthonormality of the spherical harmonics. Therefore, we may

set l′ = l and n = m′ since terms not satisfying these conditions vanish. We then obtain

B(α, β, γ, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

Llmρ̂ln,pq
(
Dlmn(α, β, γ)Ypq(θ

′
o, φ

′
o)
)
. (2.40)
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This result suggests that we should expand the reflected light field B in terms of the new

basis functions given by Clmnpq = Dlmn(α, β, γ)Ypq(θ
′
o, φ

′
o). The appearance of the matrix

Dl in these basis functions is quite intuitive, coming directly from the rotation formula for

spherical harmonics. These basis functions are mixed in the sense that they are a product

of the matrices Dl and the spherical harmonics Ypq. This can be understood from realiz-

ing that the reflected direction is a unit vector described by two parameters (θ′o, φ
′
o), while

the surface parameterization is really a rotation, described by three parameters (α, β, γ).

Finally, we need to consider the normalization of these new basis functions. The spheri-

cal harmonics are already orthonormal. The orthogonality relation for the matrices Dl is

given in standard texts on group theory (for instance, equation 7.73 of Inui et al. [32]).

Specifically,

∫ 2π

γ=0

∫ 2π

β=0

∫ π
α=0

(
Dlmn(α, β, γ)

)∗ (
Dl

′

m′n′(α, β, γ)
)
sinαdα dβ dγ =

8π2

2l + 1
δll

′
δmm′δnn′ .

(2.41)
In the equation above, the group-invariant measure dµ(g) of the rotation group g = SO(3)
is sinα dα dβ dγ. The integral of this quantity µ(g) = 8π2, which can be easily verified.
Therefore, to obtain an orthonormal basis, we must normalize appropriately. Doing this,

Clmnpq =

√
2l + 1
8π2

Dl
mn(α, β, γ)Ypq(θ′o, φ

′
o)

B =
∞∑

l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

BlmnpqClmnpq(α, β, γ, θ′o, φ
′
o)

Blmnpq =
∫ 2π

φ′
o=0

∫ π

θ′
o=0

∫ 2π

γ=0

∫ 2π

β=0

∫ π

α=0

U(α, β, γ, θ′o, φ
′
o) sinα sin θ′o dα dβ dγ dθ′o dφ

′
o

U(α, β, γ, θ′o, φ
′
o) = B(α, β, γ, θ′o, φ

′
o)C

∗
lmnpq(α, β, γ, θ

′
o, φ

′
o). (2.42)

Although this appears rather involved, it is a straightforward expansion of the reflected

light field in terms of orthonormal basis functions. As written, since we are assuming

anisotropic surfaces for full generality, the reflected light field is a function of five vari-

ables, as opposed to being a function of only two variables in 2D. We should note that it

is generally impractical to have the full range of values for the anisotropic parameter, i.e.

the tangent frame rotation, γ for every surface orientation. In fact, γ is often a function of

the surface orientation (α, β). However, our goal here is to write the completely general
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formulae. In the next subsection, we will derive an alternative form for isotropic surfaces

which corresponds more closely to observable quantities.

Finally, we can write down the frequency space reflection equation by comparing equa-

tions 2.40 and 2.42 and equating coefficients. This result is comparable to its 2D coun-

terpart, given in equation 2.24, and as in 2D, is a convolution. In frequency-space, the

reflected light field is obtained simply by multiplying together coefficients of the lighting

and BRDF, i.e. by convolving the incident illumination with the BRDF,

Blmnpq =

√
8π2

2l + 1
Llmρ̂ln,pq. (2.43)

As in 2D, an alternative result without expanding the output dependence may be more

instructive,

Blmn(θ
′
o, φ

′
o) =

√
8π2

2l + 1
Llmρ̂ln(θ

′
o, φ

′
o). (2.44)

We reiterate that the fixed local outgoing angle in the above equation does not correspond to

a single image, but to a more general slice of the reflected light field. In a single image, the

local viewing angle is different for different points in the image, depending on the relative

orientation between the surface normal and viewing direction. On the other hand, a single

image corresponds to a single global viewing direction, and hence a single global outgoing

angle.

In summary, we have shown that the direct illumination integral, or reflection equation,

can be viewed in signal processing terms as a convolution of the incident illumination and

BRDF, and have derived analytic formulae. These analytic results quantify the qualitative

observations made by many researchers in the past. In 2D, the formulae are in terms of the

standard Fourier basis. In 3D, we must instead use spherical harmonics and the represen-

tation matrices of the rotation group, deriving a generalized convolution formula. Still, the

extension from 2D to 3D is conceptually straightforward, and although the mathematics is

significantly more involved, the key idea that the reflected light field can be viewed in a

precise quantitative way as a convolution still holds.
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2.3.3 Group-theoretic Unified Analysis

While not required for understanding the rest of this chapter, it is insightful to attempt to

analyze the 2D and 3D derivations as special cases of a more general convolution formula

in terms of the representation theory of compact groups. Our analysis in this subsection

will be based on that in Fulton and Harris [19] and Chirikjian and Kyatkin [10].

Convolution can be defined on general compact groups using equation 2.16. To analyze

this in the frequency domain, we need a generalization of the Fourier transform. It is

possible to define

fl =
∫
G
f(g)Dl(g) dg. (2.45)

In this equation, fl is the generalization of the Fourier transform, corresponding to index

l, f(g) is the function defined on the group G of which g is a member, and Dl(g) is the

(irreducible) representation matrix labeled with index l, evaluated at the group element g.

Here, the group-invariant measure for integration is written dg or dµ(g).

To obtain some intuition, consider the flatland case where the group corresponds to

rotations in 2D, i.e. G = SO(2). The elements g are then simply the angles φ, and the

representation matrices are all 1-dimensional and correspond to the standard Fourier series,

i.e. Dl = eIlφ. Thus, equation 2.45 corresponds directly to the standard Fourier series in

2D. Now, consider the case where the group is that of 3D rotations, i.e.G = SO(3). In this

case, Dl corresponds to the 2l+ 1-dimensional representation, and is a (2l+ 1)× (2l+ 1)

representation matrix. The generalized Fourier transform is therefore matrix-valued. For a

general compact group, we can generalize the notion of the Fourier transform to a matrix-

valued function labeled by indices corresponding to the group representation. This reduces

to the standard Fourier series for the 2D or flatland case, since the group representations

are all one-dimensional and correspond directly to complex exponentials.

Once we have the generalization of the Fourier transform, one can derive [19] a convo-

lution formula corresponding to equation 2.16,

(f ⊗ g)l = fl × gl. (2.46)
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It should be noted that the multiplication on the right-hand side is now a matrix multi-

plication, since all coefficients are matrix-valued. In the 2D flatland case, these are just

standard Fourier coefficients, so we have a simple scalar multiplication, reducing to the

standard Fourier convolution formula. For 3D rotations, the convolution formula should

involve matrix multiplication of the generalized Fourier coefficients (obtained by integrat-

ing against the representation matrices of SO(3)).

However, it is important to note that the 3D case discussed in the previous subsection

does not correspond exactly either to equation 2.16 or 2.46. Specifically, all operations are

not carried out in the rotation group SO(3). Instead, we have rotations operating on unit

vectors. Thus, it is not possible to apply equation 2.46 directly, and a separate convolution

formula must be derived, as we have done in the previous subsection.

Note that we use the associated basis functions, i.e. spherical harmonics, and not the

group representations directly, as basis functions for the lighting and BRDF, since these

quantities are functions of directions or unit vectors, and not rotations. For the reflected

light field, which is a function of the rotation applied as well as the outgoing direction (a

unit vector), we use mixed basis functions that are a product of group representations of

SO(3) and the spherical harmonics. The convolution formula we derive in equation 2.43

is actually simpler than equation 2.46, since it does not require matrix multiplication.

In the remainder of this section, we will derive a number of alternative forms for equa-

tion 2.43 that may be more suitable for particular cases. Then, in the next section, we will

discuss the implications of equations 2.43 and 2.44 for forward and inverse problems in

computer graphics.

2.3.4 Alternative Forms

For the analysis of certain problems, it will be more convenient to rewrite equation 2.43

in a number of different ways. We have already seen one example, of considering the

outgoing angle fixed, as shown in equation 2.44. In this subsection, we consider a few

more alternative forms.
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Isotropic BRDFs

Isotropic BRDFs are those where rotating the local tangent frame makes no difference,

i.e. they are functions of only 3 variables, ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o) = ρ̂(θ′i, θ

′
o, | φ′o − φ′i |). With

respect to the reflected light field, the parameter γ, which controls the orientation of the

local tangent frame, has no physical significance for isotropic BRDFs.

To consider the simplifications that result from isotropy, we first analyze the BRDF co-

efficients ρ̂ln,pq. In the BRDF expansion of equation 2.38, only terms that satisfy isotropy,

i.e. are invariant with respect to adding an angle �φ to both incident and outgoing az-

imuthal angles, are nonzero. From the form of the spherical harmonics, this requires that

n = q. Furthermore, since we are considering BRDFs that depend only on | φ′o − φ′i |,
we should be able to negate both incident and outgoing azimuthal angles without changing

the result. This leads to the condition that ρ̂lq,pq = ρ̂l(−q)p(−q). Finally, we define a 3-index

BRDF coefficient by

ρ̂lpq = ρ̂lq,pq = ρ̂l(−q)p(−q). (2.47)

Note that isotropy reduces the dimensionality of the BRDF from 4D to 3D. This is reflected

in the fact that we now have only three independent indices. Furthermore, half the degrees

of freedom are constrained since we can negate the azimuthal angle without changing the

BRDF.

Next, we remove the dependence of the reflected light field on γ by arbitrarily setting

γ = 0. It can be verified that for isotropic surfaces, γ mathematically just controls the origin

or 0-angle for φ′o and can therefore be set arbitrarily. Upon doing this, we can simplify a

number of quantities. First, the rotation operator is now given simply by

Rα,β = Rα,β,0 = Rz(β)Ry(α). (2.48)

Next, the representation matrices can be rewritten as

Dlmn(α, β) = D
l
mn(α, β, 0) = d

l
mn(α)e

Imβ. (2.49)

It should be noted that removing the dependence on γ weakens the orthogonality con-

dition (equation 2.41) on the representation matrices, since we no longer integrate over γ.



38 CHAPTER 2. REFLECTION AS CONVOLUTION

The new orthonormality relation for these matrices is given by

∫ 2π

β=0

∫ π
α=0

(
Dlmn(α, β)

)∗ (
Dl

′
m′n(α, β)

)
sinαdα dβ =

4π

2l + 1
δll

′
δmm′ . (2.50)

In particular, the orthogonality relation for the index n no longer holds, which is why we

have used the index n for bothD andD′ instead of using n and n′, as in equation 2.41. The

absence of an integral over γ leads to a slight weakening of the orthogonality relation, as

well as a somewhat different normalization than in equation 2.41. For the future discussion,

it will be convenient to define normalization constants by

Λl =

√
4π

2l + 1
. (2.51)

We now have the tools necessary to rewrite equation 2.43 for isotropic BRDFs. Since

we will be using the equations for isotropic BRDFs extensively in the rest of this disser-

tation, it will be worthwhile to briefly review the representations of the various quantities,

specialized to the isotropic case.

First, we define the expansions of the lighting in global coordinates, and the results

from rotating this expansion,

L(θi, φi) =
∞∑
l=0

l∑
m=−l

LlmYlm(θi, φi)

L(θi, φi) = L (Rα,β(θ
′
i, φ

′
i)) =

∞∑
l=0

+l∑
m=−l

l∑
m′=−l

LlmD
l
mm′(α, β)Ylm′(θ′i, φ

′
i). (2.52)

Then, we write the expansion of the isotropic BRDF,

ρ̂(θ′i, θ
′
o, | φ′o − φ′i |) =

∞∑
l=0

∞∑
p=0

min(l,p)∑
q=−min(l,p)

ρ̂lpqY
∗
lq(θ

′
i, φ

′
i)Ypq(θ

′
o, φ

′
o). (2.53)

The reflected light field, which is now a 4D function, can be expanded using a product of

representation matrices and spherical harmonics,

Clmpq(α, β, θ
′
o, φ

′
o) = Λ−1

l D
l
mq(α, β)Ypq(θ

′
o, φ

′
o)
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B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

∞∑
p=0

min(l,p)∑
q=−min(l,p)

BlmpqClmpq(α, β, θ
′
o, φ

′
o)

Blmpq =
∫ 2π

φ′o=0

∫ π
θ′o=0

∫ 2π

β=0

∫ π
α=0

U(α, β, θ′o, φ
′
o) sinα sin θ

′
o dα dβ dθ

′
o dφ

′
o

U(α, β, θ′o, φ
′
o) = B(α, β, θ′o, φ

′
o)C

∗
lmpq(α, β, θ

′
o, φ

′
o). (2.54)

It should be noted that the basis functions Clmpq are orthonormal in spite of the weakened

orthogonality of the functions Dlmq, as expressed in equation 2.50. Note that the index q

in the definition of Clmpq is the same (coupled) for both factors Dlmq and Ypq. This is a

consequence of isotropy, and is not true in the anisotropic case. Therefore, although the

representation matricesDl no longer satisfy orthogonality over the index q (corresponding

to the index n in equation 2.50), orthogonality over the index q follows from the orthonor-

mality of the spherical harmonics Ypq.

Finally, we can derive an analytic expression (convolution formula) for the reflection

equation in terms of these coefficients,

Blmpq = ΛlLlmρ̂lpq. (2.55)

Apart from a slightly different normalization, and the removal of γ and the correspond-

ing index n, this is essentially the same as equation 2.43. We will be using this equation

for isotropic BRDFs extensively in the next chapter, where we quantitatively analyze the

reflection equation for many special cases of interest.

We may also try to derive an alternative form, analogous to equation 2.44, by holding
the outgoing elevation angle θ′o fixed. Since the isotropic BRDF depends only on | φ′o−φ′i |,
and not directly on φ′o, we do not hold φ′o fixed, as we did in equation 2.44. We first define
the modified expansions,

ρ̂(θ′i, θ
′
o, | φ′

o − φ′
i |) =

∞∑
l=0

l∑
q=−l

ρ̂lq(θ′o)
(

1√
2π

Y ∗
lq(θ

′
i, φ

′
i) exp(Iqφ′

o)
)

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

l∑
q=−l

Blmq(θ′o)
(

1√
2π

Λ−1
l Dl

mq(α, β) exp(Iqφ′
o)
)

. (2.56)
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Then, we may write down the isotropic convolution formula corresponding to equation 2.44,

Blmq(θ
′
o) = ΛlLlmρ̂lq(θ

′
o). (2.57)

Reciprocity Preserving

One of the important properties of physical BRDFs is that they are reciprocal, i.e. sym-

metric with respect to interchange of incident and outgoing angles. However, the transfer

function ρ̂ = ρ cos θ′i as defined by us, does not preserve this reciprocity of the BRDF. To

make the transfer function reciprocal, we should multiply it by cos θ′o also. To preserve

correctness, we must then multiply the reflected light field by cos θ′o as well. Specifically,

we define

ρ̃ = ρ̂ cos θ′o = ρ cos θ
′
i cos θ

′
o

B̃ = B cos θ′o. (2.58)

With these definitions, all of the derivations presented so far still hold. In particular, the

convolution formulas in equation 2.43 and 2.55 hold with the replacementsB → B̃, ρ̂→ ρ̃.

For example, equation 2.55 for isotropic BRDFs becomes

B̃lmpq = ΛlLlmρ̃lpq. (2.59)

The symmetry of the transfer function ensures that its coefficients are unchanged if the in-

dices corresponding to incident and outgoing angles are interchanged, i.e. ρ̃lpq = ρ̃plq. In

the more general anisotropic case, ρ̃ln,pq = ρ̃pq,ln. We will use the frequency-space reflec-

tion formula, as given by equation 2.59, whenever explicitly maintaining the reciprocity of

the BRDF is important.

Reparameterization by central BRDF direction

Consider first the special case of radially symmetric or 1D BRDFs, where the BRDF con-

sists of a single symmetric lobe of fixed shape, whose orientation depends only on a well-

defined central direction 
C. In other words, the BRDF is given by a 1D function u as
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ρ̂ = u( 
C · 
L). Examples are Lambertian ρ̂ = 
N · 
L and Phong ρ̂ = (
R · 
L)s models. If we

reparameterize the BRDF and reflected light field by 
C, the BRDF becomes a function of

only 1 variable (θ′i with cos θ′i = 
C · 
L) instead of 3. Refer to figure 2.4 for an illustration.

Further, the reflected light field can be represented simply by a 2D reflection map B(α, β)

parameterized by 
C = (α, β). In other words, after reparameterization, there is no explicit

exitant (outgoing) angular dependence for either the BRDF or reflected light field.
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Figure 2.4: Reparameterization involves recentering about the reflection vector. BRDFs become
more compact, and in special cases (Phong) become 1D functions.

We may now write the BRDF and equations for the reflected light field as

ρ̂(θ′i) =
∞∑
l=0

ρ̂lYl0(θ
′
i)

ρ̂l = 2π
∫ π/2
0

ρ̂(θ′i)Yl0(θ
′
i) sin θ

′
i dθ

′
i

B(α, β) =
∞∑
l=0

l∑
m=−l

l∑
q=−l

ρ̂lLlmD
l
mq(α, β)

∫ 2π

0

∫ π
0
Ylq(θ

′
i, φ

′
i)Yl0(θ

′
i) sin θ

′
i dθ

′
idφ

′
i

=
∞∑
l=0

l∑
m=−l

ρ̂lLlmD
l
m0(α, β). (2.60)

In computing ρ̂l, we have integrated out the azimuthal dependence, accounting for the

factor of 2π. In the last line, we have used orthonormality of the spherical harmonics.

Now, we use the second property of the matrices D from equation 2.35, i.e. Dlm0(α, β) =
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ΛlYlm(α, β). Therefore, the reflected light field can be expanded simply in terms of spher-

ical harmonics,

B(α, β) =
∞∑
l=0

l∑
m=−l

BlmYlm(α, β). (2.61)

The required convolution formula now becomes

Blm = Λlρ̂lLlm. (2.62)

In the context of Lambertian BRDFs (for which no reparameterization is required), it

has been noted by Basri and Jacobs [2] that equation 2.62 is mathematically an instance of

the Funk-Hecke theorem (as stated, for instance in Groemer [24], page 98). However, that

theorem does not generalize to the other relations previously encountered. With respect

to equation 2.55, we have essentially just dropped the indices p and q corresponding to

the outgoing angular dependence. It is important to remember that the reflected light field

is now expanded in terms of spherical harmonics. B is simply a filtered version of L,

with each frequency l being attenuated by a different amount, corresponding to the BRDF

transfer function ρ̂l.

For general BRDFs, the radial symmetry property does not hold precisely, so they can-

not be reduced exactly to 1D functions, nor canB be written simply as a 2D reflection map.

Nevertheless, a reparameterization of the specular BRDF components by the reflection vec-

tor (or other central BRDF direction) still yields compact forms. To reparameterize, we

simply recenter the BRDF (and the reflection integral) about the reflection vector 
R, rather

than the surface normal, as shown in figure 2.4. The reflection vector now takes the place

of the surface normal, i.e. 
R = (α, β), and the dependence on the surface normal becomes

indirect (just as the dependence on 
R is indirect in the standard parameterization). The

angles θ′i and θ′o are now given with respect to 
R by cos θ′i = 
R · 
L and cos θ′o = 
R · 
V , with

B(α, β, θ′o, φ
′
o) a function of 
R = (α, β) and ωo = (θ′o, φ

′
o). Once we have done this, we

can directly apply the general convolution formulas, such as equation 2.55.

This section has presented a frequency-space analysis of the reflection equation. We

have shown the simple quantitative form that results from this analysis, as embodied by

equations 2.43 and 2.55. The mathematical analysis leading to these results is the main
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contribution of this chapter, showing quantitatively that reflection can be viewed as a con-

volution. The next section gives an overview of the implications of these results for forward

and inverse problems in rendering. The next chapter will work out a number of special cases

of interest.

2.4 Implications

This section discusses the implications of the theoretical analysis developed in the previous

section. Our main focus will be on understanding the well-posedness and conditioning of

inverse problems, as well as the speedups obtained in forward problems. In this section,

we make some general observations. In the second part of the paper, we will quantitatively

analyze a number of special cases of interest.

We will deal here exclusively with the 3D case, since that is of greater practical impor-

tance. A preliminary analysis for the 2D case can be found in an earlier paper [70]. The

quantitative results in 2D and 3D are closely related, although the fact that the 3D treatment

is in terms of spherical harmonics, as opposed to the 2D treatment in terms of Fourier se-

ries, results in some important differences. For simplicity, we will also restrict the ensuing

discussion to the case of isotropic BRDFs. The extension to anisotropic surfaces can be

done using the equations derived earlier for the general anisotropic case.

2.4.1 Forward Rendering with Environment Maps

We first consider the problem of rendering with environment maps, i.e. general lighting

distributions. For the purposes of rendering, it is convenient to explicitly write the formula

for the reflected light field as

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

∞∑
p=0

min(l,p)∑
q=−min(l,p)

Llmρ̂lpq
(
Dlmq(α, β)Ypq(θ

′
o, φ

′
o)
)
. (2.63)

If either the lighting or the BRDF is low frequency, the total number of terms in the

summation will be relatively small, and it may be possible to use equation 2.63 directly

for shading a pixel. In chapter 4, we will demonstrate the practicality of this approach for
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Lambertian BRDFs, where we can set p = q = 0, and use l ≤ 2, i.e. only 9 spherical

harmonic terms.

In the general case, frequency space analysis allows for setting sampling rates accu-

rately, and enables compact frequency domain representations. Further, just as image con-

volutions are often computed in the Fourier rather than the spatial domain, computing the

reflected light field is more efficient in frequency space, using equation 2.63, rather than in

angular space. Chapter 5 describes the practical implementation of these ideas.

2.4.2 Well-posedness and conditioning of Inverse Lighting and BRDF

In this subsection, we briefly discuss how to apply ideas from the theoretical analysis to

determine which inverse problems are well-posed, i.e. solvable, versus ill-posed, i.e. un-

solvable, and also determine the numerical conditioning properties. At the end of this

subsection, we will also relate these results to the general theory of linear integral equa-

tions. An important duality should be noted here. Forward problems for which an efficient

frequency domain solution is possible, such as those involving diffuse surfaces and/or soft

lighting, have corresponding inverse problems that are ill-conditioned. Turned around, ill-

conditioned inverse problems allow us to get a very good solution to the forward problem

by using very coarse low-frequency approximations of the initial conditions. For instance,

Lambertian surfaces act as low-pass filters, the precise form of which we will explore in

the next chapter, blurring the illumination. Therefore, high-frequency components of the

lighting are not essential to rendering images of diffuse objects, and we can make very

coarse low-frequency approximations to the lighting without significantly affecting the fi-

nal image. This leads to more efficient algorithms for computer graphics, and illustrates

one of the benefits in considering a signal-processing view of reflection.

Inverse-BRDF

We first address the question of BRDF estimation. Our goal is to consider this problem un-

der general illumination conditions, and understand when the BRDF can be recovered, i.e.

BRDF estimation is well posed, and when the BRDF cannot be recovered, i.e. estimation is

ill-posed. We would also like to know when BRDF recovery will be well-conditioned, i.e.
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numerically robust. An understanding of these issues is critical in designing BRDF estima-

tion algorithms that work under arbitrary lighting. Otherwise, we may devise algorithms

that attempt to estimate BRDF components that cannot be calculated, or whose estimation

is ill-conditioned.

For isotropic surfaces, a simple manipulation of equation 2.55 yields

ρ̂lpq = Λ−1
l

Blmpq
Llm

. (2.64)

In general, BRDF estimation will be well-posed, i.e. unambiguous as long as the denom-

inator on the right-hand side does not vanish. Of course, to be physically accurate, the

numerator will also become 0 if the denominator vanishes, so the right-hand side will be-

come indeterminate. From equation 2.64, we see that BRDF estimation is well posed as

long as for all l, there exists at least one value of m so that Llm �= 0. In other words, all

orders in the spherical harmonic expansion of the lighting should have at least one coeffi-

cient with nonzero amplitude. If any order l completely vanishes, the corresponding BRDF

coefficients cannot be estimated.

In signal processing terms, if the input signal (lighting) has no amplitude along certain

modes of the filter (BRDF), those modes cannot be estimated. BRDF recovery is well

conditioned when the spherical harmonic expansion of the lighting does not decay rapidly

with increasing frequency, i.e. when the lighting contains high frequencies like directional

sources or sharp edges, and is ill-conditioned for soft lighting. Equation 2.64 gives a precise

mathematical characterization of the conditions for BRDF estimation to be well-posed and

well-conditioned. These results are similar to those obtained by D’Zmura [17] who states

that there is an ambiguity regarding the BRDF in case of inadequate illumination. In our

framework, inadequate illumination corresponds to certain frequencies l of the lighting

completely vanishing.

Inverse Lighting

A similar analysis can be done for estimation of the lighting. Manipulation of equation 2.55

yields

Llm = Λ−1
l

Blmpq
ρ̂lpq

. (2.65)
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Inverse lighting will be well-posed so long as the denominator does not vanish for all p, q

for some l, i.e. so long as the spherical harmonic expansion of the BRDF transfer function

contains all orders. In signal processing terms, when the BRDF filter truncates certain fre-

quencies in the input lighting signal (for instance, if it were a low-pass filter), we cannot

determine those frequencies from the output signal. Inverse lighting is well-conditioned

when the BRDF has high-frequency content, i.e. its frequency spectrum decays slowly. In

physical terms, inverse lighting is well-conditioned when the BRDF contains sharp spec-

ularities, the ideal case of which is a mirror surface. On the other hand, inverse lighting

from matte or diffuse surfaces is ill-conditioned. Intuitively, highly specular surfaces act

as high-pass filters, so the resulting images have most of the high frequency content in the

lighting, and the lighting can be estimated. On the other hand, diffuse surfaces act as low-

pass filters, blurring the illumination and making it difficult or impossible to recover the

high frequencies.

Analysis in terms of theory of Fredholm Integral equations

We now briefly put our results on the well-posedness of inverse lighting and BRDF prob-

lems into a broader context with respect to the theory of Fredholm integral equations. In-

verting the reflection equation to solve for the lighting or BRDF is essentially a Fredholm

integral equation of the first kind. By contrast, the (forward) global illumination prob-

lem typically considered in rendering is a Fredhom integral equation of the second kind.

Fredholm integral equations of the first kind may be written generally as

b(s) =
∫
t
K(s, t)f(t) dt, (2.66)

where b(s) is the known quantity (observation), K(s, t) is the kernel or operator in the

equation, and f(t) is the function we seek to find. To make matters concrete, one may

think of f as the incident illumination L, with the kernel K as corresponding to the (ro-

tated) BRDF operator, and b(s) as corresponding to the reflected light field. Here, t would

represent the incident direction, and s would represent the surface orientation and outgoing

direction.
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The theory of linear integral equations, as for instance in Cochran [11], analyzes equa-

tion 2.66 based on the structure of the kernel. In particular, assume we may find a basis

function expansion of the form

b(s) =
n∑
i=1

biui(s)

K(s, t) =
n∑
i=1

Kiui(s)v
∗
i (t)

f(t) =
∞∑
i=1

fivi(t), (2.67)

where each of the sets of functions ui and vi (with v∗i being the complex conjugate) is

linearly independent. Here, n is the number of terms in, or rank of the kernel, K. If n is

finite, the kernel is referred to as degenerate. It should be noted that if the function sets

u and v were orthonormal, then we would have a result of the form bi = Kifi. In effect,

we have constructed an expansion of the form of equation 2.67 using orthonormal basis

functions involving group representations and spherical harmonics, thereby deriving the

convolution result.

As long as the kernel has finite rank n, it annihilates some terms in f , (for i > n),

and the integral equation is therefore ill-posed (has an infinity of solutions). If the kernel

has numerically finite rank, the integral equation is ill-conditioned. Our analysis can be

seen as trying to understand the rank of the kernel and its degeneracies in terms of signal

processing, thereby determining up to what order the function f can be recovered. In the

future, it may be possible to directly apply the theory of integral equations to analyze the

well-posedness and conditioning of inverse problems for which simple analytic formulae

such as our convolution relation are not readily available.

2.4.3 Light Field Factorization

Having analyzed estimation of the BRDF and lighting alone, we now consider the problem

of factorizing the light field, i.e simultaneously recovering the lighting and BRDF when

both are unknown. An analysis of this problem is very important theoretically in under-

standing the properties of the light field. There is also potential for practical applications in
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many different areas. Within BRDF estimation, being able to factor the light field allows

us to estimate BRDFs under uncontrolled unknown illumination, with the lighting being

recovered as part of the algorithm. Similarly, it would be useful to be able to recover the

lighting from an object of unknown BRDF. Factorization reveals the structure of the light

field, allowing for more intuitive editing operations to be carried out in order to synthesize

novel images for computer graphics. Factorization also reduces the dimensionality, and is

therefore useful in compressing light fields that are usually very large.

We first note that there is a global scale factor that we cannot recover. Multiplying the

lighting everywhere by some constant amount and dividing the BRDF uniformly by the

same amount leaves the reflected light field, which is a product of the two, unchanged. Of

course, physical considerations bound the scale factor, since the BRDF must remain energy

preserving. Nevertheless, within this general constraint, it is not possible to estimate the

absolute magnitudes of the lighting and BRDF. However, we will demonstrate that apart

from this ambiguity, the light field can indeed be factored, allowing us to simultaneously

determine both the lighting and the BRDF.

An important observation concerns the dimensionality of the various components. The

isotropic BRDF is defined on a 3D domain, while the lighting is a function of 2D. On the

other hand, the reflected light field is defined on a 4D domain. This indicates that there is a

great deal of redundancy in the reflected light field. The number of knowns, i.e. coefficients

of the reflected light field, is greater than the number of unknowns, i.e. coefficients of the

lighting and BRDF. This indicates that factorization should be tractable. Indeed, for fixed

order l, we can use known lighting coefficients Llm to find unknown BRDF coefficients

ρ̂lpq and vice-versa. In fact, we need only one known nonzero lighting or BRDF coefficient

for order l to bootstrap this process, since inverse lighting can use any value of (p, q) and

inverse-BRDF computation can use any value of m.

It would appear from equation 2.55 however, that there is an unrecoverable scale factor

for each order l, corresponding to the known coefficient we require. In other words, we

may multiply the lighting for each order l by some amount (which may be different for

different frequencies l) while dividing the BRDF by the same amount. However, there is

an important additional physical constraint. The BRDF must be reciprocal, i.e. symmetric

with respect to incident and outgoing angles. The corresponding condition in the frequency
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domain is that the BRDF coefficients must be symmetric with respect to interchange of the

indices corresponding to the incident and outgoing directions. To take advantage of this

symmetry, we will use the reciprocal form of the frequency-space equations, as defined in

equation 2.59.

We now derive an analytic formula for the lighting and BRDF in terms of coefficients

of the reflected light field. Since we cannot recover the global scale, we will arbitrarily

scale the DC term of the lighting so L00 = Λ−1
0 =

√
1/ (4π). Note that this scaling is

valid unless the DC term is 0, corresponding to no light—an uninteresting case. Using

equations 2.59, 2.64, and 2.65, we obtain

L00 = Λ−1
0 : Global Scale

ρ̃0p0 = B̃00p0 : Equation 2.64 (l = q = 0)

Llm = Λ−1
l

B̃lmpq
ρ̃lpq

: Equation 2.65

=
B̃lm00

ρ̃l00
: Set p = q = 0

=
B̃lm00

ρ̃0l0
: Reciprocity, ρ̃0l0 = ρ̃l00

= Λ−1
l

B̃lm00

B̃00l0

: Plug in from 2nd line

ρ̃lpq = Λ−1
l

B̃lmpq
Llm

: Equation 2.64

=
B̃lmpqB̃00l0

B̃lm00

: Substitute from above for Llm. (2.68)

Note that in the last line, any value ofm may be used. If none of the terms above vanishes,

this gives an explicit formula for the lighting and BRDF in terms of coefficients of the

output light field. Assuming reciprocity of the BRDF is critical. Without it, we would not

be able to relate ρ̃0l0 and ρ̃l00 above, and we would need a separate scale factor for each

frequency l.

Therefore, up to global scale, the reflected light field can be factored into the light-

ing and the BRDF, provided the appropriate coefficients of the reflected light field do
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not vanish, i.e. the denominators above are nonzero. If the denominators do vanish, the

inverse-lighting or inverse-BRDF problems become ill-posed and consequently, the fac-

torization becomes ill-posed. Note that the above relations are one possible factorization

formula. We may still be able to factor the light field even if some of the ρ̃l00 terms vanish

in equation 2.68, by using different values of ρ̃lpq with p �= 0.

Of course, the results will be more and more ill-conditioned, the closer the reflected

light field coefficients in the denominators come to 0, and so, in practice, there is a max-

imum frequency up to which the recovery process will be possible. This maximum fre-

quency will depend on the frequency spectrum of the reflected light field, and hence on the

frequency spectra of the lighting and BRDF. When either inverse-lighting or inverse-BRDF

computations become ill-conditioned, so will the factorization. Therefore, the factorization

will work best for specular BRDFs and high-frequency lighting. In other cases, there will

remain some ambiguities, or ill-conditioning.

2.5 Conclusions and Future Work

In this chapter, we have presented a theoretical analysis of the structure of the reflected

light field from a convex homogeneous object under a distant illumination field. We have

shown that the reflected light field can be formally described as a convolution of the incident

illumination and the BRDF, and derived an analytic frequency space convolution formula.

This means that reflection can be viewed in signal processing terms as a filtering operation

between the lighting and the BRDF to produce the output light field. Furthermore, inverse

rendering to estimate the lighting or BRDF from the reflected light field can be understood

as deconvolution. This result provides a novel viewpoint for many forward and inverse

rendering problems, and allows us to understand the duality between forward and inverse

problems, wherein an ill-conditioned inverse problem may lead to an efficient solution to

a forward problem. We have also discussed the implications for inverse problems such as

lighting recovery, BRDF recovery, light field factorization, and forward rendering problems

such as environment map prefiltering and rendering. The next chapter will make these ideas

concrete for many special cases, deriving analytic formulae for the frequency spectra of

many common BRDF and lighting models. Following that, the rest of this dissertation will
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develop practical implications of the theoretical analysis from this chapter, showing how

frequency domain methods may be used for forward and inverse rendering.

It should be noted that the analysis in this chapter is based on the specific assumptions

noted here, and is only one way in which the reflection operator can be analyzed. Other

researchers have derived analytic formulae for many useful special cases that go beyond

our assumptions. For instance, Soler and Sillion [80] derive a convolution relation for

calculating soft shadows assuming planar objects. Arvo [1] and Chen and Arvo [9] develop

methods for computing irradiance from planar luminaires including near-field effects which

we do not treat here. In the future, it would be interesting to consider perturbative methods

that could unify our results with some of these previous analytical derivations.

More generally, we have studied the computational properties of the reflection operator—

given a complex illumination field and arbitrary BRDF—in the frequency domain. How-

ever, there are many other ways these computational fundamentals of reflection can be

studied. For instance, it might be worthwhile to consider the differential properties of re-

flection, and to study perceptual metrics rather than physical ones. Another important area

is the formal study of the conditioning of forward and inverse problems, possibly directly

from an eigenanalysis of the kernel of the Fredholm integral equation. We believe this for-

mal analysis will be increasingly important in deriving robust and efficient algorithms in

the future. While we have made a first step in this direction, other issues such as how our

results change when we have only a limited fraction of the reflected light field available, or

can move our viewpoint only in a narrow range, need to be studied. In summary, we believe

there are a number of domains in graphics and vision that benefit greatly from a fundamen-

tal understanding of the reflection operator. We believe the work described in this chapter

is a first step in putting an analysis of reflection on a strong mathematical foundation.



Chapter 3

Formulae for Common Lighting and

BRDF Models

An analysis of the computational properties of the reflection operator is of interest in both

computer graphics and vision, for analyzing forward and inverse problems in rendering.

Building on previous qualitative observations by Miller and Hoffman [59], Cabral et al. [7,

8], D’Zmura [17] and others, the previous chapter formalized the notion of reflection as a

spherical convolution of the incident illumination and the BRDF.

Specifically, we were able to develop a signal-processing framework for analyzing the

reflected light field from a homogeneous convex curved surface under distant illumina-

tion. Under these assumptions, we were able to derive an analytic formula for the reflected

light field in terms of the product of spherical harmonic coefficients of the BRDF and the

lighting. Our formulation allows us to view forward rendering as convolution and inverse

rendering as deconvolution.

In this chapter, we will primarily be concerned with the well-posedness and numerical

conditioning of inverse problems. We analytically derive the spherical harmonic coeffi-

cients for many common lighting and BRDF models. In this way, we analyze the well-

posedness and conditioning of a number of inverse problems, explaining many previous

empirical observations. This analysis is also of interest for forward rendering, since an ill-

conditioned inverse problem corresponds to a forward problem where the final results are

52
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not sensitive to certain components of the initial conditions, allowing for efficient approxi-

mations to be made.

The rest of this chapter is organized as follows. In section 1, we briefly summarize

the main results from the previous chapter that we will use here. Section 2 is the main

part of this chapter, and works out analytic formulae for spherical harmonic coefficients

of many common lighting and BRDF models, demonstrating the implications of the theo-

retical analysis. This section is a more detailed version of the derivations in our previous

SIGGRAPH paper [73], and includes verification of the spherical harmonic formulae from

first principles, as well as a discussion of light field factorization for the special cases of

interest. Finally, section 3 concludes this chapter and discusses future work.

3.1 Background

In this section, we briefly summarize the main theoretical results derived in the previous

chapter, introducing the notation and terminology required in the next section. This section

may be skipped by readers familiar with the previous chapter of the dissertation. In this

chapter, we will only discuss results in 3D, since that is of greater practical importance.

For simplicity, we will also restrict ourselves to isotropic BRDFs. A more complete deriva-

tion of the convolution formula, along with a number of alternative forms, is found in the

previous chapter. Notation used in this and the previous chapter is in table 1.1.

3.1.1 Reflection Equation and Convolution Formula

The assumptions we are making here are convex curved homogeneous isotropic surfaces

under a distant illumination field. Under these circumstances, the reflection equation can

be written as (c.f. equation 2.12)

B(α, β, θ′o, φ
′
o) =

∫
Ω′

i

L (Rα,β(θ
′
i, φ

′
i)) ρ̂(θ

′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (3.1)

It is possible to derive a frequency-space convolution formula corresponding to equa-

tion 3.1. For this purpose, we must expand quantities in terms of spherical harmonics.
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Specifically, the illumination can be written as (c.f. equation 2.52)

L(θi, φi) =
∞∑
l=0

l∑
m=−l

LlmYlm(θi, φi)

L(θi, φi) = L (Rα,β(θ
′
i, φ

′
i)) =

∞∑
l=0

+l∑
m=−l

l∑
m′=−l

LlmD
l
mm′(α, β)Ylm′(θ′i, φ

′
i). (3.2)

Then, we write the expansion of the isotropic BRDF (c.f. equation 2.53),

ρ̂(θ′i, θ
′
o, | φ′o − φ′i |) =

∞∑
l=0

∞∑
p=0

min(l,p)∑
q=−min(l,p)

ρ̂lpqY
∗
lq(θ

′
i, φ

′
i)Ypq(θ

′
o, φ

′
o). (3.3)

The reflected light field, which is now a 4D function, can be expanded using a product of

representation matrices and spherical harmonics (c.f. equation 2.54),

Clmpq(α, β, θ
′
o, φ

′
o) = Λ−1

l D
l
mq(α, β)Ypq(θ

′
o, φ

′
o)

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

l∑
m=−l

∞∑
p=0

min(l,p)∑
q=−min(l,p)

BlmpqClmpq(α, β, θ
′
o, φ

′
o). (3.4)

Finally, we can derive an analytic expression (convolution formula) for the reflection

equation in terms of these coefficients (c.f. equation 2.55).

Blmpq = ΛlLlmρ̂lpq. (3.5)

We may also derive an alternative form, holding the outgoing elevation angle θ′o fixed

(c.f. equation 2.57),

Blmq(θ
′
o) = ΛlLlmρ̂lq(θ

′
o). (3.6)

If we seek to preserve the reciprocity of the BRDF, i.e. symmetry with respect to in-

cident and outgoing angles, we may multiply both the transfer function and the reflected

light field by cos θ′o, defining (c.f. equation 2.58)

ρ̃ = ρ̂ cos θ′o = ρ cos θ
′
i cos θ

′
o

B̃ = B cos θ′o. (3.7)
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With these derivations, equation 3.5 becomes (c.f. equation 2.59)

B̃lmpq = ΛlLlmρ̃lpq. (3.8)

The symmetry of the transfer function ensures that its coefficients are unchanged if the

indices corresponding to incident and outgoing angles are interchanged, i.e. ρ̃lpq = ρ̃plq.

Many models, such as Lambertian and Phong BRDFs are radially symmetric or 1D

BRDFs, where the BRDF consists of a single symmetric lobe of fixed shape, whose ori-

entation depends only on a well-defined central direction 
C. If we reparameterize by 
C,

the BRDF becomes a function of only 1 variable (θ′i with cos θ′i = 
C · 
L) instead of 3.

In this case, we may write the BRDF and equations for the reflected light field as (c.f.

equation 2.60)

ρ̂(θ′i) =
∞∑
l=0

ρ̂lYl0(θ
′
i)

B(α, β) =
∞∑
l=0

l∑
m=−l

BlmYlm(α, β). (3.9)

The required convolution formula now becomes (c.f. equation 2.62)

Blm = Λlρ̂lLlm. (3.10)

3.1.2 Analysis of Inverse Problems

The convolution formula in equation 3.5 (or equation 2.55) can be used to analyze the

well-posedness and numerical conditioning of inverse problems. For the inverse-BRDF

problem, we manipulate equation 3.5 to yield (c.f. equation 2.64)

ρ̂lpq = Λ−1
l

Blmpq
Llm

. (3.11)

In general, BRDF estimation will be well-posed, i.e. unambiguous as long as the denomi-

nator on the right-hand side does not vanish.
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A similar analysis can be done for estimation of the lighting (c.f. equation 2.65),

Llm = Λ−1
l

Blmpq
ρ̂lpq

. (3.12)

Inverse lighting will be well-posed so long as the denominator does not vanish for all p, q

for some l, i.e. so long as the spherical harmonic expansion of the BRDF transfer function

contains all orders.

Finally, we can put these results together to derive an analytic formula for factoring the

reflected light field, i.e. determining both the lighting and BRDF in terms of coefficients of

the reflected light field. See equation 2.68 for details. We are able to show that up to global

scale, the reflected light field can be factored into the lighting and the BRDF, provided

the appropriate coefficients of the reflected light field do not vanish.

The next section will derive analytic formulae for the frequency spectrum of common

lighting and BRDF models, explaining the implications for the well-posedness and condi-

tioning of inverse problems in terms of the results stated above.

3.2 Derivation of Analytic Formulae

This section discusses the implications of the theoretical analysis developed in the previous

section. Our main focus will be on understanding the well-posedness and conditioning of

inverse problems. We consider a number of lighting distributions and BRDFs, deriving

analytic formulae and approximations for their spherical harmonic spectra. From this anal-

ysis, we quantitatively determine the well-posedness and conditioning of inverse problems

associated with these illumination conditions and BRDFs. Below, we first consider three

lighting conditions—a single directional source, an axially symmetric configuration, and

uniform lighting. Then, we consider four BRDF models—a mirror surface, a Lambertian

surface, the Phong BRDF, and a microfacet model.
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3.2.1 Directional Source

Our first example concerns a single directional source. The lighting is therefore described

by a delta function in spherical coordinates. Let (θs, φs) refer to the angular coordinates of

the source. Then,

L(θi, φi) = δ (cos θi − cos θs) δ (φi − φs)

Llm =
∫ 2π

0

∫ π
0
δ (cos θi − cos θs) δ (φi − φs)Y ∗

lm(θi, φi) sin θi dθidφi

= Y ∗
lm(θs, φs). (3.13)

Note that in the equation above, the delta function has the correct form for spherical coor-

dinates. The same form will be used later to study mirror BRDFs.

It will simplify matters to reorient the coordinate system so that the source is at the

north pole or +Z, i.e. θs = 0. It is now straightforward to write

Llm = Y ∗
lm(0)

= Λ−1
l δm0

Blmpq = δm0ρ̂lpq

ρ̂lpq = Bl0pq. (3.14)

In angular space, a single observation of the reflected light field corresponds to a single

BRDF measurement. This property is used in image-based BRDF measurement [51, 55].

We see that in frequency space, there is a similar straightforward relation between BRDF

coefficients and reflected light field coefficients. BRDF recovery is well-posed and well-

conditioned since we are estimating the BRDF filter from its impulse response.

It is instructive to verify equation 3.14 directly from first principles. We first note that

in angular space, the reflected light field for a directional source at the north pole can be

written as

B(α, β, θ′o, φ
′
o) = ρ̂(α, π, θ

′
o, φ

′
o). (3.15)

Note that the incident angle for surface normal (α, β) is given by (α, π). Clearly the

elevation angle of incidence must be α, and because of our standard right-handed sign
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convention, the azimuthal angle is π. We will now show that equation 3.14 is simply a

frequency-space version of equation 3.15 by expanding out B and ρ̂, using the expressions

in equation 3.14. We will need to use the first property of the representation matrices from

equation 2.35. The first line below simply derives the form of Cl0pq, making use of equa-

tion 2.35. In the next line, we expand the left hand side of equation 3.15, B(α, β, θ′o, φ
′
o)

in terms of Cl0pq. Note that since the directional source is at the north pole, there is no

azimuthal dependence and we can assume that m = 0. Finally, we expand the right hand

side of equation 3.15, and equate coefficients.

Cl0pq(α, β, θ
′
o, φ

′
o) = Λ−1

l D
l
0q(α, β)Ypq(θ

′
o, φ

′
o)

= Y ∗
lq(α, π)Ypq(θ

′
o, φ

′
o)

B(α, β, θ′o, φ
′
o) =

∞∑
l=0

∞∑
p=0

min(l,p)∑
q=−min(l,p)

Bl0pqY
∗
lq(α, π)Ypq(θ

′
o, φ

′
o)

ρ̂(α, π, θ′o, φ
′
o) =

∞∑
l=0

∞∑
p=0

min(l,p)∑
q=−min(l,p)

ρ̂lpqY
∗
lq(α, π)Ypq(θ

′
o, φ

′
o)

Bl0pq = ρ̂lpq. (3.16)

The last line comes from equating coefficients, and this confirms the correctness of equa-

tion 3.14, thereby verifying the convolution formula for the special case of a single direc-

tional source.

Finally, we may verify the factorization relations of equation 2.68 for the case when

both the BRDF and lighting are unknown a priori, and the lighting is actually a single

directional light source.

Llm = Λ−1
l

B̃lm00

B̃00l0

= Λ−1
l δm0

(
ρ̃l00
ρ̃0l0

)

ρ̃lpq =
Bl0pqB00l0

Bl000

= ρ̃lpq

(
ρ̃0l0

ρ̃l00

)
. (3.17)
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We see that these relations give the correct answer if the BRDF obeys reciprocity, and

provided the appropriate BRDF coefficients do not vanish. If the BRDF coefficients do

vanish, the factorization is ill-posed since there is an ambiguity about whether the lighting

or BRDF coefficient is 0. This is related to the associativity of convolution.

In summary, we have derived an analytic frequency-space formula, that has been ver-

ified from first principles. A directional source corresponds to a delta function, whose

frequency spectrum does not decay. Therefore, BRDF estimation is well-posed and well-

conditioned for all frequencies. In effect, we are estimating the BRDF filter from its im-

pulse response. This is a frequency-space explanation for the use of directional sources in

BRDF measurement, especially in the newer image-based methods for curved surfaces [51,

55].

3.2.2 Axially Symmetric Distribution

We now consider a lighting distribution that is symmetric about some axis. For conve-

nience, we position the coordinate system so that the Z axis is the axis of symmetry. Such

a distribution closely approximates the illumination due to skylight on a cloudy day. We

should also note that a single directional source, as just discussed, is a trivial example of an

axially symmetric lighting distribution. The general property of these configurations is that

the lighting coefficients Llm with m �= 0 vanish, since they have azimuthal dependence.

The frequency-space reflection formulas now become

Blmpq = δm0ΛlLl0ρ̂lpq

ρ̂lpq = Λ−1
l

Bl0pq
Ll0

. (3.18)

It is important to note that the property of axial symmetry is preserved in the reflected

light field, since m = 0. The remaining properties are very similar to the general case. In

particular, BRDF estimation is well conditioned if the frequency spectrum of the illumi-

nation does not rapidly decay, i.e. there are sharp variations with respect to the elevation

angle (there is no variation with respect to the azimuthal angle).
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3.2.3 Uniform Lighting

Our final lighting configuration is that of uniform lighting. This can be considered the

canonical opposite to the case of a directional source. Note that a uniform lighting dis-

tribution is symmetric about any axis and is therefore a special case of axially symmetric

lighting. For uniform lighting, only the DC term of the lighting does not vanish, i.e. we

set L00 = Λ−1
0 , with other coefficients being zero. The relevant frequency-space reflection

formulas become

Llm = δl0δm0Λ
−1
0

Blmpq = δl0δm0δq0ρ̂0p0

ρ̂0p0 = B00p0. (3.19)

Note that q = 0 since l = 0 and | q |≤ l. We may only find the BRDF coefficients

ρ̂0p0; the other coefficients cannot be determined. In other words, we can determine only

the 0−order coefficients (l = 0). This is because the input signal has no amplitude along

higher frequencies, making it impossible to estimate these higher frequencies of the BRDF

filter. A subtle point to be noted is that reciprocity (symmetry) of the BRDF can actually

be used to double the number of coefficients known, but the problem is still extremely

ill-posed.

All this may be somewhat clearer if we use the convolution formula from equations 3.6

or 2.57, where the dependence on the ougoing elevation angle is not expanded into basis

functions,

Blmq(θ
′
o) = δl0δm0δq0ρ̂00(θ

′
o). (3.20)

This formulation makes it clear that only the lowest frequency, i.e. DC term of the transfer

function contributes to the reflected light field, with B being independent of surface ori-

entation. From observations made under uniform lighting, we can estimate only the DC

term of the BRDF transfer function; higher frequencies in the BRDF cannot be estimated.

Hence, a mirror surface cannot be distinguished from a Lambertian object under uniform

lighting.

We may also verify equation 3.20 by writing it in terms of angular space coordinates.
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First, we note the form of the basis functions, noting that Y00 = Λ−1
0 and that D0

00 = 1,

C000 =

√
1

2π
Λ−1

0

ρ̂00(θ
′
o) =

√
1

2π

∫ 2π

0

∫ 2π

0

∫ π/2
0

ρ̂(θ′i, θ
′
o, | φ′o − φ′i |) sin θ′i dθ′idφ′idφ′o

=
√
2π
∫ 2π

0

∫ π/2
0

ρ̂(θ′i, θ
′
o, | φ |) sin θ′i dθ′idφ. (3.21)

In the last line, we have set φ = φ′o − φ′i and integrated over φ′o, obtaining a factor of 2π.

Substituting in the expansion of equation 3.20, we obtain

B = B000(θ
′
o)C000

= ρ̂00(θ
′
o)

√
1

2π
Λ−1

0

= Λ−1
0

∫ 2π

0

∫ π/2
0

ρ̂(θ′i, θ
′
o, | φ |) sin θ′i dθ′idφ, (3.22)

which is the expected angular-space result, since the lighting is constant and equal to Λ−1
0

everywhere. Thus, we simply integrate over the BRDF.

We next consider factorization of the light field to estimate both the lighting and the

BRDF. An examination of the formulas in equation 2.68 shows that we will indeed be able

to estimate all the lighting coefficients, provided the BRDF terms ρ̃0p0 do not vanish. We

will thus be able to determine that the lighting is uniform, i.e. that all the lighting coeffi-

cients Llm vanish unless l = m = 0. However, once we do this, the factorization will be

ill-posed since BRDF estimation is ill-posed. To summarize, we have derived and verified

analytic formulae for the case of uniform lighting. BRDF estimation is extremely ill-posed,

and only the lowest-frequency terms of the BRDF can be found. Under uniform lighting,

a mirror surface and a Lambertian surface will look identical, and cannot be distinguished.

With respect to factoring the light field when the lighting is uniform, we will correctly be

able to determine that the illumination is indeed uniform, but the factorization will remain

ill-posed since further information regarding the BRDF cannot be obtained. In signal pro-

cessing terms, the input signal is constant and therefore has no amplitude along nonzero

frequencies of the BRDF filter. Therefore, these nonzero frequencies of the BRDF filter
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cannot be estimated.

We will now derive analytic results for four different BRDF models. We start with the

mirror BRDF and Lambertian surface, progressing to the Phong model and the microfacet

BRDF.

3.2.4 Mirror BRDF

A mirror BRDF is analogous to the case of a directional source. A physical realization of

a mirror BRDF is a gazing sphere, commonly used to recover the lighting. For a mirror

surface, the BRDF is a delta function and the coefficients can be written as

ρ̂ = δ (cos θ′o − cos θ′i) δ (φ
′
o − φ′i ± π)

ρ̂lpq =
∫ 2π

0

∫ 2π

0

∫ π/2
0

∫ π/2
0

ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o)Ylq(θ

′
i, φ

′
i)Y

∗
pq(θ

′
o, φ

′
o) sin θ

′
i sin θ

′
o dθ

′
idθ

′
odφ

′
idφ

′
o

=
∫ 2π

0

∫ π/2
0

Y ∗
pq(θ

′
i, φ

′
i ± π)Ylq(θ′i, φ′i) sin θ′i dθ′idφ′i

= (−1)qδlp. (3.23)

The factor of (−1)q in the last line comes about because the azimuthal angle is phase

shifted by π. This factor would not be present for retroreflection. Otherwise, the BRDF

coefficients simply express in frequency-space that the incident and outgoing angles are the

same, and show that the frequency spectrum of the BRDF does not decay with increasing

order.

The reflected light field and BRDF are now related by

Blmpq = Λl(−1)qδlpLlm
Llm = Λ−1

l (−1)qBlmlq. (3.24)

Just as the inverse lighting problem from a mirror sphere is easily solved in angular space,

it is well-posed and easily solved in frequency space because there is a direct relation

between BRDF and reflected light field coefficients. In signal processing terminology,

the inverse lighting problem is well-posed and well-conditioned because the frequency
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spectrum of a delta function remains constant with increasing order. This is a frequency-

space explanation for the use of gazing spheres for estimating the lighting.

It is easy to verify equation 3.24 from first principles. We may write down the appro-

priate equations in angular space and then expand them in terms of spherical harmonics.

B(α, β, θ′o, φ
′
o) = L (Rα,β(θ

′
o, φ

′
o ± π))

=
∞∑
l=0

l∑
m=−l

LlmYlm (Rα,β(θ
′
o, φ

′
o ± π))

= Λl(−1)q
∞∑
l=0

l∑
m=−l

Llm
(
Λ−1
l D

l
mq(α, β)Ylq(θ

′
o, φ

′
o)
)
, (3.25)

from which equation 3.24 follows immediately.

Factorization: The result for factoring a light field with a mirror BRDF is interesting.

We first note that, unlike in our previous examples, there is no need to perform the sym-

metrizing transformations in equation 3.7 since the transfer function is already symmetric

with respect to indices l and p (δlp = δpl). We next note that equation 2.68 seems to in-

dicate that the factorization is very ill-posed. Indeed, both the denominators, B00l0 and

Blm00, vanish unless l = 0. In fact, it is possible to explain the ambiguity by constructing a

suitable BRDF,

ρ̂l = f(l)(−1)qδlp

ρ̂(θ′i, φ
′
i, θ

′
o, φ

′
o) =

∞∑
l=0

l∑
q=−l

f(l)Y ∗
lq(θ

′
i, φ

′
i)Ylq(θ

′
o, φ

′
o), (3.26)

where f(l) is an arbitrary function of frequency. When f(l) = 1, we obtain a mirror BRDF.

However, for any f(l), we get a valid BRDF that obeys reciprocity. Physically, the BRDF

acts like a mirror except that the reflectance is different for different frequencies, i.e. it may

pass through high frequencies like a perfect mirror but attenuate low frequencies, while

still reflecting them about the mirror direction. It is not clear that this is a realistic BRDF

model, but it does not appear to violate any obvious physical principles.
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It is now easy to see why factorization does not work. The function f(l) cannot be de-

termined during factorization. Without changing the reflected light field, we could multiply

the coefficients Llm of the lighting by f(l), setting the BRDF to a mirror. In other words,

there is a separate global scale for each frequency l that we cannot estimate. Reciprocity of

the BRDF is not much help here, since only the “diagonal” terms of the frequency spectrum

are nonzero.

Note that if the lighting coefficients do not vanish, we will indeed be able to learn that

the BRDF has the form in equation 3.26. However, we will not be able to make further

progress without additional assumptions about the form of the BRDF, i.e. of the function

f(l). In certain applications, we may want to turn this ambiguity to our advantage by

selecting f(l) appropriately to give a simple form for the BRDF or the lighting, without

affecting the reflected light field. The ambiguity, and its use in simplifying the form for

the reflected light field, are common to many reflective BRDFs, and we will encounter this

issue again for the Phong and microfacet models.

Reparameterization by Reflection Vector: For reflective BRDFs, it is often convenient

to reparameterize by the reflection vector, as discussed in section 2.3.4, or at the end of

section 3.1.1. The transfer function can then be written simply as a function of the incident

angle (with respect to the reflection vector), and is still a delta function. Since there is no

dependence on the outgoing angle after reparameterization, we obtain

ρ̂(θ′i) =
δ (cos(0)− cos θ′i)

2π
ρ̂l = Yl0(0) = Λ−1

l

Blm = Llm. (3.27)

In the top line, the factor of 2π in the denominator is to normalize with respect to the

azimuthal angle. The bottom line follows from the identity for mirror BRDFs thatΛlρ̂l = 1.

Therefore, we see that after reparameterization by the reflection vector, the BRDF fre-

quency spectrum becomes particularly simple. The reflected light field corresponds directly

to the incident lighting. The BRDF filter just passes through the incident illumination, and
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the reflected light field is therefore just an image of the lighting without filtering or attenu-

ation. Hence, the illumination can be trivially recovered from a mirror sphere.

3.2.5 Lambertian BRDF

For a Lambertian surface, the BRDF is a constant, corresponding to the surface albedo—

which for purposes of energy conservation must not be greater than 1/π. For simplicity, we

will omit this constant in what follows. The transfer function is a clamped cosine since it

is equal to the cosine of the incident angle over the upper hemisphere when cos θ′i > 0 and

is equal to 0 over the lower hemisphere when cos θ′i < 0. A graph of this function, along

with spherical harmonic approximations to it up to order 4 is in figure 3.1.
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Figure 3.1: The clamped cosine filter corresponding to the Lambertian BRDF and successive
approximations obtained by adding more spherical harmonic terms. For l = 2, we already get a
very good approximation.

Since the reflected light field is proportional to the incident irradiance and is equal for

all outgoing directions, we will drop the outgoing angular dependence and use the form of

the convolution formula given in equation 3.10,

ρ̂ = max(cos θ′i, 0) =
∞∑
l=0

ρ̂lYl0(θ
′
i)

Blm = Λlρ̂lLlm. (3.28)
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It remains to derive the form of the spherical harmonic coefficients ρ̂l. To derive the spheri-

cal harmonic coefficients for the Lambertian BRDF, we must represent the transfer function

ρ̂(θ′i) = max(cos θ′i, 0) in terms of spherical harmonics.

We will need to use many formulas for representing integrals of spherical harmonics,

for which a reference [52] will be useful. The spherical harmonic coefficients are given by

ρ̂l = 2π
∫ π

2

0
Yl0(θ

′
i) cos θ

′
i sin θ

′
i dθ

′
i. (3.29)

The factor of 2π comes from integrating 1 over the azimuthal dependence. It is important to

note that the limits of the integral range from 0 to π/2 and not π because we are considering

only the upper hemisphere. The expression above may be simplified by writing in terms of

Legendre polynomials P (cos θ′i). Putting u = cos θ′i in the above integral and noting that

P1(u) = u and that Yl0(θ′i) = Λ−1
l Pl(cos θ

′
i), we obtain

ρ̂l = 2πΛ−1
l

∫ 1

0
Pl(u)P1(u) du. (3.30)

To gain further insight, we need some facts regarding the Legendre polynomials. Pl is odd

if l is odd, and even if l is even. The Legendre polynomials are orthogonal over the domain

[−1, 1] with the orthogonality relationship being given by

∫ 1

−1
Pa(u)Pb(u) =

2

2a+ 1
δa,b. (3.31)

From this, we can establish some results about equation 3.30. When l is equal to 1, the

integral evaluates to half the norm above, i.e. 1/3. When l is odd but greater than 1, the

integral in equation 3.30 vanishes. This is because, for a = l and b = 1, we can break the

left-hand side of equation 3.31 using the oddness of a and b into two equal integrals from

[−1, 0] and [0, 1]. Therefore, both of these integrals must vanish, and the latter integral is

the right-hand integral in equation 3.30. When l is even, the required formula is given by

manipulating equation 20 in chapter 5 of MacRobert[52]. Putting it all together, we obtain,
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l = 1 ρ̂l =

√
π

3
l > 1, odd ρ̂l = 0

l even ρ̂l = 2π

√
2l + 1

4π

(−1) l
2
−1

(l + 2)(l − 1)

[
l!

2l( l
2
!)2

]
. (3.32)

This formula is plotted in figure 3.2.
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Figure 3.2: The solid line is a plot of ρ̂l versus l, as per equation 3.32. It can be seen that odd
terms with l > 1 have ρ̂l = 0. Also, as l increases, the BRDF coefficients decay rapidly.

There are two important points to note here. Firstly, the transfer function is identically

zero for odd frequencies greater than 1. Secondly, it can be shown by applying Stirling’s

formula, that the bracketed term falls off asymptotically as 1/
√
l, cancelling the square

root. Therefore, ρ̂l ∼ l−2. The reflected light field therefore falls off as Λlρ̂l ∼ l−5/2. This

rapid falloff means the Lambertian BRDF effectively behaves like a low-pass filter, letting

only the lowest frequencies of the lighting through. Numerically, we may write the first

few terms for the BRDF filter as



68 CHAPTER 3. FORMULAE FOR COMMON LIGHTING AND BRDF MODELS

Λ0ρ̂0 = 3.142

Λ1ρ̂1 = 2.094

Λ2ρ̂2 = 0.785

Λ3ρ̂3 = 0

Λ4ρ̂4 = −0.131

Λ5ρ̂5 = 0

Λ6ρ̂6 = 0.049. (3.33)

We see that already for l = 4, the coefficient is only about 4% of what it is for l = 0. In

fact, it can be shown that over 99% of the energy of the BRDF filter is captured by l ≤ 2. By

considering the fact that the lighting must remain positive everywhere [2], similar worst-

case bounds can be shown for the approximation of the reflected light field by l ≤ 2.

Therefore, the irradiance, or equivalently, the reflected light field from a Lambertian

surface can be well approximated using only the first 9 terms of its spherical harmonic

expansion—1 term with order 0, 3 terms with order 1, and 5 terms with order 2. Note that

the single order 0 mode Y00 is a constant, the 3 order 1 modes are linear functions of the

Cartesian coordinates—in real form, they are simply x, y, and z—while the 5 order 2 modes

are quadratic functions of the Cartesian coordinates. Therefore, the irradiance can be well

approximated as a quadratic polynomial of the Cartesian coordinates of the surface normal

vector.

We first consider illumination estimation, or the inverse lighting problem. The fact that

the odd frequencies greater than 1 of the BRDF vanish means the inverse lighting prob-

lem is formally ill-posed for a Lambertian surface. The filter zeros the odd frequencies of

the input signal, so these terms cannot be estimated from images of a convex Lambertian

object. This observation corrects a commonly held notion (see Preisendorfer [67], volume

2, pages 143–151) that radiance and irradiance are equivalent in the sense that irradiance

can be formally inverted to recover the radiance. Different radiance distributions can give

rise to the same irradiance distribution. For further details, see [72]. Moreover, in practical
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applications, we can robustly estimate only the first 9 coefficients of the incident illumina-

tion, those with l ≤ 2. Thus, inverse lighting from a Lambertian surface is not just formally

ill-posed for odd frequencies, but very ill-conditioned for even frequencies. This result ex-

plains the ill-conditioning observed by Marschner and Greenberg [54] in estimating the

lighting from a surface assumed to be Lambertian.

The 9 parameter approximation also gives rise to a simple algorithm (described in detail

in chapter 6) for estimating the illumination at high angular resolution from surfaces having

both diffuse and specular components. The diffuse component of the reflected light field

is subtracted out using the 9 parameter approximation for Lambertian surfaces. The object

is then treated as a gazing sphere, with the illumination recovered from the specular com-

ponent alone. A consistency condition ensures that the high frequency lighting recovered

from the specular BRDF component is indeed consistent with the low frequency lighting

used to subtract out the diffuse component of the reflected light field.

Our results are also in accordance with the perception literature, such as Land’s retinex

theory [46]. It is common in visual perception to associate lighting effects with low fre-

quency variation, and texture with high frequency variation. Our results formalize this

observation, showing that distant lighting effects can produce only low frequency varia-

tion, with respect to orientation, in the intensity of a homogeneous convex Lambertian

surface. Therefore, it should be possible to estimate high frequency texture independently

of the lighting. However, for accurate computational estimates as required for instance in

computer graphics, there is still an ambiguity between low frequency texture and lighting-

related effects.

Since the approximation of Lambertian surfaces is commonly used in graphics and

vision, the above results are of interest for many other problems. For instance, we can

simply use the first 9 terms of the lighting to compute the irradiance, i.e. the shading on

a Lambertian surface. Further implementation details on computing and rendering with

irradiance environment maps are found in chapter 4. The 9 parameter approximation also

means that images of a diffuse object under all possible illumination conditions lie close to

a 9D subspace. This is a step toward explaining many previous empirical observations of

the low-dimensional effects of lighting made in the computer vision community, such as

by Hallinan [30] and Epstein et al. [18]. Basri and Jacobs [2] have derived a Lambertian
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formula similar to ours, and have applied this result to lighting invariant recognition, and

more recently to photometric stereo under general unknown lighting [3].

3.2.6 Phong BRDF

The normalized Phong transfer function is

ρ̂ =
s+ 1

2π

(

R · 
L

)s
, (3.34)

where 
R is the reflection vector, 
L is the direction to the light source, and s is the shininess,

or Phong exponent. The normalization ensures that the Phong lobe has unit energy. Tech-

nically, we must also zero the BRDF when the light vector is not in the upper hemisphere.

However, the Phong BRDF is not physically based anyway, so others have often ignored

this boundary effect, and we will do the same. This allows us to reparameterize by the

reflection vector 
R, making the transformations outlined in section 2.3.4 or at the end of

section 3.1.1. In particular, 
R · 
L→ cos θ′i. Since the BRDF transfer function depends only

on 
R · 
L = cos θ′i, the Phong BRDF after reparameterization is mathematically analogous

to the Lambertian BRDF just discussed (they are both radially symmetric). In particular,

equation 3.28 holds. However, note that while the Phong BRDF is mathematically analo-

gous to the Lambertian case, it is not physically similar since we have reparameterized by

the reflection vector. The BRDF coefficients depend on s, and are given by

ρ̂l = (s+ 1)
∫ π/2
0

[cos θ′i]
s
Yl0(θ

′
i) sin θ

′
i dθ

′
i

Blm = Λlρ̂lLlm. (3.35)

To solve this integral, we substitute u = cos θ′i in equation 3.35. We also note that Yl0(θ′i) =

Λ−1
l Pl(cos θ

′
i), where Pl is the legendre polynomial of order l. Then, equation 3.35 becomes

ρ̂l = Λ−1
l (s+ 1)

∫ 1

0
usPl(u) du. (3.36)



3.2. DERIVATION OF ANALYTIC FORMULAE 71

An analytic formula is given by MacRobert [52] in equations 19 and 20 of chapter 5,

ODD l Λlρ̂l =
(s+ 1)(s− 1)(s− 3) . . . (s− l + 2)
(s+ l + 1)(s+ l − 1) . . . (s+ 2)

EVEN l Λlρ̂l =
s(s− 2) . . . (s− l + 2)

(s+ l + 1)(s+ l − 1) . . . (s+ 3)
. (3.37)

This can be expressed using Euler’s Gamma function, which for positive integers is simply

the factorial function, Γ(n) = (n − 1)!. Neglecting constant terms, we obtain for large s

and s > l − 1,

Λlρ̂l =

[
Γ
(
s
2

)]2
Γ
(
s
2
− l

2

)
Γ
(
s
2
+ l

2

) . (3.38)

If l � s, we can expand the logarithm of this function in a Taylor series about l = 0.

Using Stirling’s formula, we obtain

log(Λlρ̂l) = −l2
(
1

2s
− 1

2s2

)
+O

(
l4

s2

)
. (3.39)

For large s, 1/s� 1/s2, and we may derive the approximation

Λlρ̂l ≈ exp

[
− l

2

2s

]
. (3.40)

The coefficients fall off as a gaussian with width of order
√
s. The Phong BRDF behaves in

the frequency domain like a gaussian filter, with the filter width controlled by the shininess.

Therefore, inverse lighting calculations will be well-conditioned only up to order
√
s. As s

approaches infinity, Λlρ̂l = 1, and the frequency spectrum becomes constant, correspond-

ing to a perfect mirror. Note that the frequency domain width of the filter varies inversely

with the angular domain extent of the BRDF filter. A plot of the BRDF coefficients and the

approximation in equation 3.40 is shown in figure 3.3.

We should also note that for l > s, ρ̂l vanishes if l and s are both odd or both even. It

can be shown that for l � s, the nonzero coefficients fall off very rapidly as ρ̂l ∼ l−(s+1).

This agrees with the result for the mathematically analogous Lambertian case, where s = 1

and ρ̂l ∼ l−2. Note that s�
√
s, so ρ̂l is already nearly 0 when l ≈ s.
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Figure 3.3: Numerical plots of the Phong coefficients Λlρ̂l, as defined by equation 3.37. The solid
lines are the gaussian filter approximations in equation 3.40. As the Phong exponent s increases,
corresponding to increasing the angular width of the BRDF filter, the frequency width of the BRDF
filter decreases.

Associativity of Convolution: With respect to factorization of light fields with surfaces

approximated by Phong BRDFs, we obtain the same results for reflective surfaces as we did

for mirror BRDFs. From the form of equation 3.35, it is clear that there is an unrecoverable

scale factor for each order l. In physical terms, using the real BRDF and real lighting

is equivalent to using a blurred version of the illumination and a mirror BRDF. In signal

processing terminology, associativity of convolution allows us to sharpen the BRDF while

blurring the illumination without affecting the reflected light field. To be more precise, we

may rewrite equation 3.35 as

L′
lm = Λlρ̂lLlm

Λlρ̂
′
l = 1

Blm = Λlρ̂
′
lL

′
lm

= L′
lm. (3.41)
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These equations say that we may blur the illumination using the BRDF filter, while treat-

ing the BRDF as a mirror. This formulation also allows us to analyze the conditioning in

estimating the parameters of a Phong BRDF model under arbitrary illumination. The form

of equation 3.40 for the Phong BRDF coefficients indicates that for l �
√
s, the effects of

the filtering in equation 3.41 are minimal. The BRDF filter passes through virtually all the

low-frequency energy with practically no attenuation. Thus, under low-frequency lighting,

the reflected light field is essentially independent of the Phong exponent s. This means

that under low-frequency lighting, estimation of the exponent s of a Phong BRDF

model is ill-conditioned. In physical terms, it is difficult to determine the shininess of

an object under diffuse lighting. In order to do so robustly, we must have high-frequency

lighting components like directional sources. This observation holds for many reflective

BRDF models. In particular, we shall see that a similar result can be derived for micro-

facet BRDFs; estimation of the surface roughness is ill-conditioned under low-frequency

lighting.

3.2.7 Microfacet BRDF

Consider a simplified Torrance-Sparrow [84] model,

ρ =
1

4πσ2 cos θ′i cos θ
′
o

exp


−
(
θ′h
σ

)2

 . (3.42)

The subscript h stands for the half-way vector, while σ corresponds to the surface roughness

parameter. For simplicity, we have omitted Fresnel and geometric shadowing terms, as well

as the Lambertian component usually included in such models.

It is convenient to reparameterize by the reflection vector, as we did for the Phong

BRDF. However, it is important to note that microfacet BRDFs are not symmetric about

the reflection vector. Unlike for the Phong BRDF, there is a preferred direction, determined

by the exitant angle. However, it can be shown by Taylor-series expansions and verified

numerically that it is often reasonable to treat the microfacet BRDF using the same ma-

chinery as for the Phong case, assuming no outgoing angular dependence. Even under this

assumption, it is somewhat difficult to derive precise analytic formulae. However, we may
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make good approximations.

We analyze the microfacet BRDF by fixing the outgoing angle and reparameterizing

by the reflection vector. That is, we set the outgoing angle to (θ′o, 0), corresponding to an

angle of 2θ′o with respect to the reflection vector. We now write the BRDF as

ρ̂ =
∞∑
l=0

l∑
q=−l

ρ̂lq(θ
′
o)Ylq(θ

′
i, φ

′
i). (3.43)

Note that we have reparameterized with respect to the reflection vector, so θ′i refers to the

angle made with the reflection vector. Our goal is to show that azimuthally dependent

terms, i.e. those with q �= 0 are small, at least for small angles θ′o. Furthermore, we would

like to find the forms of the terms with q = 0. We start off by considering the simplest

case, i.e. θ′o = 0. This corresponds to normal exitance, with the reflection vector also

being normal to the surface. We then show how Taylor series expansions can be used to

generalize the results.

Normal Exitance

For normal exitance, there is no azimuthal dependence, and the half angle, θ′h = θ
′
i/2,

ρ̂l = 2π
∫ π/2
0

exp
[
−θ′i

2/4σ2
]

4πσ2
Yl0(θ

′
i) sin θ

′
i dθ

′
i. (3.44)

The expansion of Yl0(t) near t = 0 for small l is

Yl0(t) = Λ−1
l

(
1− l(l + 1)

4
t2 +O(t4)

)
. (3.45)

The asymptotic form of Yl0(t) near t = 0 for large l is

Yl0(t) ∼ Λ−1
l

(
1√
t
cos[(l + 1/2)t− π/4]

)
. (3.46)

To integrate equation 3.44, we substitute u = θ′i/2σ. Then, θ′i = 2σu. Assuming σ � 1,

as it is for most surfaces, the upper limit of the integral becomes infinite, and we have that
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sin θ′i dθ
′
i = θ

′
i dθ

′
i = 4σ2u du,

ρ̂l =
∫ ∞

0
2e−u

2

Yl0(2σu)u du. (3.47)

We therefore set t = 2σu in equations 3.45 and 3.46. When σl � 1, we use equation 3.45

to obtain to O([σl]4),

Λlρ̂l =
(∫ ∞

0
2ue−u

2

d u− (σl)2
∫ ∞

0
2u3e−u

2

du
)
. (3.48)

Substituting, v = u2, both integrals evaluate to 1, so we obtain

Λlρ̂l = 1− (σl)2 +O
(
[σl]4

)
. (3.49)

We note that these are the first terms of the Taylor series expansion of exp[−(σl)2]. When

σl � 1, we use equation 3.46 to obtain (Φ is a phase that encapsulates the lower-order

terms)

Λlρ̂l ∼
∫ ∞

0
e−u

2√
u cos[(2σl)u+Φ] du. (3.50)

The dominant term can be shown to be exp[−(2σl)2/4] = exp[−(σl)2]. Therefore, we

can simply use exp[−(σl)2] as a valid approximation in both domains, giving rise to an

approximation of the form

Λlρ̂l ≈ exp
[
− (σl)2

]
. (3.51)

We have also verified this result numerically.

For normal exitance, the BRDF is symmetric about the reflection vector and gaussian,

so in that case, equation 3.51 simply states that even in the spherical-harmonic basis, the

frequency spectrum of a gaussian is also approximately gaussian, with the frequency width

related to the reciprocal of the angular width. For non-normal exitance, we will see that

this is still a good approximation. The corrections are small except when l is large (corre-

sponding to directional light sources), and at large viewing angles. These statements are

made more precise in the next subsection.
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Non-Normal Exitance

For non-normal exitance, we first expand θ′h in a Taylor series in terms of θ′i. After some

tedious manipulation, we can verify that to first order,

θ′h
2
=

(
θ′i
2

)2 (
1 + sin2 φ′i tan

2 θ′o
)
. (3.52)

When θ′o = 0 (normal exitance), this is the result we obtained earlier. When θ′o �= 0, there is

some asymmetry, and the half-angle depends on the azimuthal angle between the light and

viewing vector, as defined by the formula above. In angular-space, the BRDF behaves as

an “anisotropic” filter over the incident illumination. Our goal here is to bound the extent

of this “anisotropy”, or asymmetry.

We first consider the coefficients for the isotropic or azimuthally symmetric term Yl0.

For l small, we can expand as 1− (σl)2+O(σl)4. Now, the constant term is just the area of

the microfacet distribution, but when normalized by cos θ′o must integrate to 1. Therefore,

corrections are at least of O(θ′o
2(σl)2). In fact, it is possible to obtain a tighter bound by

deeper analysis.

Therefore, these corrections are not significant for small outgoing angles, and within

that domain, we may use equation 3.51 as a good approximation. It should be noted that

in practical applications, measurements made at wide or near-grazing angles are given low

confidence anyway.

To make this more concrete, consider what happens to equation 3.47. Considering the

first term in the Taylor-series expansion, and including the cos θ′o term in the denominator,

we get

ρ̂l =
1

cos θ′o

∫ ∞

0
2ue−u

2

Yl0(2σu)

(
1− u2 tan2 θ′o

2

)
du. (3.53)

The factor of 2 in the denominator of the last (correction) term is to take care of the inte-

gration of sin2 φ′i. Next, we expand both the cosine and tangent functions about θ′o = 0,

i.e. cos θ′o = 1− θ′o2/2 + O
(
θ′o

4
)

and tan2 θ′o = θ
′
o
2 + O

(
θ′o

4
)
. Upon doing this, it can be

verified that, as expected from physical arguments, there is no net correction to the integral

and equation 3.53 evaluates to equation 3.49.



3.2. DERIVATION OF ANALYTIC FORMULAE 77

Now, consider the anisotropic terms Ylq with q �= 0. If we Taylor expand as in equa-

tion 3.53, we are again going to get something at least of O
(
θ′o

2
)
, and because the Ylq

constant term vanishes, there will be another factor of σ. In fact, if we Taylor-expand, we

get an expansion of the form sin2 φ′i+sin
4 φ′i+ · · · and it is clear that the azimuthal integral

against Ylq vanishes unless there is a term of type sinq φ′i. Therefore, the corrections are ac-

tually O (θ′o
qσ). What this means in practice is that the azimuthally dependent corrections

are only important for large viewing angles and large orders l (l must be large if q is large,

and for small q, θ′o
qσ is small for σ � 1 even if θ′o is large).

But, that situation will arise only for observations made at large angles of lights that

have broad spectra, i.e. directional sources. Therefore, these should be treated separately,

by separating the illumination into slow and fast varying components. Equation 3.51 in

the frequency domain is a very good approximation for the slow-varying lighting compo-

nent, while we may approximate the fast-varying lighting component using one or more

directional sources in the angular domain.

Conditioning Properties

Since equation 3.51 has many similarities to the equations for the Phong BRDF, most of

those results apply here too. In particular, under low-frequency lighting, there is an am-

biguity with respect to estimation of the surface roughness σ. Also, inverse lighting is

well-conditioned only up to order σ−1. With respect to factorization, there are ambigui-

ties between illumination and reflectance, similar to those for mirror and Phong BRDFs.

Specifically, we may blur the illumination while sharpening the BRDF. However, it is im-

portant to note that while these ambiguities are exact for Phong and mirror BRDFs, they

are only a good approximation for microfacet BRDFs since equation 3.51 does not hold at

grazing angles or for high-frequency lighting distributions. In these cases, the ambiguity

can be broken, and we have used this fact in an algorithm to simultaneously determine the

lighting and the parameters of a microfacet model [73].

In summary, while it is difficult to derive precise analytic formulae, we can derive good

approximations to the frequency-space behavior of a microfacet BRDF model. The results

are rather similar to those for the Phong BRDF with the Phong exponent s replaced by the
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physically-based surface roughness parameter σ.

In this subsection, we have seen analytic formulae derived for a variety of common

lighting and BRDF models, demonstrating the implications of the theoretical analysis. We

end this chapter by summarizing its key contributions, discussing avenues for future work,

and outlining the rest of the dissertation, which discusses some practical applications of the

theoretical analysis in chapters 2 and 3.

3.3 Conclusions and Future Work

We have presented a theoretical analysis of the structure of the reflected light field from a

convex homogeneous object under a distant illumination field. In chapter 2, we have shown

that the reflected light field can be formally described as a convolution of the incident

illumination and the BRDF, and derived an analytic frequency space convolution formula.

This means that, under our assumptions, reflection can be viewed in signal processing terms

as a filtering operation between the lighting and the BRDF to produce the output light field.

Furthermore, inverse rendering to estimate the lighting or BRDF from the reflected light

field can be understood as deconvolution. This result provides a novel viewpoint for many

forward and inverse rendering problems.

In this chapter, we have derived analytic formulae for the frequency spectra of many

common BRDF and lighting models, and have demonstrated the implications for inverse

problems such as lighting recovery, BRDF recovery, and light field factorization. We have

shown in frequency-space why a gazing sphere is well-suited for recovering the lighting—

the frequency spectrum of the mirror BRDF (a delta function) is constant—and why a

directional source is well-suited for recovering the BRDF—we are estimating the BRDF

filter by considering its impulse response. With the aid of our theory, we have been able

to quantitatively determine the well-posedness and conditioning of many inverse problems.

The ill-conditioning observed by Marschner and Greenberg [54] in estimating the lighting

from a Lambertian surface has been explained by showing that only the first 9 coefficients

of the lighting can robustly be recovered, and we have shown that factorization of lighting

effects and low-frequency texture is ambiguous. All these results indicate that the theory
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provides a useful analytical tool for studying the properties of inverse problems.

Of course, all the results presented in this chapter depend on our assumptions. Further-

more, the results for well-posedness of inverse problems depend on having all the reflected

light field coefficients, or the entire reflected light field available. It is an interesting future

direction to consider how these results change when we have only a limited fraction of the

reflected light field available, as in most practical applications, or can move our viewpoint

only in a narrow range. More generally, we believe a formal analysis of inverse problems

under more general assumptions is of significant and growing interest in many areas of

computer graphics, computer vision, and visual perception.

The remainder of this dissertation describes practical applications of the theoretical

framework for forward and inverse rendering. Chapters 4 and 5 describe frequency domain

algorithms for environment map prefiltering and rendering. Chapter 4 discusses the case

of Lambertian BRDFs (irradiance maps), while chapter 5 extends these ideas to the gen-

eral case with arbitrary isotropic BRDFs. Finally, chapter 6 discusses how the theoretical

analysis can be extended and applied to solve practical inverse rendering problems under

complex illumination.



Chapter 4

Irradiance Environment Maps

In the introduction to this dissertation, we noted that complex realistic lighting environ-

ments are rarely used in either forward or inverse rendering. We also stated our thesis that

a deeper understanding of the computational nature of reflection and illumination helps to

address these difficulties and restrictions in a number of areas in computer graphics and

vision. Subsequently, in chapters 2 and 3, we have developed a new way of looking at re-

flection, formalizing the idea of reflection as a spherical convolution of the incident illumi-

nation and BRDF. The insights from these two chapters lead to the possibility of attacking

a number of difficult forward and inverse rendering problems in the frequency domain.

Chapters 4, 5 and 6 of this dissertation are devoted to practical applications of the

signal-processing ideas developed theoretically in the previous two chapters. Chapters 4

and 5 deal with efficient representations and algorithms for forward rendering using envi-

ronment maps, which are representations of the (distant) incident illumination distribution

at a point. This chapter considers the case of Irradiance Environment Maps, correspond-

ing to the reflection from diffuse or Lambertian objects. We show that frequency-space

analysis can be used to reduce the effects of arbitrarily complex (but distant) incident illu-

mination to a simple analytic low-dimensional formula. In the next chapter, we will extend

these ideas, using similar methods for general BRDFs, further showcasing the practical

benefits of frequency-space concepts like sampling rate analysis and efficient frequency do-

main convolutions. Finally, chapter 6 presents practical algorithms for inverse rendering—

estimation of illumination and material properties.

80
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In this chapter, we consider the rendering of diffuse objects under distant illumina-

tion, as specified by an environment map. Using an analytic expression for the irradiance

in terms of spherical harmonic coefficients of the lighting, derived in chapter 3.2.5, we

show that one needs to compute and use only 9 coefficients, corresponding to the lowest-

frequency modes of the illumination, in order to achieve average errors of only 1%. In other

words, the irradiance is insensitive to high frequencies in the lighting, and is well approx-

imated using only 9 parameters. In fact, we show that the irradiance can be procedurally

represented simply as a quadratic polynomial in the cartesian components of the surface

normal, and give explicit formulae. These observations lead to a simple and efficient pro-

cedural rendering algorithm amenable to hardware implementation, a prefiltering method

up to three orders of magnitude faster than previous techniques, and new representations

for lighting design and image-based rendering.

The rest of this chapter is organized as follows. After an introduction to the specific

problem of interest here, in section 1, we briefly describe the relevant background and

practical details from the previous theoretical analysis required here in section 2. Section

3 discusses practical implementation of our algorithms. Finally, section 4 concludes this

paper and suggests directions for future work. This chapter corresponds to our SIGGRAPH

paper on An Efficient Representation for Irradiance Environment Maps [71].

4.1 Introduction and Previous Work

Lighting in most real scenes is complex, coming from a variety of sources including area

lights and large continuous lighting distributions like skylight. But current graphics hard-

ware only supports point or directional light sources. One reason is the lack of simple

procedural formulas for general lighting distributions. Instead, an integration over the up-

per hemisphere must be done for each pixel.

One approach to using general lighting distributions is the method of environment

maps. Environment maps are representations of the incident illumination at a point. Blinn

and Newell [5] used them to efficiently find reflections of distant objects. Miller and Hoff-

man [59], and Greene [22] prefiltered environment maps, precomputing separate reflection
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Figure 4.1: The diffuse shading on all the objects is computed procedurally in real-time using
our method. The middle sphere, armadillo, and table are white diffuse reflectors. The colors come
from the environment—owing to a variety of colored sources, including blue stained-glass windows.
Our method can also be combined with standard texture mapping—used to modulate the albedo of
the pool-ball on the right—and reflection mapping—used for specular highlights on the pool-ball,
and for the mirror sphere on the left. The environment is a light probe of the Grace Cathedral.
Tone mapping is used to convey high dynamic range for the background and the mirror sphere; the
remaining objects are shaded using a linear scale.

maps for the diffuse and specular components of the BRDF. Cabral et al. [8] handled gen-

eral BRDFs by using a 2D set of prerendered images. Prefiltering is generally an offline,

computationally expensive process. After prefiltering, rendering can usually be performed

at interactive rates with graphics hardware using texture-mapping.

Of course, environment maps, and the relevant techniques presented in this dissertation,

are only an approximation and do not account for near-field illumination, cast shadows, or

interreflection. Nevertheless, they have proven an effective tool for interactive rendering

with realistic lighting effects.

This chapter focuses on the Lambertian component of the BRDF. We use the term

irradiance environment map for a diffuse reflection map indexed by the surface normal,
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since each pixel simply stores the irradiance for a particular orientation of the surface. For

applications like games, irradiance maps are often stored directly on the surface, instead

of as a function of the normal vector, and are called light maps. Irradiance environment

maps can also be extended to spatially varying illumination by computing an irradiance

volume, as done by Greger et al. [23]. Many of the same ideas can be applied to speeding

up global illumination algorithms. The slowly varying nature of irradiance has led to Ward

and Heckbert [85] proposing interpolation using irradiance gradients, while the idea of

storing irradiance as a function of surface orientation in orientation lightmaps has been

proposed by Wilkie et al. [87].

Our approach relies on the rapid computation of an analytic approximation to the ir-

radiance environment map. For rendering, we demonstrate a simple procedural algorithm

that runs at interactive frame rates, and is amenable to hardware implementation. The pro-

cedural approach is preferable to texture-mapping in some applications. Since irradiance

varies slowly with orientation, it need only be computed per-vertex and interpolated across

triangles. Further, we require only a single texturing pass to render textured objects with

irradiance environment maps, since the irradiance is computed procedurally. On the other

hand, the standard approach requires a separate texture for the irradiance, and needs mul-

titexturing support or multiple texturing passes. In other applications, where per-fragment

texture-mapping is relatively inexpensive, our method can be used to very efficiently com-

pute the irradiance environment map texture. Our novel representation also suggests new

approaches to lighting design and image-based rendering.

4.2 Background

Empirically, it is well known that the reflected intensity from a diffuse surface varies slowly

as a function of surface orientation. This qualitative observation has been used to justify

representing irradiance environment maps at low resolutions [59], and in efficiently com-

puting the shading hierarchically [39, 45]. Our goal is to use an analytic quantitative

formula for the irradiance, derived in section 3.2.5, which formalizes these observations,

and allows for principled approximations.
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Let L denote the distant lighting distribution. As is common with environment map al-

gorithms, we neglect the effects of cast shadows and near-field illumination. The irradiance

E is then a function of the surface normal only and is given by an integral over the upper

or visible hemisphere,

E(α, β) =
∫ π/2
θ′i=0

∫ 2π

φ′i=0
L (Rα,β(θ

′
i, φ

′
i)) cos θ

′
i dθ

′
idφ

′
i. (4.1)

We must scale E by the surface albedo1, which may be dependent on position 
X and be

described by a texture T ( 
X), to find the reflected light field B, which corresponds directly

to the image intensity,

B( 
X;α, β) = T ( 
X)E(α, β). (4.2)

Our main concern will be approximating the irradiance E. A texture map T (
X) may

be used later to simply modulate the reflected light field computed. Note that the form of

equation 4.1 is simply a special case of the reflection equation 2.11 for isotropic surfaces

with no outgoing angular dependence. The limits of the θ′i integral range from 0 to π/2

because we consider only the front hemisphere, where the cosine of the incident angle

is positive. The transfer function corresponding to the Lambertian BRDF is the clamped

cosine function ρ̂(θ′i) = max(cos θ′i, 0).

In section 3.2.5 (a more detailed version of which is published in [72]), we have been

able to derive an analytic formula for the irradiance by determining the spherical harmonic

filter coefficients for the Lambertian clamped-cosine function. Similar results have been

obtained independently by Basri and Jacobs [2] in simultaneous work on face recognition.

For the purposes of implementation, it is often convenient to use real-valued functions

where possible, rather than the complex forms of the spherical harmonics given in equa-

tion 2.27. It is easy to define real forms of the spherical harmonics, simply by considering

the real and complex parts separately. For this purpose, we define the real form of the

1Technically, for Lambertian objects, the BRDF is given by 1/π times the albedo, so the textures should
be multiplied by 1/π.
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spherical harmonics as follows (c.f. equation 2.26),

Nlm =

√√√√2l + 1
4π

(l −m)!
(l +m)!

Ylm(θ, φ) = NlmPlm(cos θ)azm(φ), (4.3)

where the azimuthal basis functions are defined by

az+m(φ) =
√
2 cosφ

az0(φ) = 1

az−m(φ) =
√
2 sinφ. (4.4)

While this is essentially the standard definition of the real form of the spherical harmonics,

the sign conventions used are not always consistent. For that reason, we will make explicit

the numerical values used here to fix the precise conventions used by us.

Recall that the spherical harmonics may be written as polynomials of the cartesian com-

ponents (x, y, z). Below, we give the numeric values of the the first 9 spherical harmonics

(with l ≤ 2), which are simply constant (l = 0), linear (l = 1), and quadratic (l = 2)

polynomials (c.f. figure 2.3),

(x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ)

Y00(θ, φ) = 0.282095

(Y11;Y10;Y1−1) (θ, φ) = 0.488603 (x; z; y)

(Y21;Y2−1;Y2−2) (θ, φ) = 1.092548 (xz; yz; xy)

Y20(θ, φ) = 0.315392
(
3z2 − 1

)
Y22(θ, φ) = 0.546274

(
x2 − y2

)
. (4.5)

Note that these basis functions are closely related to the spherical polynomials used by

Arvo [1] in his irradiance tensor formulation.

E(α, β) and L(θ, φ) can be represented by the coefficients—Elm and Llm—in their
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spherical harmonic expansion,

L(θ, φ) =
∞∑
l=0

l∑
m=−l

LlmYlm(θ, φ)

E(α, β) =
∞∑
l=0

l∑
m=−l

ElmYlm(α, β). (4.6)

We may also expand the Lambertian transfer function ρ̂(θ′i) = max(cos θ′i, 0), i.e. the

clamped cosine, in terms of spherical harmonics. Since ρ̂ has no azimuthal dependence,

m = 0 and we use only the l index,

ρ̂(θ) = max [cos θ, 0] =
∑
l

ρ̂lYl0(θ). (4.7)

With these definitions, one can directly apply equation 2.62 or equation 3.10,

Elm = Λlρ̂lLlm, (4.8)

where Λl =
√
4π/(2l+ 1). The only difference in equation 3.28 in section 3.2.5 is that we

used there the reflected light field B, which is simply a scaled version of the irradiance E

for Lambertian surfaces.

It will be convenient to define a new variable Al by

Al = Λlρ̂l, (4.9)

and to expand out the irradiance for rendering,

E(α, β) =
∑
l,m

AlLlmYlm(α, β). (4.10)

An analytic formula for ρ̂l (and henceAl) has been derived in section 3.2.5. It can be shown

that Al vanishes for odd values of l > 1, and even terms fall off very rapidly as l−5/2. The
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analytic formulae are given by (c.f. equation 3.32)

l = 1 Al =
2π
3

l > 1,odd Al = 0

l even Al = (−1) l
2
−1 2π
(l + 2)(l − 1)


 l!
2l
(
l
2 !
)2


 .

(4.11)

Numerically, the first few terms are

A0 = 3.141593 A1 = 2.094395 A2 = 0.785398

A3 = 0 A4 = −0.130900 A5 = 0 A6 = 0.049087. (4.12)

Approximation: For rendering, we make use of the observation that Al decays so fast

that we need consider only low-frequency lighting coefficients, of order l ≤ 2. Equiva-

lently, the irradiance is well approximated by only 9 parameters—1 for l = 0,m = 0,

3 for l = 1,−1 ≤ m ≤ 1, and 5 for l = 2,−2 ≤ m ≤ 2. By working in frequency-

space, we exploit the low-frequency character of the Lambertian BRDF filter, using a few

coefficients instead of a full hemispherical integral. The simple form of the first 9 spherical

harmonics, given in equation 4.5, makes implementation straightforward.

4.3 Algorithms and Results

In this section, we discuss three applications of this result. First, we show how to rapidly

prefilter the lighting distribution, computing the coefficients Llm. Next, we develop a sim-

ple real-time procedural shader for rendering that takes these coefficients as inputs. Finally,

we discuss other applications of our representation.

4.3.1 Prefiltering

For a given environment map, we first find the 9 lighting coefficients, Llm for l ≤ 2, by

integrating against the spherical harmonic basis functions. Each color channel is treated



88 CHAPTER 4. IRRADIANCE ENVIRONMENT MAPS

separately, so the coefficients can be thought of as RGB values,

Llm =
∫ π
θ=0

∫ 2π

φ=0
L(θ, φ)Ylm(θ, φ) sin θ dθdφ. (4.13)

The expressions for the Ylm are found in equation 4.5. The integrals are simply sums of the

pixels in the environment map L, weighted by the functions Ylm. The integrals can also be

viewed as moments of the lighting, or as inner-products of the functions L and Ylm.

Since we compute 9 numbers, the prefiltering step takes O(9S) time, where S is the

size (total number of pixels) of the environment map. By comparison, the standard method

of computing an irradiance environment map texture takes O(| T | ·S) time, where | T |
is the number of texels in the irradiance environment map. Our method will therefore be

approximately | T | /9 times faster2. Even if a conventional irradiance environment map is

computed at a very low resolution of 64 × 64, corresponding to | T |= 4096, our method

will be nearly 500 times faster.

We have implemented prefiltering as a preprocessing step for a given environment map.

Values of Llm for a few light probes are tabulated in figure 4.1. The computation time for a

300x300 environment map was less than a second. This indicates that our approach might

be able to handle scenes with dynamic lighting in the future. By contrast, the standard

method of performing a hemispherical integral for each pixel to compute the irradiance

environment map took approximately two hours. In fact, if an explicit representation of the

irradiance environment map texture is required, we believe the best way of computing it is

to first compute the 9 coefficients Llm using our method, and then use these to very rapidly

generate the irradiance environment map using the rendering method described below.

It is important to know what errors result from our 9 parameter approximation. The

maximum error for any pixel, as a fraction of the total intensity of the illumination, is 9%

and corresponds to the maximum error in the order 2 approximation of the clamped cosine

function. Furthermore, the average error over all surface orientations can be shown to be

under 3% for any physical input lighting distribution [2]. For the environment maps used

in our examples, corresponding to complex natural illumination, the results are somewhat

2It may be possible to use a hierarchical integration scheme, as demonstrated by Kautz et al. [39] for
Phong BRDFs, to speed up both our method and the conventional approach. Hardware acceleration may also
be possible.
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Grace Cathedral Eucalyptus Grove St. Peters Basilica
L00 .79 .44 .54 .38 .43 .45 .36 .26 .23
L1−1 .39 .35 .60 .29 .36 .41 .18 .14 .13
L10 -.34 -.18 -.27 .04 .03 .01 -.02 -.01 -.00
L11 -.29 -.06 .01 -.10 -.10 -.09 .03 .02 .01
L2−2 -.11 -.05 -.12 -.06 -.06 -.04 .02 .01 .00
L2−1 -.26 -.22 -.47 .01 -.01 -.05 -.05 -.03 -.01
L20 -.16 -.09 -.15 -.09 -.13 -.15 -.09 -.08 -.07
L21 .56 .21 .14 -.06 -.05 -.04 .01 .00 .00
L22 .21 -.05 -.30 .02 -.00 -.05 -.08 -.06 .00

Table 4.1: Scaled RGB values of lighting coefficients for a few environments. These may be used
directly for rendering, and for checking the correctness of implementations.

better than the worst-case bounds—the average error is under 1%, and the maximum pixel

error is under 5%. Finally, figure 4.2 provides a visual comparison of the quality of our

results with standard prefiltering, showing that our method produces a perceptually accurate

answer.

4.3.2 Rendering

For rendering, we can find the irradiance using equation 4.10. Since we are only con-

sidering l ≤ 2, the irradiance is simply a quadratic polynomial of the coordinates of the

(normalized) surface normal. Hence, with 
N t = (x y z 1), we can write

E( 
N) = 
N tM 
N. (4.14)

M is a symmetric 4x4 matrix. Each color has an independent matrix M . Equation 4.14 is

particularly useful for rendering, since we require only a matrix-vector multiplication and

a dot-product to compute E. The matrixM is obtained by expanding equation 4.10,
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STANDARD OUR METHOD

GRACE CATHEDRAL

STANDARD OUR METHOD

EUCALYPTUS GROVE

Figure 4.2: A comparison of irradiance maps from our method to standard prefiltering. The
irradiance map resolutions are 256x256. For each light probe, the left image is a tone-mapped
version of the environment. Below that, we show the brightest parts of the environment on a lin-
ear scale. Both environments have bright bluish lights—from stained-glass windows, and the sky
respectively—which are not apparent in the tone-mapped images. This accounts for the bluish por-
tions of the irradiance maps. It can be seen that our method produces a result very close to the
correct answer. Note that our rendering algorithm does not actually use irradiance maps; we com-
puted them here solely for the purposes of the quality comparison. The coordinate mapping in the
images is such that the center of the image is straight forward (θ = 0, the north pole or +Z), the cir-
cumference of the image is straight backwards (θ = π, the south pole or -Z), and θ varies uniformly
in the radial direction from 0 to π. The azimuthal angle φ corresponds to the image polar angle.

M =




c1L22 c1L2−2 c1L21 c2L11

c1L2−2 −c1L22 c1L2−1 c2L1−1

c1L21 c1L2−1 c3L20 c2L10

c2L11 c2L1−1 c2L10 c4L00 − c5L20




c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708. (4.15)
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The entries of M depend3 on the 9 lighting coefficients Llm and the expressions for the

spherical harmonics. The constants come from the numerical values of Al given in equa-

tion 4.12, and the spherical harmonic normalizations given in equation 4.5.

On systems not optimized for matrix and vector operations, it may be more efficient

to explicitly write out equation 4.10 for the irradiance as a sum of terms,i.e. expand equa-

tion 4.15,

E( 
N) = c1L22

(
x2 − y2

)
+ c3L20z

2 + c4L00 − c5L20

+ 2c1 (L2−2xy + L21xz + L2−1yz)

+ 2c2 (L11x+ L1−1y + L10z) . (4.16)

We implemented equations 4.14 and 4.16 as procedural shaders in the Stanford real-time

programmable shading system [68]. We used the ability of that system to perform compu-

tations per-vertex. Since E varies slowly, this is adequate and the shading is insensitive to

how finely the surfaces are tessellated. The irradiance computations may be performed in

software or compiled to vertex programming hardware, if available. The simple forms of

equations 4.14 and 4.16 indicate that a per-fragment method could also be implemented in

programmable hardware.

We were able to achieve real-time frame rates on PCs and SGIs. As shown in the SIG-

GRAPH 2001 conference proceedings videotape, we can interactively rotate objects and

move our viewpoint, with the irradiance being procedurally recomputed at every frame.

We can also rotate the lighting by applying the inverse rotation to the normal 
N . Images

rendered using our method look identical to those obtained by texture-mapping after pre-

computing irradiance environment maps.

4.3.3 Representation

Conceptually, the final image is composed of a sum of spherical harmonic basis functions,

scaled by the lighting coefficients Llm. These 3D irradiance basis functions depend on the

surface normal and are defined over the entire object, making it possible to generate an

3A symmetric 4x4 matrix has 10 degrees of freedom. One additional degree is removed since �N lies on
the unit sphere.
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Figure 4.3: Illustration of our representation, and applications to control appearance. The basis
functions have both positive values, shown in green, and negative values, shown in blue. Topmost,
we show the spherical harmonic basis functions on a sphere—note that these are actual images, not
the coordinate mappings of figure 4.2—and the armadillo. The basis functions are defined over the
entire object surface; we show only two views. The rightmost 5 functions are dimmer since they
have the highest frequency (l = 2) and contribute the least. Conceptually, the basis functions are
then scaled by the lighting coefficients Llm and added to produce renderings. Llm are actually RGB
values; for simplicity, we show the coefficients for only one color (green). The coefficients Llm may
be adjusted manually to manipulate appearance. This editing can be fairly intuitive—for instance,
we make L11 large and positive to darken the right side (with respect to us) and left arm of the
armadillo image, since the basis function (1, 1) is negative in that region.

image from any viewpoint. We may also manually adjust the 9 lighting coefficients Llm

to directly control appearance, as shown in figure 4.3. The lighting coefficients can often

be assigned intuitive meanings. For instance, L1−1 is the moment about the vertical or

y-axis, and measures the extent to which the upper hemisphere is brighter than the lower

hemisphere. As can be seen from figure 4.1, L1−1 is usually large and positive, since most

scenes are lit from above. By making this value negative, we could give the appearance of

the object being lit from below.

Our representation may also be useful in the future for image-based rendering with

varying illumination. Hallinan [30] and Epstein et al. [18] have observed empirically that,
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for a given view, images of a matte object under variable lighting lie in a low-dimensional

subspace. Our theory explains this observation, and indicates that a 9D subspace suf-

fices. Basri and Jacobs [2] have obtained similar theoretical results. To synthesize images

of a diffuse object under arbitrary illumination, we therefore need only the 9 basis func-

tions, which could be computed from a small number of photographs. Such an approach

would significantly speed up both acquisition and rendering in a method such as Debevec

et al. [15].

4.4 Conclusions and Future Work

We have described a novel analytic representation for environment maps used to render dif-

fuse objects, and have given explicit formulae for implementation. Our approach allows us

to use an arbitrary illumination distribution for the diffuse component of the BRDF, instead

of the limitation of current graphics hardware to point or directional sources. We simply

specify or compute the first 9 moments of the lighting. Even where more conventional

texture-mapping methods are desired, our approach allows us to very efficiently compute

irradiance environment map textures.

It should be noted that environment mapping in general, and the methods described in

this and the next chapter in particular, are restricted to distant illumination without cast

shadows or interreflection. An obvious question is how we can modify and utilize our re-

sults when the theoretical assumptions don’t exactly hold, i.e. we want to account for some

spatially-varying illumination, cast shadows, and interreflection. It is our belief that low-

dimensional subspaces may still be appropriate, even if they are not specified by simple

analytic formulae in terms of spherical harmonics, or can be described using only 9 pa-

rameters. Some preliminary work in this area has already been demonstrated by Sloan et

al. [66].

Another interesting question is whether we can use similar frequency-space methods

for the specular BRDF component, and more general non-Lambertian reflection functions.

One solution to this problem will be presented in the next chapter. In the future, we would

also like to further explore the applications to lighting design and image-based rendering

discussed in this chapter.



Chapter 5

Frequency Space Environment Map

Rendering

In the previous chapter on irradiance environment maps, we have seen how frequency-

space analysis can be used to efficiently compute and represent convolutions of the incident

illumination with the low-pass Lambertian reflection function, i.e. clamped cosine. An ob-

vious question is whether a similar approach is possible for general BRDFs. In this chapter,

we will present such a method. We will therefore have shown that the signal-processing

ideas can be used to significantly increase the quality of interactive rendering. Since we

are using frequency space methods to render with environment maps, we have entitled this

chapter Frequency Space Environment Map Rendering. The next chapter of the disserta-

tion will switch from forward to inverse rendering, extending and applying the theoretical

framework to determining lighting and BRDFs from sequences of real photographs.

This chapter presents a new method for real-time rendering of objects with complex

isotropic BRDFs under distant natural illumination, as specified by an environment map.

Our approach is based on spherical frequency space analysis and includes three significant

improvements over previous work. Firstly, we are able to theoretically analyze required

sampling rates and resolutions, which have traditionally been determined in an ad-hoc man-

ner. We also introduce a new compact representation, which we call a spherical harmonic

reflection map (SHRM), for efficient representation and rendering. Finally, we show how to

94
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Figure 5.1: These images, showing many different lighting conditions and BRDFs, were each
rendered at approximately 30 frames per second using our Spherical Harmonic Reflection Map
(SHRM) representation. From left to right, a simplified microfacet BRDF, krylon blue (using Mc-
Cool et al.’s reconstruction from measurements at Cornell), orange and velvet (CURET database),
and an anisotropic BRDF (based on the Kajiya-Kay model). The environment maps are the Grace
Cathedral, St. Peter’s Basilica, the Uffizi gallery, and a Eucalyptus grove, courtesy Paul Debevec.
The armadillo model is from Venkat Krishnamurthy.

rapidly prefilter the environment map to compute the SHRM—our frequency domain pre-

filtering algorithm is generally orders of magnitude faster than previous angular (spatial)

domain approaches.

The rest of this chapter is organized as follows. We introduce the problem in section

1, followed by a discussion of previous work in section 2. Section 3 introduces the pre-

liminaries and background required. Section 4 describes our new SHRM representation,

section 5 discusses an analysis of sampling rates in order to set frequency space orders and

resolutions, and section 6 describes our efficient frequency domain prefiltering algorithms.

Section 7 presents our results using a number of different environment maps and BRDFs.

Finally, we conclude this chapter and discuss future work in section 8.

5.1 Introduction

Our goals are real-time rendering with complex natural illumination and realistic, possibly

measured, BRDFs. The closest previous work is that of Cabral et al. [8], who extended

standard environment maps by interactively warping and combining a sparse 2D set of

prerendered images. These precomputed images were obtained by prefiltering the environ-

ment map, i.e. integrating the product of the BRDF and lighting over the visible (upper)

hemisphere for each image pixel, with each pixel corresponding to a particular surface nor-

mal direction. Subsequently, Kautz et al. [38, 40] proposed alternative implementations
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and improved prefiltering methods.

This paper introduces a new frequency space paradigm for prefiltering and rendering

environment mapped images with general isotropic BRDFs. We show that frequency space

analysis allows for setting sampling rates accurately, and enables compact representations.

Further, just as image convolutions are often computed in the Fourier rather than the spatial

domain, prefiltering is more efficient in frequency rather than angular space. Our main

contributions are:

Theoretical analysis of sampling rates and resolutions: Most previous work has deter-

mined reflection map resolutions, or the number of reflection maps required, in an ad-hoc

manner. By using a signal-processing framework, we are able to perform error analysis,

that allows us to set sampling rates and resolutions accurately.

Efficient representation and rendering with Spherical Harmonic Reflection Maps:

We introduce spherical harmonic reflection maps (SHRMs) as a compact representation.

Instead of a single color, each pixel stores coefficients of a spherical harmonic expansion

encoding view-dependence of the reflection map. An observation that emerges from the

theoretical analysis is that for almost all BRDFs, a very low order spherical harmonic ex-

pansion suffices. Thus, SHRMs can be evaluated in real-time for rendering. Further, they

are significantly more compact and accurate than previous methods [8, 38] that use an

explicit 1D or 2D set of images.

Fast prefiltering: One of the drawbacks of current environment mapping techniques is

the significant computational time required for prefiltering, which can run into hours, and

preclude the use of these approaches in applications involving lighting and material design,

or dynamic lighting. We introduce new prefiltering methods based on spherical harmonic

transforms, and show both empirically, and analytically by computational complexity anal-

ysis, that our algorithms are orders of magnitude faster than previous work.

We present a complete theoretical analysis and practical algorithm pipeline, incorporat-

ing all three contributions. It is also possible to separately (incrementally) incorporate any

one (or two) of the improvements into previous methods.
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5.2 Related Work

Angular space environment map rendering has a long history in graphics, including early

work by Blinn and Newell [5], Miller and Hoffman [59], and Greene [22]. Hakura et

al. [28] propose location and geometry-dependent environment maps for local reflections.

Our goals are different in that we want to capture the effects of complex BRDFs and use

any object geometry, but it should be possible in future to combine the methods for local

reflections and complex BRDFs.

As noted by Cabral et al. [8], environment mapping can be viewed as reflection-space

image-based rendering, and is therefore related to a number of IBR methods like surface

light fields [60, 64, 88]. A surface light field stores the outgoing radiance distribution for

each point on a geometric model. Our representation is essentially equivalent to the surface

light field of a sphere. We store the reflected radiance distribution for each normal direction,

allowing our representation to be mapped on to any object geometry.

Our work also relates to recent research on hardware rendering with factored BRDFs [37,

57]. However, these methods require the BRDF to at least approximately satisfy a particu-

lar factored form. These previous methods also do not support complex illumination.

5.3 Preliminaries

In this section, we first discuss the reflection equation and introduce the basic framework for

our method. We then describe our BRDF parameterization, and discuss previous 4D func-

tion representations. We use the same notation as in the rest of the dissertation, summarized

in table 1.1. In addition, there is some new notation used in this chapter, summarized in

table 5.1.

Assumptions: We make a number of simplifying assumptions common in real-time ren-

dering in general, and environment mapping [8, 38, 40, 59] in particular. Specifically, we

assume distant illumination and isotropic BRDFs, and restrict ourselves to direct lighting,

ignoring interreflection and self-shadowing. We will also not explicitly considered tex-

tured objects, but it is easy to use texture-mapping to modulate the net reflectance, simply
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B̂(α, β, θo, φo) Reflected light field in terms of fixed global viewing direction
F Maximum order l of coefficients ρ̂lpq,Blmpq
P Maximum order p in spherical harmonic expansion
S Angular resolution (S > F )
T Number of images in angular space (T > P )
W Angular width of BRDF
ε Error (unaccounted energy in approximation)
Ca Angular space computational cost
Cf Frequency domain computational cost

Table 5.1: Notation used in chapter 5.

by multiplying the texture and the reflected light field computed by our methods. It should

be noted that it is not easy to modulate BRDF parameters, only the net reflectance.

Reflection Equation: Given our assumptions, we may drop spatial dependence, and

write the standard reflection equation (c.f. equation 2.9),

B(α, β, γ, θ′o) =
∫
Ω′

i

L(θi, φi)ρ̂(θ
′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (5.1)

As usual, L is the incident radiance, ρ̂ is the BRDF transfer function, and B is the reflected

light field. (α, β) correspond to the global coordinates of the surface normal, (θi, φi) are

the global coordinates of the incident light direction, and (θ′i, φ
′
i) and (θ′o, φ

′
o) are local

incident and outgoing directions. Applying the standard rotation to align local and global

coordinates, we obtain (c.f. equation 2.11),

B(α, β, θ′o, φ
′
o) =

∫
Ω′

i

L (Rα,β(θ
′
i, φ

′
i)) ρ̂(θ

′
i, φ

′
i, θ

′
o, φ

′
o) dω

′
i. (5.2)

When the viewer is distant, it is often useful to rewrite the reflected light field in terms

of the global viewing direction 
V = (θo, φo). Note that so far in this dissertation, we have

considered local outgoing angles only, so this is a new notation. To distinguish it from the

familiar notation in terms of local angles, we denote the reflected light field, parameterized

by global outgoing direction as B̂. We now have,
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(θ′o, φ
′
o) = R−1

α,β (θo, φo)

B̂ (α, β; θo, φo) = B(α, β, θ′o, φ
′
o)

= B
(
α, β;R−1

α,β (θo, φo)
)
. (5.3)

Our general approach (and that of previous work [8, 38]) is to represent the incident

lighting L by an environment map. The environment map is prefiltered to compute some

representation of B (or B̃), followed by interactive rendering with this representation.

The rest of this chapter covers a number of issues that must be addressed. First, we must

find the appropriate (re)parameterization for B and ρ̂. Next, we must determine how to

represent B in a compact manner suitable for interactive rendering. For this, it is important

to analyze the required sampling rates and output resolutions. Finally, we must determine

how to efficiently compute our representation of B, i.e. rapidly prefilter the environment

map. An overview of our entire algorithm pipeline is shown in figure 5.2.

5.3.1 Reparameterization by central BRDF direction

Our goal is to reparameterize the BRDF and reflected light field so that they become rel-

atively simple and compact, and possibly lower-dimensional functions. Reparameterizing

also allows us to eliminate the warping step required by Cabral et al. [8]. To do this, we

reparameterize by the central BRDF direction, commonly the reflection vector, as per the

discussion in section 2.3.4. We repeat below the important points and discuss some relevant

details. Please refer to figure 2.4 in chapter 2 for an illustration of the ideas.

Consider first the special case of radially symmetric or 1D BRDFs, where the BRDF

consists of a single symmetric lobe of fixed shape, whose orientation depends only on a

well-defined central direction 
C. In other words, the BRDF is given by a 1D function

u as ρ̂ = u(
C · 
L). Examples are Lambertian ρ̂ = 
N · 
L and Phong ρ̂ = (
R · 
L)s

models. If we reparameterize by 
C, the BRDF becomes a function of only 1 variable (θi

with cos θi = 
C · 
L) instead of 3. Further, the reflected light field can be represented simply

by a 2D reflection map B(α, β) parameterized by 
C = (α, β). Note that we will often use
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R, the reflection of the viewing direction about the surface normal, as a synonym for 
C

since that is the most common case; however our analysis applies generally.

For general BRDFs, the radial symmetry property does not hold precisely, so they can-

not be reduced exactly to 1D functions, nor canB be written simply as a 2D reflection map.

Nevertheless, a reparameterization by the reflection vector still yields compact forms. As

can be seen for the 
N · 
H model shown in the lower part of figure 2.4, most of the variation

in the BRDF is still over only a single variable (θi) after reparameterization, while there is

very little variation over θo (or φ) for fixed θi. Further, most of the variation in B remains

over (α, β), with only low-frequency variation over the other two variables (θo, φo).

To reparameterize, we simply recenter the BRDF (and the reflection integral) about the

reflection vector, rather than the surface normal, as shown in figure 2.4. The reflection

vector now takes the place of the surface normal, i.e. 
R = (α, β), and the dependence on

the surface normal becomes indirect (just as the dependence on 
R is indirect in the standard

parameterization). The angles θ′i and θ′o are now given with respect to 
R by cos θ′i = 
R · 
L
and cos θ′o = 
R · 
V , with B(α, β, θ′o, φ

′
o) a function of 
R = (α, β) and (θ′o, φ

′
o).

Note that, although this paper does not address general 4D anisotropic BRDFs, repa-

rameterization by the tangent vector 
T can be used in special cases to reduce anisotropic

BRDFs to 1D or 2D functions, amenable to treatment by our algorithm pipeline. For in-

stance, consider the Kajiya-Kay [35] model. This BRDF is an anisotropic extension of the

Phong model, and depends on 
T · 
L and 
T · 
V . We may reparameterize by the tangent vec-

tor, just as we did above with the reflection vector. Then, cos θ′i = 
T · 
L and cos θ′o = 
T · 
V ,

with the BRDF being given by ρ̂ = coss(θ′i− θ′o). The BRDF is now a simple 2D function,

which is only slightly more complex than the reparameterized 1D Phong BRDF.

An important requirement of our reparameterization is that it be suitable for both the

BRDF ρ̂ and the reflected light field B. Thus, Rusinkiewicz’s [74] reparameterization of

BRDFs, based on the half angle vector 
H , cannot be used since it is unsuitable for the

reflected light field. 
H depends on the incident light direction, while B depends only

on the the viewing direction and surface normal (or reflection vector). Our approach is

motivated by the “reflective transformation” used by Wood et al. [88] to reparameterize the

outgoing radiance of surface light fields by 
R. However, our final representations differ

significantly. In their case, the surface light field is parameterized by object geometry and
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reflection vector 
R, while in our case, the “orientation light field” is parameterized by the

reflection vector 
R and viewing vector 
V .

5.3.2 4D function representations

Our goal is to compactly represent B(α, β, θ′o, φ
′
o) in a manner suitable for interactive ren-

dering, while exploiting its characteristics. As noted previously [8], the variation over

(α, β)may be rapid (high-frequency), while that over (θ′o, φ
′
o) is usually slow (low-frequency),

reducing to constant (no variation) for radially symmetric 1D BRDFs. There have been a

number of representations for 4D functions proposed in the graphics community, primar-

ily for image-based rendering. The main categories are listed below. Table 5.2 compares

tabular, compressed, factored, coefficient-based, as well as our SHRM representation, in

terms of simplicity, compactness of the representation, efficiency for rendering, ease of

error analysis, and speed for computation (prefiltering).

Explicit tabular representation: We may simply tabulate B(α, β, θ′o, φ
′
o) on a 4D grid.

Cabral et al. [8] use a sparse 2D set of standard 2D reflection maps. However, a very large

amount of data will be required to accurately tabulate a 4D light field. Cabral et al. [8]

use only 12 reflection maps, trading accuracy for compactness. Kautz and McCool [38]

approximate the BRDF as a 2D function ρ̂ = u(θ′i, θ
′
o) having no azimuthal dependence to

create a 3D texture B(α, β, θ′o). This lower-dimensional representation is more compact,

but loses some generality, and can still require a large amount of data. Interactive rendering

with these methods usually simply involves a texture lookup and interpolation.

Compressed forms: Compression based on vector-quantization or MPEG-like methods

can be used to reduce the size of a tabular representation, as done for surface light fields [60,

88]. or multidimensional animations [27]. Care must be taken that the compressed form

can be rendered interactively. Note that both computation of and error analysis on the

compressed form require us to first compute the dense uncompressed 4D light field, which

can be a computation and data-intensive operation.
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Method Simple Compact Rendering Analysis Speed
Tabular Yes No Yes No No
Compressed No Yes Maybe * No
Factored Yes Yes Yes * No
Coefficients Yes Yes No Yes Yes
SHRM Yes Yes Yes Yes Yes

Table 5.2: Comparison of different 4D representations. The columns stand for simplic-
ity/intuitiveness, compactness, efficiency for rendering, ease of error analysis, and speed of com-
putation (prefiltering). We use ∗ for error analysis of compressed and factored representations
because, while error analysis is straightforward, it requires knowledge of a densely sampled 4D
light field, and cannot be applied directly.

Factored representation: Factorization can be seen as a simple compression technique

that yields compact results suitable for interactive rendering using texture mapping. Pre-

vious methods that can be seen as factorizations include eigen-textures [64], polynomial

texture maps [53], and BRDF factorizations [37, 57]. The 4D light field is written as the

sum of a few terms, each being the product of two 2D functions (textures),

B(α, β, θ′o, φ
′
o) =

∑
a

ga(α, β)ha(θ
′
o, φ

′
o). (5.4)

The trick is to find the factors (2D textures) ga and ha so only a small number of terms are

needed. Rendering can be done interactively by multiplying together texture maps g and h.

Basis function coefficients: Factored representations can be viewed as a basis-function

expansion. To see this, we first introduce a representation purely in terms of basis function

coefficients:

B(α, β, θ′o, φ
′
o) =

∑
a

∑
b

cabdb(α, β)ha(θ
′
o, φ

′
o). (5.5)

The basis functions are db and ha with coefficients cab. We need only store cab, and can eval-

uate the basis functions procedurally. This is a simple compact form. However, interactive

rendering is difficult since there will usually be a large number of coefficients. We may

reduce the number of terms by doing the summation over b to get a factored representation
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identical to equation 5.4, defining

ga(α, β) =
∑
b

cabdb(α, β). (5.6)

5.4 Spherical Harmonic Reflection Maps

In this section, we introduce the spherical harmonic reflection map or SHRM representa-

tion, which is a compact factored representation derived from a spherical harmonic basis

function expansion. Figure 5.2 shows an overview of our entire pipeline. S and T stand
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Figure 5.2: An overview of our entire pipeline. S and T are angular resolutions, while F and P
are orders of the spherical harmonic expansions.

for angular resolutions while F and P stand for orders of the spherical harmonic expan-

sions, which are determined using the theoretical analysis in section 5.5. The inputs to the

algorithm are tabulated values of the lighting L(θ, φ) and 3D isotropic BRDF ρ̂(θ′i, θ
′
o, φ).

We then use our fast prefiltering algorithm, described in detail in section 5.6, to compute

the SHRM. This is done by first computing the spherical harmonic lighting coefficients

Llm and BRDF coefficients ρ̂lpq. We then use the spherical frequency-space convolution

formula derived in chapter 2, which may be viewed as the frequency domain analog of

equation 5.2, to compute reflected light field coefficients Blmpq (c.f. equation 2.55),

Blmpq = ΛlLlmρ̂lpq. (5.7)

Now, if we want to expand the coefficients to get the entire reflected light field, we

know that (c.f. equation 2.54)
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B(α, β, θ′o, φ
′
o) =

∑
l,m,p,q

ΛlLlmρ̂lpqΛ
−1
l D

l
mq(α, β)Ypq(θ

′
o, φ

′
o)

=
∑
lmpq

Llmρ̂lpq
(
Dlmq(α, β)Ypq(θ

′
o, φ

′
o)
)
. (5.8)

We expand the right-hand side partially (over indices l andm), defining

Bpq(α, β) =
∑
l,m

Llmρ̂lpqD
l
mq(α, β). (5.9)

Finally, we may write down the equation for the SHRM as

B(α, β, θo, φo) =
PB∑
p=0

p∑
q=−p

Bpq(α, β)Ypq(θ
′
o, φ

′
o). (5.10)

In this equation, Bpq(α, β) is one coefficient in the SHRM, and PB ≥ 0 is the maximum

order of the expansion, with the SHRM containing a total of (PB + 1)2 terms. Figure 5.3

illustrates the idea behind SHRMs. Each pixel (α, β) in a reflection (cube)map has a par-

ticular distribution of outgoing radiance B(α, β, θ′o, φ
′
o). This distribution is encoded by

the SHRM as a spherical harmonic expansion in (θ′o, φ
′
o), with coefficients Bpq(α, β). For

the special case of radially symmetric 1D BRDFs, there is no dependence on (θ′o, φ
′
o) after

reparameterization, so we need only the DC or constant term B00(α, β), and the SHRM

reduces to a simple 2D reflection map.

So far, we have considered local SHRMs, depending on local outgoing angles (θ′o, φ
′
o),

which are different for each (α, β). It is often convenient to assume the viewer is distant

and compute global SHRMs, dependent on a global viewing direction (θo, φo).

B̂(α, β, θo, φo) =
PB∑
p=0

p∑
q=−p

B̂pq(α, β)Ypq(θo, φo). (5.11)

The advantage of equation 5.11 over equation 5.10 lies in ease of evaluation for render-

ing, since Ypq(θo, φo) can be evaluated once per frame, instead of per pixel. In fact, we will

show in section 5.7.5 that this allows global SHRMs to be rendered using a single dynamic
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Figure 5.3: The idea behind SHRMs. Each pixel (α, β) in the reflection cubemap has some distri-
bution of reflected light. This distribution is encoded as a low-order spherical harmonic expansion
in (θ′o, φ′

o) for every pixel, with coefficients Bpq(α, β). To avoid clutter, this diagram uses only a
3x3 resolution in the reflection map and shows the outgoing distribution for only four of the pixels.

reflection map, with standard reflection mapping hardware.

We still need to know how to determine global SHRM coefficients B̂pq(α, β). The

spherical convolution formula in equations 5.7 or 2.55 apply only to local SHRMs. How-

ever, we may rotate coefficients to compute the global SHRM. We make use of equa-

tions 5.3 and 5.10, with the subscript q changed to s for later convenience,

B̂ (α, β, θo, φo) =
PB∑
p=0

p∑
s=−p

Bps(α, β)Yps
(
R−1
α,β(θo, φo)

)
. (5.12)

From this expression, we can determine the modified (rotated) coefficients of the global

SHRM separately for each orientation (α, β). For this, we need to know how to apply the

inverse rotation in the equation above, analogous to the forward rotation formula used in
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equation 2.29. We may derive

Yps
(
R−1
α,β(θo, φo)

)
= Yps (Ry(−α)Rz(−β){θo, φo})

=
p∑

q=−p
Dpsq(−α)Ypq(Rz(−β){θo, φo})

=
p∑

q=−p
Dpsq(−α)e−IqβYpq(θo, φo). (5.13)

Finally, putting equation 5.12 and 5.13, we obtain

B̂pq(α, β) =
p∑

s=−p

(
Dpsq(−α)e−Iqβ

)
Bps(α, β). (5.14)

Advantages: SHRMs are a hybrid form, midway between a pure coefficient-based ap-

proach, and an explicit tabular representation. We believe this is a good point in the design

space, and our representation has the following significant advantages:

• Compact, Efficient and Accurate: An important observation from the theoretical

analysis is that for essentially all BRDFs, a very low value of PB (usually ≤ 3)

suffices for high accuracy. This is the formal basis for using a low order spheri-

cal harmonic expansion in the SHRM, and ensures that our representation is very

compact and accurate compared to previous approaches, as well as being efficient to

evaluate for real-time rendering.

• Error analysis and number of coefficients/resolutions: Unlike for other compres-

sion and factorization techniques, the error analysis in section 5.5 does not first re-

quire computation of a dense 4D reflected light field, and allows us to easily deter-

mine the correct order PB of the spherical harmonic expansion and the resolutions of

the reflection maps.

• Rapid computation: In section 5.6, we show how the SHRM can be computed using

frequency domain prefiltering, orders of magnitude faster than previous approaches.
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5.5 Analysis of sampling rates/resolutions

In this section, we present our framework for analyzing the required sampling rates, i.e.

the number of coefficients needed in our spherical harmonic expansions. At the end of the

section, we will justify the SHRM representation based on our analysis.

The sampling rates will depend on the frequency content of the lighting and BRDF. Fig-

ure 5.4 shows spheres rendered with progressively blurred illumination (along the y axis)

and a progressively more diffuse BRDF (along the x axis). It can be seen that the highest

frequencies in the reflected light field are determined approximately by the minimum of the

highest frequencies in the lighting and BRDF. This is not surprising, since we may view

the BRDF as a low pass filter acting on the lighting signal.

As summarized in figure 5.2, we assume the input lighting L(θ, φ) is represented on

an SL × SL grid, where SL is the grid angular resolution, and that the 3D isotropic BRDF

ρ̂(θ′i, θ
′
o, φ) is represented on a grid of size Sρ̂ × Tρ̂ × Tρ̂ where Sρ̂ is the angular resolution

with respect to θ′i and Tρ̂ is the angular resolution with respect to (θo, φ). For simplicity,

we will consider the lighting and BRDF to be represented in latitude-longitude form, i.e.

simply as tabulated values on an equally-spaced grid 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.

Converting to less distorted forms like cubemaps for practical use on graphics hardware is

a straightforward table lookup.

Our prefiltering algorithm computes the lighting coefficients Llm to order FL (i.e. FL is

the maximum value of l) and BRDF coefficients ρ̂lpq to orders Fρ̂ and Pρ̂ (i.e. l ≤ Fρ̂ and

p ≤ Pρ̂). The light field coefficients Blmpq are computed to orders FB and PB . Finally,

we generate the SHRM Bpq(α, β), with the angular size in (α, β) being SB × SB , and the

spherical harmonic expansion up to order PB . Radially symmetric 1D BRDFs can be seen

as special cases of this general framework with Tρ̂ = 1, and Pρ̂ = PB = 0.
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Figure 5.4: Renderings with different lighting and BRDF conditions. The highest frequency
in the images is approximately the minimum of the highest frequencies in the lighting and BRDF.
Specifically, all spheres inside a yellow delimiter look similar.

5.5.1 Order of spherical harmonic expansions

We now analyze required orders F and P in our spherical harmonic expansions. First,

consider the lighting. The total energy of the lighting signal is given by

∫ π
θ=0

∫ 2π

φ=0
L2(θ, φ) sin θ dθdφ =

∞∑
l=0

l∑
m=−l

| Llm |2 . (5.15)

Once we compute the total energy in the lighting, we can estimate the error ε in an order

FL spherical harmonic expansion by considering what fraction of the total lighting energy

is captured up to order FL. To obtain an accuracy 1− ε, we require that

FL∑
l=0

l∑
m=−l

| Llm |2≥ (1− ε)
∫ π
θ=0

∫ 2π

φ=0
L2(θ, φ) sin θ dθdφ. (5.16)

For any given input illumination L(θ, φ) and frequency FL, it is easy to determine what
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the error ε is, and check if it is below threshold. Conversely, if we fix the error threshold

ε, we can compute the required sampling rate or order FL as the minimum frequency for

which the above equation holds. Note that the number of coefficients required measures the

frequency width of the signal, and ε measures the missing (residual) information content.

A similar method may be used for analyzing the BRDF. We give below the separate

results for the 1D radially symmetric and 3D isotropic cases,

Fρ̂∑
l=0

| ρ̂l |2≥ (1− ε)2π
∫ π/2
θi=0

ρ̂2(θi) sin θi dθi. (5.17)

Fρ̂∑
l=0

Pρ̂∑
p=0

min(l,p)∑
q=−min(l,p)

| ρ̂lpq |2≥

(1− ε)2π
∫ π
0

∫ π
0

∫ 2π

0
ρ̂2(θi, θo, φ) sin θi sin θo dθidθodφ. (5.18)

The remaining issue is how to combine the information for lighting and BRDFs to

determine appropriate orders for the reflected light field B. We list below two possible

approaches.

• Minimum of orders or errors: Consider the case where ε = 0 for either the lighting

or BRDF, i.e. one or both is bandlimited. The reflected light field is then exactly

reproduced by using an expansion to order (FB, PB) = (min(FL, Fρ̂), Pρ̂). This

formalizes the intuition that we need to sample densely enough to catch the highest

frequency present simultaneously in both the lighting signal and BRDF filter. This

analysis does not apply rigorously when neither signal is bandlimited, but simply

decays with increasing frequency. Nevertheless, in practice, taking the minimum of

orders for a given error ε is still a good heuristic. Conversely, for a given order of

expansion, we can estimate the error εB = min(εL, ερ̂).

Since the lighting signal usually contains substantial high frequency content, while

the BRDF acts as a low-pass filter, this method often reduces simply to capturing

1− ε of the BRDF energy, i.e. choosing FB, PB = Fρ̂, Pρ̂ or setting εB = ερ̂.

• Bound residual energy: For completeness, we discuss a more rigorous numerical
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scheme, which can be proven to give conservative estimates. The scheme is based

on bounding the residual unaccounted for energy in the reflected light field. One

disadvantage of this method is that, unlike the previous method, we first need to

actually calculate the coefficientsBlmpq of the reflected light field. Thus, this method

is most useful as a final sanity check on the validity of the earlier heuristic.

To derive this bound, we consider an expansion to order F with errors for lighting and

BRDF given by εL and ερ̂. Denote the total BRDF and lighting energies by ρ̂tot and

Ltot. Since the reflected light field coefficients are simply a product of lighting and

BRDF terms, the worst case for the residual energy occurs when it is all concentrated

in mode F + 1. This residual energy, denoted by Bres, and a conservative error

estimate εB are

Bres = ΛF+1 (εLLtot) (ερ̂ρ̂tot)

εB ≤ Bres∑F
l=0

∑l
m=−l |Blm|

2 +Bres
. (5.19)

This is for the radially symmetric case; in general, we simply use Blmpq in place of

Blm. Note that εB tends to 0 as Bres tends to 0. But the latter quantity is a product of

ερ̂ and εL, and therefore always tends to 0 as F increases.

We use a simple example to illustrate these methods. For a particular illumination (the

Grace Cathedral), and a Phong BRDF (exponent s = 32), we computed approximations to

the lighting, BRDF, and reflected light field for increasing values of order F = FL = Fρ̂ =

FB . Since the BRDF is radially symmetric, P = Pρ̂ = PB = 0. We also computed the

reflected light field accurately, by using a very high order F = 30, so we could determine

the errors of lower-order approximations. Figure 5.5 plots the accuracy (top curve) of an

order F approximation of B, as well as estimates of this accuracy obtained by taking the

minimum of BRDF and light errors at order F , and by bounding the residual energy. We see

that both accuracy estimates are conservative but fairly tight, especially for small errors or

high accuracies (at higher frequencies). Further, taking the minimum of lighting and BRDF

errors is almost always equivalent simply to using the BRDF error. Therefore, we choose

the simplest approach of using the BRDF error, requiring ερ̂ be lower than a tolerance that
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the user has selected.
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Figure 5.5: Accuracy (1−ε) versus frequency F for an order F approximation of the reflected light
field B , and estimates of that accuracy obtained by taking the minimum error for BRDF and light-
ing, and by using the conservative bound based on residual energy. We have not separately plotted
using the BRDF error only, as this gives almost exactly the same curve as taking the minimum error
for BRDF and lighting.

5.5.2 Justification for SHRM representation

We seek to determine the best point in the spectrum of time/space or angular/frequency

tradeoffs. For this, we must understand how to relate angular space resolutions S and T to

frequency-space orders F and P . As a simple illustration, consider irradiance maps from

Lambertian BRDFs. It has been shown [2, 72] that an order 2 spherical harmonic expansion

suffices. However, a 3×3 irradiance map will clearly be inadequate. In practice, irradiance

maps are usually represented at angular resolutions higher than 16 × 16. Experimenting

with different resolutions, we have found that in general, one requires S ∼ 10F (and

T ∼ 10P ).

Therefore, a significantly more compact size forB is obtained using spherical harmonic
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coefficients rather than an explicit 4D tabular representation. The other extreme in the spec-

trum of time-space tradeoffs—using a purely coefficient-based approach—is also usually1

undesirable. Efficient rendering of 2D reflection maps having high frequency content, such

as specular reflection maps from Phong BRDFs, is difficult directly from the spherical har-

monic expansion, since O(F 2) terms must be added per pixel, with F generally larger than

10. Rendering the 4D light field purely from coefficients is even harder, requiringO(F2P 2)

terms.

Hence, we believe an intermediate representation, allowing for both compact represen-

tation, and fast rendering, is optimal. In order to determine the best representation for B,

we must know the common values for orders F and P (and hence resolutionsS and T ). Our

results in section 5.7 show that for practically all currently available analytic and measured

BRDFs, values of F ≤ 30 and P ≤ 5 suffice for an accuracy greater than 90%. There-

fore, it is best to encode the view dependence (θ′o, φ
′
o) as a compact (and easily evaluated)

spherical harmonic expansion consisting of (P + 1)2 terms, while explicitly representing

the high-frequency dependence on (α, β). This is the approach taken by SHRMs, where

each pixel (α, β) stores coefficientsBpq(α, β) of an order P spherical harmonic expansion.

5.6 Prefiltering

We now describe our efficient frequency space prefiltering algorithms to create the SHRM

and efficiently implement the pipeline in figure 5.2. Frequency space representations allow

for very efficient computations and are also very compact, requiring evaluation of fewer

terms. Hence our algorithms are much faster than previous angular-space methods. We

will present an analysis of the computational complexity of our algorithms, and end this

section by validating our conclusions on the Phong BRDF.

1For very diffuse BRDFs (Fρ̂ and Pρ̂ both very small), a purely coefficient-based approach may be ac-
ceptable. The most notable example is the Lambertian BRDF (Fρ̂ = 2, Pρ̂ = 0), where a 9 term spherical
harmonic expansion suffices, as seen in the previous chapter.
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5.6.1 Main steps and insights

Our prefiltering method has two main components. First, we must efficiently convert be-

tween angular and frequency space descriptions. Second, we must efficiently compute

coefficients of the reflected light field from lighting and BRDF coefficients. Both compo-

nents can be performed rapidly because of the insights below. The algorithm itself is just

a direct three step efficient implementation of the pipeline of figure 5.2. Implementation

details, and the time complexities of the various steps, are found in section 5.6.2.

Linear time complexity of convolution formula: The reflected light field coefficients

Blmpq can be computed in time linear in the number of output coefficients Blmpq simply by

applying the spherical convolution formula in equation 5.7.

Fast conversion to and from spherical harmonics: We still need to convert from an

angular space representation of L(θ, φ) and ρ̂(θi, θo, φ) to the spherical harmonic coeffi-

cients, as well as generate the SHRM fromBlmpq. As an example, consider computation of

lighting coefficients Llm. For any l, m we have

Llm =
∫ π
θ=0

∫ 2π

φ=0
L(θ, φ)Y ∗

lm(θ, φ) sin θ dθdφ. (5.20)

The cost of performing this integral is O(S2
L). Since we must do this for all coefficients, it

would appear the total cost would beO(F 2
LS

2
L). In fact, we can amortize the cost to compute

all the coefficients in O(FLS2
L) time by writing the spherical harmonics as products of

functions in θ and φ, and then separating the computations in θ and φ. The basic idea is to

compute in succession:

∀m, θ : Lm(θ) =
∫ 2π

φ=0
L(θ, φ)e−Imφ dφ

∀l,m : Llm =
∫ π
θ=0
Lm(θ)flm(θ) sin θ dθ. (5.21)

Here, the spherical harmonic Ylm(θ, φ) = flm(θ)e
Imφ. The first step involves a loop over

(2FL+1)SL elements, each step of which requires numerical integration by adding together

SL values. Thus, the cost isO(FLS2
L). A similar argument shows that the second step takes
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time of O(F 2
LSL). Since FL < SL, the first step dominates, and the total complexity is

O(FLS
2
L). Note that a similar approach can also be used to efficiently compute BRDF

coefficients, and for the inverse transform to compute the SHRM. Fast spherical harmonic

transform methods [61], analogous to the Fast Fourier Transform, may reduce the cost

further2 to logarithmic in FL, i.eO(S2
L log

2 SL) ∼ O(S2
L log

2 FL). However, these methods

are complicated, and although asymptotically faster, have relatively large constant cost

factors. Therefore, they are unlikely to be significantly faster for the low frequencies F ∼
30 relevant for us.

5.6.2 Prefiltering Algorithm

Below, we give full details of our prefiltering algorithm, which is a three-step process that

implements the pipeline in figure 5.2.

Step 1. Compute lighting and BRDF coefficients: We go from the inputs L(θ, φ) and

ρ̂(θi, θo, φ) to the spherical harmonic coefficients Llm and ρ̂lpq. We first compute the spher-

ical harmonic coefficients of the BRDF using the following three step algorithm.

ρ̂q(θi, θo) = 2π
∫ 2π

0
ρ̂(θi, θo, φ) cos qφ dφ

ρ̂pq(θi) =
∫ π
0
ρ̂q(θi, θo)fpq(θo) sin θo dθo

ρ̂lpq =
∫ π
0
ρ̂pq(θi)flq(θi) sin θi dθi. (5.22)

The computational costs of the three terms in the above sequence are given by, respectively,

O(Pρ̂Sρ̂T
2
ρ̂ ),O(P

2
ρ̂Sρ̂Tρ̂), andO(Fρ̂P 2

ρ̂Sρ̂). Since Pρ̂ < Tρ̂, the first term dominates the sec-

ond, and the net cost is O
(
Pρ̂Sρ̂(T

2
ρ̂ + Fρ̂Pρ̂)

)
. For most non radially-symmetric BRDFs,

T 2
ρ̂ > Fρ̂Pρ̂ (for instance, use Tρ̂ ∼ 10, Fρ̂ ∼ 20 and Pρ̂ ∼ 3), so the first term dominates

and the total cost is O(Pρ̂Sρ̂T 2
ρ̂ ).

If our error tolerance ε is satisfied, we see how far Pρ̂ can be reduced to still satisfy

the error tolerance, and then also reduce Fρ̂ as much as possible. We can then set FB and

2Since SL ∼ 10FL, logSL ∼ logFL. Also note that simply using an FFT in step 1 will not suffice, since
step 2 does not have logarithmic complexity.
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PB according to the minimal values of Fρ̂ and Pρ̂. If the error is initially larger than ε, we

repeat the algorithm with larger values for Fρ̂ and Pρ̂. Since computing BRDF coefficients

is not the dominant algorithm cost, this recomputation does not significantly affect the total

time, nor does using large initial values for Fρ̂ and Pρ̂.

Finally, we compute the lighting coefficients in time O(FBS2
L). Note that we have al-

ready determined FB , so we are not required to consider higher frequencies for the lighting,

which is why we use FB instead of FL.

Step 2. Find reflected light field coefficients: We now find Blmpq = Llmρ̂lpq in time

O(F 2
BP

2
B). Note that we have dropped the constant Λl compared to equation 5.7 to avoid

dealing with the factors of Λ−1
l and Λl.

Step 3. Compute SHRM: We now compute the local SHRM. We need to compute

Bpq(α, β) =
∞∑
l=0

l∑
m=−l

Blmpq
(
Dlmq(α)e

Imβ
)
, (5.23)

which can be done efficiently as shown below,

Bmpq(α) =
FB∑
l=|m|

BlmpqD
l
mq(α)

Bpq(α, β) =
FB∑

m=−FB

Bmpq(α)e
Imβ. (5.24)

From this, we can compute the global SHRM B̃pq(α, β) using equation 5.14. The costs of

the two terms in the above sequence are O(F2
BP

2
BSB) and O(FBP 2

BS
2
B). Since SB > FB ,

the net cost is O(FBP 2
BS

2
B). The cost for this step is also the dominant cost for the entire

algorithm.

Radially symmetric BRDFs: For the special case of BRDFs like Lambertian and Phong

models, Tρ̂ = 1 and Pρ̂ = PB = 0. Technically, the complexity formulae above should use

P + 1 instead of P , to yield meaningful results for radially symmetric BRDFs. For these

models, step 1 takes time ofO(Fρ̂Sρ̂) to compute BRDF coefficients ρ̂l, and timeO(FBS2
L)
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to compute lighting coefficients Llm. Step 2 takesO(F 2
B) time. Finally, the SHRM in step 3

includes only the constant term and is therefore a simple reflection mapB(α, β), computed

in time O(FBS2
B). The dominant cost here is to convert to and from spherical harmonic

representations. Assuming we downsample the environment map if necessary so SL ∼ SB ,

the total time is O(FBS2
B) or O(FB) per output image pixel.

Conversion between SHRMs and explicit forms: It is possible to incorporate the pre-

filtering and rendering phases of our algorithm separately into existing systems. SHRMs

may be created from explicit representations simply by fitting coefficients or integrating. If

the implementer wants to use only our fast prefiltering method, but render using previous

explicit representations, they can compute tabular representations from SHRMs. Cabral’s

twelve prerendered reflection maps may be computed very rapidly using equation 5.35,

with (θ̃o, φ̃o) set to vertices of an icosahedron. Kautz and McCool’s [38] 3D texture is

computed by expanding

B(α, β, θo) =
PB∑
p=0

Bp0(α, β)Yp0(θo). (5.25)

This takes time O(PB) per output texel. Using fast conversion methods, we can also ex-

plicitly generate TB × TB reflection maps (a full 4D light field) in time O(PB) per output

pixel, for a total cost of O(PBT 2
BS

2
B).

5.6.3 Computational complexity

The cost of previous angular domain algorithms is O(WS2
L) per pixel in the output, since

they perform a hemispherical integral for each pixel. Here, W is the fraction of the illu-

mination pixels that need be considered, corresponding to the angular width of the BRDF,

with W → 0 for a mirror, and W = 1/2 if one considers the entire visible hemisphere. In

appendix C, we derive the cost for our frequency space algorithm3, which is much lower,

being O(FB) or O(PB) per pixel. Table 5.3 summarizes our main results.

3If we were to use fast spherical harmonic transform methods [61], the asymptotic complexity per output
pixel would be O(log2 FB) or O(log2 PB) instead.
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Type Angular Frequency
Cost /pixel Cost /pixel

1D BRDF WS2
LS

2
B WS2

L FBS
2
B FB

SHRM FBP
2
BS

2
B FB

3D BRDF WS2
LT

2
BS

2
B WS2

L PBT
2
BS

2
B PB

Table 5.3: Computational complexity of prefiltering. We show both total costs and costs per pixel.
The angular costs correspond to hemispherical integration, with W being the BRDF angular width.
The frequency space costs are for our method.

Radially Symmetric 1D BRDFs: The output reflection map size is SB × SB . Standard

hemispherical integration is quadratic in the output size, since we must examine O(WS2
L)

illumination pixels per output pixel and4 SL ≥ SB. By contrast, our frequency space

prefiltering algorithm requires only O(FB) time per output pixel. Since FB � SB < SL,

this method is only slightly super-linear, being substantially sub-quadratic in the output

size.

SHRM creation: The SHRM is a new representation, not created by traditional prefilter-

ing algorithms. We can still compare our prefiltering cost with the theoretical minimal

complexity. As for 1D BRDFs, the cost of our method is O(FB) per output pixel per

coefficient.

3D BRDFs, explicit reflection maps: In order to compare to angular domain methods,

we must produce the same output. We can use the SHRM to explicitly compute a set of

TB×TB reflection maps (with TB ∼ 10PB), similar to the explicit representations of Cabral

et al. [8] or Kautz and McCool [38]5. The cost of traditional prefiltering remains O(WS2
L)

per output pixel. On the other hand, our method takes O(PB) time per pixel. Since PB ≤ 3

in most cases, it can be regarded a constant. Hence, our method is quasi-linear in the

output size. This is a speedup of three to four orders of magnitude—the difference between

near-interactive computation in a few seconds, and prefiltering times in hours reported by

Cabral et al. [8] and other authors.

4One way to compute FB is min(FL, Fρ̂) so FB ≤ FL and SB ≤ SL.
5Since their representation is 3D, we should compute only TB reflection maps.



118 CHAPTER 5. FREQUENCY SPACE ENVIRONMENT MAP RENDERING

5.6.4 Validation with Phong BRDF

In this subsection, we validate our theoretical computational complexity analysis on the

simple radially symmetric Phong model. In this case, Pρ̂ = PB = 0 and the SHRM

reduces to a standard 2D reflection map B(α, β). In the results section, we show timings,

including for more general 3D isotropic BRDFs.

The normalized and reparameterized Phong BRDF is defined by

ρ̂ =
s+ 1

2π
coss θi, (5.26)

where coss θi = (
R · 
L)s. BRDF coefficients ρ̂l can be derived analytically [73], and an

accurate approximation is

ρ̂l ≈ Λ−1
l exp

[
− l

2

2s

]
. (5.27)

In the frequency domain, the order F = FB = Fρ̂ for an error ε is found by the

following sequence of steps,

F∑
l=0

ρ̂2
l = (1− ε)

∞∑
l=0

ρ̂2
l

∫ F
0
le−l

2/s dl ≈ (1− ε)
∫ ∞

0
le−l

2/s dl

1− e−F 2/s ≈ 1− ε

F ≈
√
−s log ε. (5.28)

Ignoring the constant
√
− log ε, the prefiltering cost of our frequency space algorithm

is therefore

Cf = O(FBS
2
B) = O(S

2
B

√
s). (5.29)

In the angular domain, we may truncate the BRDF, so (1 − ε) of the angular domain

energy lies in θi ≤ θ∗i . We find the angular widthW and θ∗i by the following steps,
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∫ θ∗i
0
coss θi sin θi dθi = (1− ε)

∫ π/2
0

coss θi sin θi dθi

1− coss+1 θ∗i = 1− ε

cos θ∗i = ε1/(s+1)

W =
2π

4π

∫ θ∗i
0
sin θi dθi =

1

2

(
1− ε1/(s+1)

)
. (5.30)

We now assume s is large (1/s→ 0) and perform a Taylor series expansion,

W ∼
(
1− ε1/(s+1)

)
=

(
1−
[
1 +

log ε

s+ 1

])
≈ − log ε

s
. (5.31)

Ignoring the factor of log ε, the angular domain prefiltering cost is

Ca = O(WS
2
LS

2
B) = O

(
S2
LS

2
B

s

)
. (5.32)

We note that the frequency space cost Cf increases with increasing Phong exponent

as
√
s, while the angular space cost Ca decreases with increasing Phong exponent as 1/s.

This is entirely expected, since sharp specular surfaces (large s) have a BRDF which is

very local in the angular domain but requires a large number of coefficients to represent

in the frequency domain. Conversely, rough surfaces (small s) are very easily handled in

the frequency domain, but their BRDFs have a large angular width. Therefore, for s < s∗,

our frequency domain methods are to be preferred and for s > s∗, conventional angular

domain techniques are preferable. s∗ can be found by equating equations 5.29 and 5.32,

S2
B

√
s∗ ∼ S2

LS
2
B/s

∗ ⇒ s∗ ∼ S4/3
L . (5.33)

What does this mean numerically? Assume a small size of SL = 100. We then obtain

s∗ ≈ 464. Therefore, in essentially all practical cases of interest, our frequency domain

algorithm is superior to conventional angular domain methods, often by one to two orders

of magnitude. Of course, the actual numerical value for s∗ depends on the constant cost

factors associated with the respective implementations. Our empirical tests, discussed in
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section 5.7.4, show that the practical value of s∗ is actually even higher than predicted.

5.7 Results

We have tested our method using a number of different lighting conditions and BRDFs.

This section reports our main results.

5.7.1 Number of coefficients for analytic BRDFs

The practical values of the orders in the spherical harmonic expansion of the BRDF Fρ̂

and Pρ̂ (and hence FB and PB) will depend on the form of the BRDF, with slowly varying

BRDFs requiring fewer coefficients. As a basic test to determine reasonable empirical

values, we considered three general analytic BRDFs.

Microfacet: Consider a simplified microfacet [84] model,

ρ̂ =
1

4πσ2
e−(θh/σ)

2

, (5.34)

where θh = cos−1( 
N · 
H) is the angle between the normal and the half-angle vector.

Approximations to reflection maps with different values of P = Pρ̂ = PB are shown in

figure 5.6. As expected, the accuracy improves as we use higher values of P . Specifically,

P = 2 suffices to produce very accurate results, with the BRDF error ε < .03. Recall from

section 5.5.1 that we use the BRDF accuracy as a conservative estimate of the accuracy of

the reflected light field. For this BRDF, F = Fρ̂ = FB is given approximately by F ∼ σ−1,

and ranges from 10 to 30 for common values of σ ∼ 0.1. These values of F and P are

typical for most BRDFs. In general, P is very small, while F is usually much larger.

Lafortune BRDF: We also tested the model of [44], with coefficients obtained from the

skin measurements of Marschner et al. [55]. Although the behavior is more interesting,

with much stronger specularities exhibited toward grazing angles, a value of P = 4 still

suffices for an error ε < .03.
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P = 0
87.6%

P = 1
94.8%

P = 2
98.0%

P = 3
99.0%

View 1 View 2Difference image Difference image 

100%
exact

Figure 5.6: Comparing images obtained with different values for P for a simplified microfacet
BRDF model with surface roughness σ = 0.2. These images correspond to two particular views,
i.e. values of (θo, φo). The percentages are fractions of the total energy (1−ε) of the BRDF captured
for that P , which we use as a conservative estimate of the accuracy of the reflected light field. The
exact images at the bottom were computed by a full hemispherical angular-space integral for each
image pixel. For this and subsequent figures, the difference images are not amplified, and we used
FB = 30 and SB = 128.

Kajiya-Kay model: Finally, we tried the Kajiya-Kay [35] model, which is an anisotropic

variant of the Phong BRDF, and depends on incident and outgoing angles with respect to the
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tangent vector. As discussed in section 5.3.1, we may reparameterize by the tangent vector,

to derive ρ̂ = coss(θi − θo). While this paper does not consider general 4D anisotropic

BRDFs, we can handle the Kajiya-Kay BRDF, since it is mathematically analogous to a

(2D) isotropic BRDF after reparameterization. Unlike for ordinary Phong-like BRDFs, we

cannot apply any further reflective reparameterization. Therefore, the value of P required

is large (we found P = 8 for s = 32 and ε < .03). However, there is no azimuthal

dependence, so we require only P + 1 terms Bp0(α, β) in the SHRM instead of (P + 1)2

(i.e. q = 0, with no dependence on φo). Hence, the SHRM is still a very efficient and

compact representation.

5.7.2 Number of coefficients for measured BRDFs

To further evaluate the accuracy of our approximations, we used the CURET database [14].

This database consists of 61 BRDFs and BTFs, corresponding to a variety of materials. For

each sample, there are 205 BRDF measurements, which may be interpolated by fitting

order 8 Zernike polynomials to create a complete BRDF description [43].

Figure 5.7 is a bar chart showing, for each of the 61 samples, the accuracy of a BRDF

approximation6 with Fρ̂ = 30 and values of Pρ̂ ranging from 0 to 5. In 56 cases, the accu-

racy for Fρ̂ = 30 and Pρ̂ = 5 was greater than 90% (ε < 0.1), and was usually significantly

higher (in most cases, ε < .05 for Pρ̂ = 3). The remaining 5 examples (9-frosted glass, 23-

lettuce leaf, 33-slate a, 41-brick b, 57-peacock feather) were all significantly anisotropic.

Therefore, we conclude that for almost all BRDFs of interest, an order PB ≤ 5 suffices

for the SHRM, with F ≤ 30. In fact, for most BRDFs, a quadratic or cubic (second or third

order with PB = 2 or 3) spherical harmonic expansion in the SHRM suffices.

6We reparameterized all BRDFs by the reflection vector. Our results demonstrate that this reparame-
terization is suitable even if the BRDF is not primarily reflective, or consists of both diffuse and specular
components. The specular components are compactly represented, while the diffuse components are low
frequency anyway.
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5.7.3 SHRM accuracy

We now compare images created with SHRMs to the correct image, and to previous ap-

proaches. First, figure 5.8 compares our method to Kautz and McCool’s [38] 3D texture-

mapping technique7, where they approximate the BRDF—and hence, the reflected light

field—as having no azimuthal dependence. For the relatively complex velvet BRDF (CURET

database) in figure 5.8, their approximation introduces large errors, while the SHRM with

PB = 5 is accurate.

Figure 5.9 compares our approach to the correct image and Cabral’s icosahedral inter-

polation. For sharply-varying BRDFs, such as those exhibiting strong near-grazing specu-

larities, or complex anisotropic behavior, Cabral’s approximation can lead to large errors,

while our approach still gives accurate results.

In our approach, the theoretical analysis can be used to systematically trade off accuracy

for compactness and efficiency. Specifically, if Kautz and McCool’s [38] approximation of

2D BRDFs with no azimuthal dependence suffices (q = 0), we get a 3D SHRM with only

PB + 1 terms instead of (PB + 1)2. If Cabral et al.’s [8] icosahedral set of 12 reflection

maps suffices, we can use a very small number of terms (PB = 1 or 2) in the SHRM.

5.7.4 Speed of prefiltering

We first consider Phong BRDFs, experimentally validating the theoretical conclusions of

section 5.6.4. For our frequency domain algorithm, we used ε = .01, conservatively set-

ting FB = 1 +
√
6s. For the angular domain, we were more aggressive, setting ε = .05.

The resolution SL and SB of the inputs and final results were 128, i.e. we generated output

Phong reflection maps at 128 × 128 resolution. According to the theory, this is an appro-

priate resolution for s = 32 and s = 64 (i.e. FB ≈ 12), and is therefore the most suitable

single resolution for the entire range of Phong exponents. The numerical running times

reported in table 5.4 obviously depend on our implementation and hardware. However,

we believe the ratio in running times of angular and frequency domain methods is quite

representative. Furthermore, the timing data can be fit almost precisely to the theoretical

7We use their single lobe model, with the BRDF being an arbitrary 2D function ρ̂ = u(θi, θo). This is
essentially equivalent to setting q = 0 in the local SHRM, using only the azimuthally independent terms.
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predictions of equations 5.29 and 5.32. The results indicate that our prefiltering method is

usually two orders of magnitude faster than angular-space methods, and that Phong BRDFs

can be prefiltered at close to real-time rates using our approach.

Exponent s Time (sec) Ratio
Angular Frequency (Ang/Freq)

8 67.28 0.081 830.6
16 38.03 0.114 333.6
32 21.80 0.159 137.1
64 11.94 0.227 52.6

128 7.17 0.328 21.9
256 3.55 0.461 7.7
512 2.28 0.686 3.3

Table 5.4: Comparison of timings of angular and frequency-space prefiltering for different values
of the Phong exponent s. The timings are on a 1.4GHz Pentium IV.

As predicted by complexity analysis, the speedups are even more dramatic for the gen-

eral case—illustrated using the microfacet model of equation 5.34. In table 5.5, we compare

computation time for our approach and conventional methods. It can be seen that even the

cost for creating the entire SHRM is much less than the cost of hemispherical integration

for a single reflection map. When the cost to explicitly create multiple reflection maps is

considered, our approach is three to four orders of magnitude faster.

σ FB, PB angular-space frequency-space
Time (s) Time/Image (s) Time (s) SHRM (s)

.1 24,3 923 9.23 2.70 1.55

.2 12,2 2744 27.44 1.55 0.72

.3 7,2 5731 57.31 1.49 0.67

.4 5,2 9034 90.34 1.47 0.65

.5 5,2 12580 125.80 1.45 0.64

Table 5.5: Times for angular-space and our frequency-space prefiltering , with TB = 10. The
six columns are the value of the roughness σ, the order of expansion FB, PB for ε < .03, the total
angular-space computational time to create TB×TB = 100 reflection maps, the angular-space time
per reflection map, the total frequency-space time, and the frequency-space time for SHRM creation
(but not explicit generation of reflection maps). Our approach is orders of magnitude faster, and
even creation of the entire SHRM is usually faster than generating only a single image in angular
space.
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5.7.5 Real-time rendering

There are several possibilities for real-time rendering. We could simply evaluate equa-

tion 5.10 in software for each pixel of the final image. If hardware multitexturing support

is available, we may represent the spherical harmonics Ypq(θo, φo) and the local SHRM

coefficients Bpq(α, β) by 2D texture maps. Since we are reparameterizing by the reflection

vector, we will sometimes also refer to Bpq(α, β) as reflection maps. If PB = 2, there

would be 9 terms in the SHRM, corresponding to a total of 18 texture maps. We would

then use graphics hardware to accumulate 9 terms, with each term being the product of two

texture maps, i.e. Bpq(α, β)Ypq(θo, φo). Since this algorithm is essentially that previously

used for rendering factored BRDFs [37, 57], the same code can now be easily adapted for

arbitrary isotropic BRDFs and complex illumination.

A simpler approach is possible when the viewer can be assumed distant, using the

global SHRM in equation 5.11. The spherical harmonics Ypq(θ̃o, φ̃o) need be evaluated

only once per frame, for given viewpoint (θ̃o, φ̃o), instead of at each vertex or pixel. In fact,

it is possible to render the scene using only a single reflection mapping pass. The key idea

is to explicitly sum equation 5.11 to create a single dynamic 2D reflection map B̃(α, β),

which is updated for every frame, i.e. each new viewpoint (θ̃o, φ̃o),

B̃(α, β) =
PB∑
p=0

p∑
q=−p

B̃pq(α, β)Ypq(θ̃o, φ̃o). (5.35)

Our implementation extends the Stanford real-time programmable shading system [68]

to render with global SHRMs using equation 5.35. An advantage of our approach is that

standard reflection maps can be upgraded to SHRMs with no change in the external shader

programs. Internally, we simply update the reflection map for each frame. We compute

equation 5.35 in software, which allows us to easily consider high-dynamic range, and

avoids hardware precision and clamping issues. In the figures, the high-dynamic range

backgrounds are tone-mapped, but the objects themselves are computed and shaded using

a linear scale.

We used a 1.4 GHz Pentium IV running Linux, with an NVIDIA Geforce2 GTS graph-

ics card, for our tests. The reflection (cube)map B̃(α, β) was computed at a resolution of
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64× 64× 6, which is an appropriate resolution for most BRDFs, i.e. F ∼ 20. Since there

is real-time cube mapping hardware, the major cost is that for computing equation 5.35 in

software per frame. We are able to achieve frame rates of approximately 30 frames per

second, with real-time speeds even in scenes with multiple SHRMs. Figure 5.1 shows a

number of examples.

5.8 Conclusions and Future Work

In this chapter, we have presented new frequency-space algorithms for real-time rendering

of complex isotropic BRDFs under arbitrary distant illumination, and have validated our

approach using many different BRDFs and lighting conditions. Our contributions include

theoretical analysis that allows us to precisely determine the orders of our spherical har-

monic expansions, the new compact and efficient SHRM representation for the reflected

light field, and very fast prefiltering algorithms based on spherical harmonic transforms.

We have integrated the three contributions into a complete frequency-space pipeline, as per

figure 5.2. However, it is also easy to convert between SHRMs and previous explicit rep-

resentations. Therefore, the contributions of this paper are relatively independent, and can

also be incorporated separately.

There are several interesting similarities and differences between the SHRM and sur-

face light field representations. In fact, the SHRM can be seen as a surface light field on a

sphere. The main advantage of the SHRM is that it is independent of geometry, i.e. it can

be mapped on to any object geometry using the surface normal.

On the other hand, surface light fields have a number of advantages over SHRMs. They

capture the effects of spatially varying illumination, which includes non-uniform lighting,

as well as geometry-specific interreflection and self-shadowing effects.

Another difference between SHRMS and surface light fields is that our method is pri-

marily a synthetic approach, while surface light fields represent collected data. Of course,

it is possible to convert a surface light field on a sphere to an SHRM, or to synthesize a

surface light field given the geometry, reflectance and illumination.

Since surface light fields are so large, they must be compressed. It has been widely
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assumed that the optimal compression algorithm for light fields will be based on model-

based prediction and coding. SHRMs expose the structure of the reflected light field in

terms of the frequency properties of the illumination and BRDF. It is therefore interesting

to compare spherical harmonic basis functions to PCA-based compression and factorization

methods used for BRDFs [37] and surface light fields [64, 88].

The main advantage of SHRMs is that the theoretical analysis gives insight into the

intrinsic complexity of the reflected light field, given the complexities of the illumination

and reflection functions. This allows us to directly compute the SHRM with the right

order and resolution. Furthermore, our approach is much more efficient than computing a

full PCA on the entire reflected light field. This is because brute-force PCA computation

requires a dense 4D reflected light field as input, and requires computing a singular-value

decomposition, which is an expensive operation. Our approach, in contrast, only computes

the terms that are needed and uses very fast prefiltering methods.

On the other hand, our method uses a predetermined basis—the spherical harmonics,

while PCA-based methods have the advantage of finding an optimal basis to represent a

data set, assuming no a priori knowledge. As future work, it would be interesting to see if

PCA can be run directly on the SHRM in order to compute a compact final representation

efficiently, thus getting the best features of both PCA, and our SHRM representation.

Several aspects of this paper are likely to have broader implications in the general con-

text of rendering. SHRMs are related to Sillion et al.’s [79] spherical harmonic representa-

tion of outgoing light for radiosity computations, but differ in storing Bpq as a function of

orientation (α, β), rather than at each vertex of a geometric model. Because we reparame-

terize by the reflection vector, our representation is much more compact. SHRMs are also

similar in spirit to the representation of Malzbender et al. [53]. Like us, they have a 4D

function with rapid variation over two dimensions (for them, texture), and slow variation

over the other two (for them, illumination). Since spherical harmonics are polynomials of

the cartesian components, their (quadratic) polynomial texture maps can be seen as a subset

of our representation.

One drawback of synthetic IBR is the long time required for precomputation, which

precludes dynamic lighting or interactive manipulation of material properties. Our new

prefiltering method takes an important step in addressing this problem for environment
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maps. However, we do not currently take into account near-field lighting, interreflection or

self-shadowing. In the future, we wish to address these limitations, adapting our prefiltering

method to rapidly compute synthetic surface light fields.

For the special case of radially symmetric BRDFs, Kautz et al. [40] have proposed using

hardware-assisted 2D image convolution. However, while BRDFs are shift-invariant filters

on the spherical domain, they are not shift-invariant in the plane, since projection on to a 2D

image introduces distortion [40], and may lead to inconsistencies—for instance, rotating

the lighting may not correspond simply to rotating the prefiltered image. Our prefiltering

algorithm can be viewed as spherical image processing on the incident illumination, con-

volving it with the BRDF filter. Our speedups are not surprising, given that planar image

convolutions are often more efficiently computed in the Fourier domain. Other approaches

to speed up prefiltering are hierarchical methods [40] and spherical wavelets [78]. How-

ever, there is no wavelet or hierarchical convolution formula, so frequency domain meth-

ods are more appropriate for environment mapping. and will give asymptotically better

results according to our computational complexity analysis. Further, hierarchical methods

can be seen as effectively determining angular resolutions appropriately for a given error

tolerance, which we are able to formally analyze.

There has been considerable recent interest in real-time rendering with complex illumi-

nation and material models. In work simultaneous with ours, Latta and Kolb [47] have used

homomorphic factorization to represent the reflected light field as aa product of textures.

As pointed out in the text, the SHRM may be seen as a sum of a number of terms, each

being the product of factors depending on the reflected and viewing directions. Having a

small number of terms, determined by error analysis, allows greater accuracy. A further

significant advantage of the SHRM is that it can be computed extremely efficiently. On the

other hand, Latta and Kolb’s approach [47] of factoring after computing a dense reflected

light field representation has the advantage of allowing for a number of different factor-

izations, such as using the surface normal instead of the viewing direction, which may be

more suitable for diffuse BRDFs. Also, simultaneous with our work, Sloan et al. [66] have

restricted themselves to low-frequency lighting, but shown how complex light transport

such as shadows and interreflection may be precomputed and then rendered in real-time.
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The SHRM differs in that we consider natural illumination, which has significant high-

frequency content, but assume no shadowing or interreflection.

In the future, we would like to combine and extend the functionality of these different

approaches, so we may handle general near-field illumination, spatially varying realistic

materials, and physically-correct light transport including shadows and interreflection. We

would also like to adapt the methods of this paper, such as the sampling rate analysis and

the SHRM representation, to other image-based rendering problems in graphics.

In summary, natural illumination and accurate BRDFs are of growing importance in

interactive applications, and this chapter has presented a complete frequency-space pipeline

to enable this.

In the these last two chapters, we have seen the application of the signal-processing

framework to problems in interactive forward rendering. The next chapter applies the

framework to inverse rendering—estimating illumination and material properties from im-

ages.
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Figure 5.7: Accuracy of a spherical harmonic BRDF approximation for all 61 BRDFs in the
CURET database. We show 6 values of Pρ̂ ranging from 0 to 5 from left to right. The low orders
for Pρ̂ are shown with light gray diamonds, while a black circle shows the highest order P̂ρ = 5.
Note that the rightmost circle corresponds to an accuracy greater than 90% in 56 of the 61 rows.
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Difference images

Correct image SHRM 2D BRDF (Kautz)

Figure 5.8: Comparing the correct image on the left to those created using SHRMs (middle) and
the 2D BRDF approximation of Kautz and McCool (right).
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Difference images

Difference images

Correct image SHRM Cabral

Figure 5.9: Comparing the correct image to those created using SHRMs and icosahedral interpo-
lation (Cabral’s method). We see that the SHRM image is accurate, while Cabral’s approximation
is inadequate for sharp near-grazing reflections (top), and for complex BRDFs like the anisotropic
Kajiya-Kay model (bottom).



Chapter 6

Inverse Rendering Under Complex

Illumination

The previous two chapters have applied our signal processing framework to efficient render-

ing with environment maps. In this chapter, we switch from forward to inverse rendering,

addressing estimation of lighting and material properties from real photographs.

Accurate modeling of the visual world requires accurate models for object geometry

and appearance. There has been a significant body of computer vision research over the

last two decades on determining shape from observations. However, much less attention

has been paid to determining illumination and reflectance properties, even though the per-

ception of materials may be considered as important as the perception of shape in visual

modeling. Similarly, until recently, computer graphics has focussed on geometric model-

ing and the development of accurate physically-based light transport algorithms. However,

creation of realistic computer-generated images also requires accurate input models of il-

lumination and reflective properties (BRDFs and textures) of surfaces. In the past, the

illumination and reflective properties have usually been set in an ad-hoc manner. This is

often now the limiting factor in the realism of synthetic imagery, and is one reason for the

growth of image-based rendering techniques. In its simplest form, image-based rendering

uses view interpolation to construct new images from acquired images without constructing

a conventional scene model.

The quality of view interpolation may be significantly improved if it is coupled with

133
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inverse rendering. Inverse rendering measures rendering attributes—lighting, textures, and

BRDF—from photographs. Whether traditional or image-based rendering algorithms are

used, rendered images use measurements from real objects, and therefore appear very simi-

lar to real scenes. Measuring scene attributes also introduces structure into the raw imagery,

making it easier to manipulate the scene in intuitive ways. For example, an artist can change

independently the material properties or the lighting.

In the last few years, there has been a significant amount of research in inverse ren-

dering. The methods of Debevec et al. [15], Marschner et al. [55], Sato et al. [77], and

others have produced high quality measurements, leading to the creation of very realistic

images. However, most previous work has been conducted in highly controlled lighting

conditions, usually by careful active positioning of a single point source. Even methods

that work in outdoor conditions, such as those of Yu and Malik [90], Sato and Ikeuchi [76]

and Love [50], are designed specifically for natural illumination, and assume a simple para-

metric model for skylight.

The usefulness of inverse rendering would be greatly enhanced if it could be applied

under general uncontrolled, and possibly unknown, lighting. For instance, this would allow

for application in general unconstrained indoor or outdoor settings, or for estimation of

BRDFs under unknown illumination. There are also a number of applications to human

vision and perception. For instance, Dror et al. [16] have studied reflectance classification

from a single image of a sphere under complex illumination to clarify how well the human

visual system perceives materials, and to develop computational vision methods for the

same task.

One reason there has previously been relatively little work in considering complex il-

lumination is the lack of a common theoretical framework for determining under what

conditions inverse problems can and cannot be solved, and for making principled approxi-

mations. Recently, we [72, 73] have developed a signal-processing framework for reflection

on a curved surface, whereby the reflected light field can be viewed as a spherical convolu-

tion of the incident illumination and the BRDF. This framework can be used to determine

the well-posedness of inverse problems, i.e. analyze which inverse problems can be solved,

and to make appropriate approximations.
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In this chapter, we first develop a taxonomy of inverse problems under complex illu-

mination, indicating which problems have been addressed, which will be solved in this

article, and which remain subjects for future investigations. We will then use the insights

from our previous theoretical analysis to derive new representations and algorithms for

inverse rendering under complex illumination. Our contributions include a new dual an-

gular and frequency-space low parameter representation, and new methods for estimating

BRDFs, illumination, and factoring the reflected light field to simultaneously determine

the lighting and BRDF.

This chapter is an expanded version of the practical aspects of our earlier SIGGRAPH

paper [73]. That earlier work derived the theoretical signal-processing framework and

briefly described applications to inverse rendering. Here, we assume the theoretical frame-

work and focus in more detail on the practical algorithms for inverse rendering under com-

plex illumination.

The rest of this chapter is organized as follows. In section 6.1, we develop a taxonomy

of inverse problems, classifying previous work, and indicating unsolved problems that are

the subject of this paper. In section 6.2, we give some background on our assumptions

and the signal-processing framework we apply here, introducing the main practical impli-

cations. In section 6.3, we use these ideas to derive a new low-parameter dual angular

and frequency space representation applied in the next section. Section 6.4 presents our

new practical algorithms, and illustrates the concepts using spheres of different materials.

Section 6.5 presents our results using complex geometric objects, demonstrating improved

and more general methods for inverse rendering under complex illumination. Finally, sec-

tion 6.6 concludes the chapter and suggests directions for future work.

6.1 Taxonomy of Inverse problems and Previous Work

We introduce a taxonomy of inverse problems and algorithms based on a number of factors.

To motivate the taxonomy, we first write a simplified version of the reflection equation,

omitting visibility. This is the standard reflection equation (c.f. equation 2.8), except that



136 CHAPTER 6. INVERSE RENDERING UNDER COMPLEX ILLUMINATION

we have added a single spatially varying texture T ( 
X) to modulate the reflectance,

B( 
X, θ′o, φ
′
o) =

∫
Ω′

i

T ( 
X)L(θi, φi)ρ(θ
′
i, φ

′
i, θ

′
o, φ

′
o) cos θ

′
i dω

′
i. (6.1)

In practice, we would use separate textures for the diffuse and specular components of the

BRDF, and more generally, the BRDF could be spatially varying, i.e. ρ(
X, θ′i, φ
′
i, θ

′
o, φ

′
o).

The integrand is a product of terms—the texture T ( 
X), the BRDF ρ(θ′i, φ
′
i, θ

′
o, φ

′
o), and

the lighting L( 
X, θ′i, φ
′
i). Inverse rendering, assuming known geometry, involves inverting

the integral in equation 6.1 to recover one or more of ρ, L, or T . If two or more quantities

are unknown, inverse rendering involves factoring the reflected light field. There are a

number of axes along which we can classify inverse problems and solutions, as described

below.

Unknown quantities—Lighting/BRDF/Texture: We may classify inverse problems de-

pending on how many of the three quantities—lighting, BRDF and texture—are unknown.

Considering all possible combinations, this gives rise to a total of seven problem classes.

BRDF representation—low parameter/factored/full measured: Next, we may con-

sider the assumptions made about the form of the illumination and BRDF. Since we are

considering complex illumination, we will assume the lighting to be represented as a 2D

distant illumination field or environment map, although we will also discuss previous work

that makes the assumption of point light sources only. The more interesting axis for us

will be the assumptions made for the BRDF. We may assume the BRDF to be a parametric

low-parameter representation such as the Torrance-Sparrow [84] model. Alternatively, we

may use or estimate a full measured BRDF. In between these two alternatives is the largely

unexplored area of lower-dimensional factored representations [37, 57].

Acquired image dataset—2D/3D/4D: In this chapter, we will assume static scenes, with

multiple images acquired simply by using a new viewing direction. The image datasets we

use could be 2D—corresponding to a single image or a small number of images, 3D—

corresponding to a 1D sequence of 2D images, or 4D—corresponding to a dense sampling

of the entire reflected light field.
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Algorithm and Representation—angular/frequency/dual: Finally, we may classify the

solution methods and representations as working in the spatial or angular domain (as with

most previous work), working purely in the frequency domain, or using a combination of

angular and frequency domains. We develop new algorithms that use either the frequency

domain or a combination of angular and frequency domains.

6.1.1 Previous Work on Inverse Rendering

We now proceed to classify previous work according to the taxonomy above. To fully

describe the taxonomy above in terms of each of the four categories, we would need a four-

dimensional representation. Instead, we will organize the work according to the unknown

quantities. For each of the seven classes, we will discuss the remaining axes of the taxon-

omy. We will then consider unsolved problems, some of which will be addressed in this

chapter.

1. Unknown Texture: We first consider the case when we seek to estimate only the

texture, with the lighting and BRDF known. Previous methods have recovered the diffuse

texture on a surface using a single point light source by dividing by the irradiance in order to

estimate the albedo at each point. Details are given by Marschner [81] and Levoy et al. [49].

More complex methods that also make an estimate of the specular component of the BRDF

will be covered in other categories. Since the texture is simply an albedo map, it is easy

to calculate given the lighting, BRDF, and image data. Therefore, this problem could be

solved simply with any BRDF representation. A single image (2D slice of reflected light

field) suffices in principle, though better estimates may be obtained with more images. No

particular benefit has so far been demonstrated of considering this problem in the frequency

domain, except that irradiance calculations may be more efficient.

2. Unknown BRDF: We now consider the case when the lighting and texture are known,

and we seek to estimate the BRDF. Essentially all work in this category has assumed ho-

mogeneous untextured surfaces, since it is difficult to independently determine the texture.

The BRDF [62] is a fundamental intrinsic surface property. Active measurement methods,

known as gonioreflectometry, involving a single point source and a single observation at
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a time, have been developed. Improvements are suggested by Ward [85] and Karner et

al. [36]. More recently, image-based BRDF measurement methods have been proposed by

Lu et al. [51] and Marschner et al. [55]. These methods work with a single point light

source, and estimate a full BRDF representation. Therefore, they use a large number of

input images. A 3D dataset or 1D sequence of images is required for an isotropic BRDF.

A 4D dataset (or 2D sequence of 2D images) would be required for anisotropic BRDFs.

While some such measurements have been made by Dana et al. [14], as part of the BRDF

data in the CURET database, this data is still very sparse (only 205 measurements for each

sample), and there is room for future work on dense BRDF measurements of anisotropic

materials.

An alternative representation is by low-parameter models such as those of Ward [85]

or Torrance and Sparrow [84]. The parametric BRDF will generally not be as accurate as

a full measured BRDF. However, parametric models are often preferred in practice since

they are compact, and are simpler to estimate. Often, a small number of images suffices

(2D data), and even a single image may be used. There has been some previous work on

determining parametric BRDFs under nontrivial lighting conditions. Love [50] estimates

parametric BRDFs under natural illumination, assuming a low-parameter model for sky-

light and sunlight. Dror et al. [16] use a single image of a homogeneous sphere to classify

the surface reflectance as one of a small number of predetermined BRDFs, making use of

assumed statistical characteristics of natural lighting.

The inverse BRDF problem has not been solved for general illumination. Within this

context, there are a number of open questions, including estimation of low parameter, fac-

tored and full measured representations. It is not obvious how much data (2D/3D/4D) one

needs for each of these tasks or what the best ways of solving the problem (angular vs

frequency domain) are. Some of these problems are addressed in this chapter.

3. Unknown Lighting: A common solution is to use a mirrored ball, as done by Miller

and Hoffman [59]. Marschner and Greenberg [54] find the lighting from a Lambertian

surface. D’Zmura [17] proposes, but does not demonstrate, estimating spherical harmonic

coefficients. For Lambertian objects, we [72] have shown how to recover the first 9 spheri-

cal harmonics. Since we’re assuming here that the lighting is distant and can be described
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by a 2D environment map, a small number of images suffices with any BRDF representa-

tion. However, a single image is usually inadequate because of sampling and conditioning

problems. Previous work has not estimated the lighting from curved surfaces with general

parametric or measured BRDFs. We will address this question here, and demonstrate the

benefits of frequency domain and dual angular/frequency space algorithms.

4. Factorization—Unknown Lighting and BRDF: For the special case when the light-

ing consists of a single source of unknown direction, BRDF estimation methods have been

proposed by Ikeuchi and Sato [31] and Tominaga and Tanaka [83]. Sato et al. [75] use

shadows on a plane to estimate the illumination distribution and the surface reflectance

properties.

However, this problem remains unsolved for complex lighting distributions and curved

surfaces. There are a number of issues to be addressed, including both parametric and mea-

sured BRDF models. As for BRDF estimation, it is not obvious how much data (2D/3D/4D)

is required for each of these cases, nor what the best algorithms (angular/freqeuency) are.

5. Factorization—Unknown Texture and BRDF: This corresponds to recovering tex-

tured, or spatially-varying BRDFs. For estimation of textured parametric BRDFs, a small

number of input images suffices, though using more images gives greater accuracy, and

allows for observation of specular highlights over most of the surface, in at least one of the

input images. Kay and Caelli [41] use a few images, taken under point sources at different

locations, to estimate a simplified Torrance-Sparrow model for each pixel. Sato et al. [77]

rotate an object on a turntable, using a single point source, to recover BRDF parameters

and texture. Yu et al. [89] recover a texture only for the diffuse BRDF component, but

account for interreflections. Sato and Ikeuchi [76] and Yu and Malik [90] recover BRDFs

and diffuse textures under natural illumination, assuming a simple parametric model for

skylight, and using a sequence of images acquired under different illumination conditions.

Most of the above methods recover only diffuse textures; constant values, or relatively

low-resolution textures, are used for the specular parameters. If more detailed models are

sought, a small number of images is no longer sufficient and 4D or larger image datasets

are required. Using a large number of images obtained by moving a point source around a
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sphere surrounding the subject, Debevec et al. [15] acquire the reflectance field of a human

face, and recover parameters of a microfacet BRDF model for each surface location. Dana

et al. [14] generalize BRDFs to a 6D bi-directional texture function (BTF).

6. Factorization—Unknown Lighting and Texture: We can also try to simultaneously

determine the lighting and texture, given a known (in the simplest case, Lambertian) BRDF.

This corresponds to texture estimation under unknown lighting. We have shown [72] that

a distant illumination field can cause only low frequency —with respect to curvature—

variation in the radiosity of a convex Lambertian surface. This implies that, for a diffuse

object, high-frequency texture can be recovered independently of lighting. These observa-

tions are in agreement with the perception literature, such as Land’s retinex theory [46],

wherein high-frequency variation is usually attributed to texture, and low-frequency vari-

ation associated with illumination. However, note that there is a fundamental ambiguity

between low-frequency texture and lighting effects. Therefore, lighting and texture cannot

be factored without using active methods or making further assumptions regarding their

expected statistical characteristics.

For non-Lambertian BRDFs, it would be possible in principle to separate the diffuse

and specular components of the reflected light, based on the change of specular intensity for

different viewing directions. This could then be used to determine the irradiance and hence,

the diffuse texture. We have not in practice found this to be a viable solution technique

because the effects are subtle and the assumed reflection models are not exact. Some recent

results along these lines are reported by Nishino et al. [64], but they also appear to have

difficulty obtaining accurate results.

7. Factorization—Unknown Lighting, Texture, BRDF: Ultimately, we wish to recover

textured BRDFs under unknown lighting. We cannot solve this problem without further

assumptions, because we must first resolve the lighting-texture ambiguity.

Our approach differs from much of the previous work in that it is derived from a math-

ematical theory of inverse rendering. As such, it has similarities to inverse methods used in

areas of radiative transfer and transport theory such as hydrologic optics [67] and neutron
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scattering. See McCormick [58] for a review. Our results are based on recent theoretical

work, where we have formalized the notion of reflection on a curved surface as a spherical

convolution for flatland light fields [70], Lambertian surfaces [72], and finally for general

isotropic BRDFs [73] . For the Lambertian case, similar results have been derived inde-

pendently by Basri and Jacobs [2].

6.1.2 Open Problems

Based on the taxonomy introduced in the previous subsection, we may identify a number of

open problems, some of which will be addressed in this chapter, and some of which identify

directions for future research. In this subsection, we identify some important classes of

open problems, discuss our contributions, and the questions that remain unanswered. In

the next subsection, we will give an overview of our new algorithms and important future

directions of work.

(Textured) BRDF estimation under complex illumination: The inverse-BRDF prob-

lem remains largely unexplored for general complex illumination, as does estimation of

textured BRDFs, although considerable progress has been made for specific models of

skylight illumination [50, 76, 90]. We address this question for parametric BRDF models,

using a small number of views. An important future direction is estimating factored or

measured BRDF representations.

Factorization of Lighting and BRDF: Simultaneous determination of BRDFs and light-

ing under complex uncontrolled illumination for complex geometric surfaces has not been

fully addressed. One of the main practical contributions of this chapter is one solution to

this problem for curved surfaces, allowing us to estimate parametric BRDFs under general

unknown illumination, while also determining the lighting, from a small number of in-

put photographs. Estimation of higher-dimensional or measured BRDFs remains an open

problem.
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Factorization of lighting/BRDF/texture: We have already discussed how factoring light-

ing and texture (and consequently determining lighting, BRDFs and texture simultane-

ously) is an ill-posed problem. However, it is possible to make statistical assumptions or

assume one or more quantities may be represented by a low-parameter function. A full

exploration of these ideas is a subject of future work.

Single-view estimation of lighting and BRDF: While a number of inverse rendering

problems can be solved using a 2D slice of the reflected light field, there has been rela-

tively less work on single view modeling of reflectance and lighting properties. Boivin

and Gagalowicz [6] take a first step, including interreflections, with known lighting from

a small number of point sources. There has also recently been considerable interest in

single-view geometric modeling [65, 92], and single-view reflectance modeling is a natural

extension.

Frequency domain and hybrid angular and frequency space algorithms: Most pre-

vious work has used spatial or angular domain method. By using methods based on our

signal-processing framework [73], we can develop new frequency-space and hybrid an-

gular and frequency-domain representations and methods. We demonstrate the improved

quality of these new approaches.

Our practical contributions include five algorithms for BRDF and lighting estimation

under complex illumination. We present two types of methods—algorithms that recover co-

efficients of a purely frequency-space description of the lighting or BRDF by representing

these quantities as a sum of spherical harmonic terms, and algorithms that estimate param-

eters corresponding to a new dual angular and frequency-space representation introduced

later in this chapter.

It should be noted that a number of the open problems discussed above remain unan-

swered in this chapter, and are directions for future investigation. Specifically, estimation

of factored and full measured BRDF representations under complex illumination remains

an open problem, under both known and unknown lighting. Single view estimation and

modeling of reflectance and illumination also remains an open problem, as does the use of
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statistical and other assumptions for a full factorization into lighting, BRDF and texture.

6.2 Preliminaries

The input to our algorithms consists of object geometry (acquired using a laser range scan-

ner and a volumetric merging algorithm [13]) and photographs from a number of different

viewing directions, with known extrinsic and intrinsic camera parameters. We assume static

scenes, i.e. that the object remains stationary and the lighting remains the same between

views. Our method is a passive-vision approach; we do not actively disturb the environ-

ment. In this chapter, we will also assume the illumination comes from distant sources, as

we have been doing throughout this dissertation, and is a function only of the global inci-

dent direction, which can be represented with an environment map. For simplicity, we will

restrict ourselves to isotropic BRDFs and neglect the effects of interreflection. Our theo-

retical analysis also discounts self-shadowing for concave surfaces, although our practical

algorithms will account for it where necessary. Our assumptions (known geometry, distant

illumination, isotropic BRDFs and no interreflections) are commonly made in computer

vision and interactive computer graphics.

In the theoretical part of this dissertation, in chapters 2 and 3, we have developed a

signal-processing framework for reflection based on the assumptions outlined above, ig-

noring concavities and self-shadowing. Thus, the reflected light field can be expressed as a

spherical convolution of the incident illumination and the BRDF, and expressed as a prod-

uct of spherical harmonic coefficients of the lighting and BRDF. This allows us to view

inverse rendering as deconvolution, or as a factorization of the reflected light field into the

lighting and BRDF. Our analysis also allows us to formally determine which inverse prob-

lems are ill-conditioned or ill-posed versus well-conditioned and well-posed. In particular,

we may view the incident lighting as a signal and the BRDF as a filter, so inverse prob-

lems are ill-posed when certain modes in the signal or filter vanish. For instance, we may

formally say that determining the surface roughness on a cloudy day is ill-posed since the

incident illumination does not include high frequencies, and the high frequencies of the

BRDF cannot therefore be estimated.

Our theory leads to several new insights by reformulating reflection in the frequency
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domain. However, the frequency-space ideas must be put into practice carefully. This

is analogous to practical implementation of the Fourier-space theory of aliasing. The ideal

Fourier-space bandpass filter in the spatial domain, the sinc function, is usually modified for

practical purposes because it has infinite extent and leads to ringing. Similarly, representing

BRDFs purely as a linear combination of spherical harmonics leads to ringing. Moreover,

it is difficult to compute Fourier spectra from sparse irregularly sampled data. Similarly,

it is difficult to compute the reflected light field coefficients from a few photographs; we

would require a very large number of input images, densely sampling the entire sphere of

possible directions.

Here, we consider the implications of the theoretical analysis for practical inverse ren-

dering algorithms. We first briefly discuss a number of practical implications of the theory.

We then use these ideas to derive a simple practical model of the reflected light field for the

microfacet BRDF. A similar form can be derived for other common BRDFs like the Phong

reflection model. This representation will be used extensively in the practical algorithms of

section 6.4.

6.2.1 Practical implications of theory

We now discuss a number of ideas and quantitative results obtained from the theory that

influence our practical representations.

Dual Angular and Frequency-Space Representations: Quantities local in angular space

have broad frequency spectra and vice-versa. By developing a frequency-space view of

reflection, we ensure that we can use either the angular-space or frequency-space represen-

tation, or even a combination of the two. The diffuse BRDF component is slowly varying

in angular-space, but is local in frequency-space, while the specular BRDF component is

local in the angular domain. For representing the lighting, the frequency-space view is ap-

propriate for the diffuse BRDF component, while the angular-space view is appropriate for

the specular component.

Irradiance formula: For the Lambertian BRDF component, we have derived [72] a sim-

ple analytic formula, and have shown that the irradiance at all surface orientations can
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be approximated to within 1% using only 9 parameters, i.e. coefficients of spherical har-

monics up to order 2. Thus, it makes sense to apply this simple formula where possible,

representing the diffuse component of the reflected light field in the frequency domain.

Associativity of convolution: Because the coefficients of the reflected light field in the

frequency domain are simply a product of the spherical harmonic coefficients of the in-

cident illumination and the BRDF, we may apply the associativity of convolution. Thus,

we can blur the illumination and sharpen the BRDF without changing the final results. In

the extreme case, for specular models like the Phong BRDF, we may treat the BRDF as

a mirror, while blurring the illumination, convolving it with the BRDF filter. Within the

context of environment map rendering [22, 59], this is known as prefiltering. Besides in-

creased efficiency, this approach also allows for very efficient approximate computation of

shadows. One need simply check the reflected ray, as if the surface were a mirror, which is

a simple operation in a raytracer.

Separation of slow and fast-varying lighting: In general, because the lighting and

BRDF are not one-dimensional quantities, applying the associativity property above de-

stroys the symmetries and reciprocity of the BRDF, so we cannot simply blur the illumi-

nation and treat the BRDF as a perfect mirror. However, for radially symmetric specular

BRDFs, like the Phong model, where the BRDF depends only on the angle between the

incident illumination and the reflection of the viewing direction about the surface normal,

this is a valid operation. Therefore, we separate the illumination into slow and fast-varying

components, corresponding to area sources and point sources. It can be shown that for

low-frequency lighting, models like the microfacet BRDF (Torrance-Sparrow [84] model)

behave much like a Phong model (the dominant term is Phong-like reflection), so that we

may blur the illumination and treat the BRDF as a mirror. Furthermore, the largest er-

rors in this approximation occur for grazing angles, where measurements are accorded low

confidence in practical applications anyway. The fast-varying lighting components may

be treated as point sources, which makes it easy to find angular-space formulae for the

reflected light field.

It should be noted that the theoretical analysis is conducted without taking concavities
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into account. We will derive our representation in the next section under the convex-surface

assumption. However, we will also show there how the representation can be simply ex-

tended to account for textured objects and cast shadows.

6.3 Dual angular and frequency-space representation

In a sense, the practical implications discussed above simply formalize a reflection model

commonly used when rendering with environment maps. In that context, the BRDF is

assumed to be a combination of Lambertian diffuse and Phong specular reflection. The

reflected light is then the combination of a diffuse irradiance map due to the Lambertian

BRDF component and a specular reflection map due to the specular Phong lobe. Our the-

oretical analysis allows for two practical improvements to be made. Firstly, the irradiance

map can be represented using only 9 parameters in the frequency domain, which makes

computations more efficient and compact. Secondly, we may use a single angular-space

reflection map as a good approximation for the specular reflections, even for more com-

plex physically-based BRDFs like the microfacet model [84], provided we first separate

the lighting into slow and fast-varying components.

In this chapter, we will use a simplified Torrance-Sparrow [84] model, defined as fol-

lows. Please note that to simplify the notation, we use 
ω′
i and 
ω′

o to denote the (unit vector)

incident (θ′i, φ
′
i) and outgoing (θ′o, φ

′
o) directions,

ρ(
ω′
i, 
ω

′
o) = Kd +Ks

FS

4 cos θ′i cos θ
′
o


ω′
h =


ω′
i + 
ω

′
o

‖ 
ω′
i + 
ω

′
o ‖

F =
F (µ, θo)

F (µ, 0)

S =
1

πσ2
exp
[
− (θ′h/σ)

2
]
. (6.2)

Here, ρ is the BRDF, and σ is the surface roughness parameter. The subscript h stands for

the half-way vector. F (µ, θ′o) is the Fresnel term for refractive index µ; we normalize it

to be 1 at normal exitance. Actually, F depends on the angle with respect to the half-way
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vector; in practice, this angle is usually very close to θ′o. For simplicity in the analysis,

we have omitted the geometric attenuation factor G. In practice, this omission is not very

significant except for observations made at grazing angles, which are usually assigned low

confidence anyway in practical applications.

6.3.1 Model for reflected light field

Our model for the reflected light from the microfacet BRDF now includes three terms,

B = Bd +Bs,slow +Bs,fast. (6.3)

Here, B is the net reflected light field. The component because of the diffuse part in the

BRDF is denotedBd. Bs,slow represents specularities from the slowly-varying lighting, and

Bs,fast specular highlights from the fast varying lighting component.

We may represent and compute Bd in the frequency domain by using the irradiance

formula (which corresponds directly to the reflection from a Lambertian surface). We use

the 9 parameter representation, explicitly noting the frequency l ≤ 2,

Bd = KdE(α, β)

E(α, β) =
2∑
l=0


ρ̂l +l∑

m=−l
LlmYlm(α, β)


 . (6.4)

Here, E is the irradiance, and Kd is the albedo or coefficient for diffuse reflection. The

surface is parameterized by its orientation or surface normal in spherical coordinates (α, β).

The spherical harmonics are denoted by Ylm, and the spherical harmonic coefficients of the

lighting by Llm. The numerical values of ρ̂l are given by

ρ̂0 = π ρ̂1 = 2π/3 ρ̂2 = π/4. (6.5)

For Bs,slow, we filter the lighting, and treat the BRDF as a mirror. With 
R denoting the

reflected direction, and Lslow the filtered version of the lighting, we obtain

Bs,slow = KsF (µ, θ
′
o)Lslow(
R). (6.6)
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The filtered version of the illumination Lslow is obtained by multiplying the illumination

coefficients by those of a filter corresponding to the term S in the microfacet BRDF of

equation 6.2, i.e.

Lslowlm = exp
[
− (σl)2

]
Llm. (6.7)

In the angular domain, this corresponds to convolving with a filter of angular width approx-

imately σ−1, or using a normalized Phong lobe with Phong exponent 1
2
σ−2.

For the fast varying portion of the lighting—corresponding to sources of angular width

� σ—we treat the total energy of the source, given by an integral over the (small) solid

angle subtended, as located at its center, so the lighting is a delta function. Bs,fast is given

by the standard equation for the specular highlight from a directional source. The extra

factor of 4 cos θ′o in the denominator as compared to equation 6.6 comes from the relation

between differential microfacet and global solid angles,

Bs,fast =
KsF (µ, θ

′
o)

4 cos θ′o

∑
j

Tj

Tj = exp
[
− (θ′h/σ)

2
] (Lj,fast

πσ2

)
. (6.8)

The subscript j denotes a particular directional source; there could be several. Note that

Lj,fast is now the total energy of the source.

For BRDF estimation, it is convenient to expand out these equations, making depen-

dence on the BRDF parameters explicit,

B = Kd
2∑
l=0


ρ̂l +l∑

m=−l
LlmYlm(α, β)


+KsF (µ, θ′o)


Lslow(
R) + 1

4 cos θ′o

∑
j

Tj(σ)


 .
(6.9)

6.3.2 Textures and shadowing

We now show how to extend our representation to account for object textures and self-

shadowing on complex concave geometry. The representation can be extended to textured

surfaces simply by letting the BRDF parameters (such as Kd and Ks) be functions of sur-

face location. It would appear that concave regions, where one part of the surface may
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shadow another, are a more serious problem since our theory is developed for convex ob-

jects and assumes no self-shadowing. However, in the remainder of this section, we will see

that the extensions necessary mainly just involve checking for shadowing of the reflected

ray and directional sources, which are routine operations in a raytracer.

We consider each of the three terms in our model of the reflected light field. In the

presence of shadows, the 9 parameter model can no longer be used to directly computeBd.

Instead, the irradiance may be computed in the more conventional angular-space way by

integrating the scene lighting while considering visibility. Alternatively, we can continue

to use a spherical harmonic approximation, making use of the linearity of light transport.

Note that the irradiance can still be written as a linear combination of lighting coefficients.

Thus, we may replace equation 6.4 by

Bd = KdE(
x)

E(
x) =
lmax∑
l=0

+l∑
m=−l

LlmỸlm(
x). (6.10)

Here, we have increased the maximum frequency from 2 to lmax, where lmax can be larger

than 2. Further, we have replaced the spherical harmonics with Ỹlm. Ỹlm is the effect of

the illumination spherical harmonic Ylm. Since this effect now depends on the specific

shadowing patterns, we have replaced the surface normal (α, β) with the position 
x. For

convex objects, as per equation 6.4, Ỹlm(
x) = ρ̂lYlm(α, β).

For the specular components of the reflected light field, we simply check if the reflected

ray (for the “slow” component) or the point sources (for the “fast” component) are shad-

owed. The main benefit is for slow specularities, where instead of a complex integration

including visibility, the effects of shadowing are approximated simply by checking the re-

flected ray. It should be emphasized that in all cases, the corrections for visibility depend

only on object geometry and viewing configuration (to determine the reflected direction),

and can be precomputed for each point on the object using a ray tracer. Thus, we may

replace equation 6.6 by

Bs,slow = KsF (µ, θ
′
o)Lslow(
R)V (
R). (6.11)
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where V is a binary value specifying if the reflected ray is unshadowed. Similarly, a vis-

ibility term needs to multiply Tj in equation 6.8. Putting it all together, and including the

effects of textures, by making the diffuse and specular reflectances function of position 
x,

equation 6.9 becomes

B = Kd(
x)
lmax∑
l=0

+l∑
m=−l

LlmỸlm(
x)+Ks(
x)F (µ, θ
′
o)


V (
R)Lslow(
R) + 1

4 cos θ′o

∑
j

VjTj(σ)


 .

(6.12)

6.4 Algorithms

This section presents our practical algorithms for a broad range of inverse rendering prob-

lems under complex illumination, with simple illustrations using spheres of different ma-

terials. Our results using more complex geometric objects are presented in the next sec-

tion. We describe two types of methods—algorithms that recover coefficients of a purely

frequency-space description of the lighting or BRDF by representing these quantities as a

sum of spherical harmonic terms, and algorithms that estimate parameters corresponding

to our dual angular and frequency-space model of section 6.3. Section 6.4.2 on BRDF

estimation discusses direct recovery of spherical harmonic BRDF coefficients, as well as

estimation of parametric microfacet BRDFs using equations 6.9 and 6.12. Similarly, sec-

tion 6.4.3 demonstrates direct recovery of spherical harmonic lighting coefficients, as well

as estimation of a dual angular and frequency-space lighting description as per the model

of section 6.2. Finally, section 6.4.4 shows how to combine BRDF and lighting estimation

techniques to simultaneously recover the lighting and BRDF parameters, when both are

unknown. In this case, we do not show direct recovery of spherical harmonic coefficients,

as we have thus far found this to be impractical.
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6.4.1 Data Acquisition

To experimentally test our methods, we first used homogeneous spheres1 of different ma-

terials. Spheres are naturally parameterized with spherical coordinates, and therefore cor-

respond directly to our theory. Later, we also used complex objects—the next section

demonstrates results using a white cat sculpture, and a textured wooden doll—to show the

generality of our methods.

We used a mechanical gantry to position an inward-looking Toshiba IK-TU40A CCD(x3)

camera on an arc of radius 60cm. Calibration of intrinsics was done by the method of

Zhang [93]. Since the camera position was computer-controlled, extrinsics were known.

The mapping between pixel and radiance values was also calibrated. We acquired 60 im-

ages of the target sphere, taken at 3 degree intervals on a great-circle (or equatorial) arc.

A schematic and photograph of our setup are in figure 6.1. To map from image pixels to

OBJECT POINT SOURCE

CAMERA PATHAREA SOURCE

OBJECT
POINT
SOURCE

CAMERA

AREA
SOURCE

Figure 6.1: Left: Schematic of experimental setup Right: Photograph

angular coordinates (α, β, φ′o, φ
′
o), we used image silhouettes to find the geometric location

of the center of the sphere and its radius.

Our gantry also positioned a 150W white fiberoptic point source along an arc. Since

this arc radius (90 cm) was much larger than the sphere radii (between 1.25 and 2cm), we

treated the point source as a directional light. A large area source, with 99% of its energy in

low-frequency modes of order l ≤ 6, was obtained by projecting white light on a projection

screen. The lighting distribution was determined using a mirror sphere. This information

was used directly for experiments assuming known illumination, and as a reference solution

for experiments assuming unknown illumination.

We also used the same experimental setup, but with only the point source, to measure

1Ordered from the McMaster-Carr catalog http://www.mcmaster.com
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the BRDF of a white teflon sphere using the image-based method of Marschner et al. [55].

This independent measurement was used to verify the accuracy of our BRDF estimation

algorithms under complex illumination.

6.4.2 Inverse BRDF with known lighting

Estimation of Spherical Harmonic BRDF coefficients: Spherical harmonics and Zernike

polynomials have been fit [43] to measured BRDF data, but previous work has not tried to

estimate coefficients directly. Since the BRDF is linear in the coefficients ρ̂lpq, we simply

solve a linear system to determine ρ̂lpq, to minimize the RMS error with respect to image

observations2. It should be noted that in so doing, we are effectively interpolating (and

extrapolating) the reflected light field to the entire 4D space, from a limited number of

images.

Figure 6.2 compares the parametric BRDFs estimated under complex lighting to BRDFs

measured using a single point source with the method of Marschner et al. [55]. As ex-

pected [43], the recovered BRDFs exhibit ringing. One way to reduce ringing is to atten-

uate high-frequency coefficients. According to our theory, this is equivalent to using low

frequency lighting. Therefore, as seen in figure 6.2, images rendered with low-frequency

lighting do not exhibit ringing and closely match real photographs, since only the low-

frequency components of the BRDF are important. However, images rendered using direc-

tional sources show significant ringing.

For practical applications, it is usually more convenient to recover low-parameter BRDF

models since these are compact, can be estimated from relatively fewer observations, and

do not exhibit ringing. In the rest of this section, we will derive improved inverse rendering

algorithms, assuming a parametric microfacet BRDF model.

Estimation of parametric BRDF model: We estimate BRDF parameters under general

known lighting distributions using equation 6.9. The inputs are images that sample the

reflected light field B. We perform the estimation using nested procedures. In the outer

procedure, a simplex algorithm adjusts the nonlinear parameters µ and σ to minimize RMS

2Since the number of image pixels in a number of views can be very large, we randomly subsample the
data for computational simplicity. We have used 12000 randomly selected image pixels.
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Figure 6.2: Direct recovery of BRDF coefficients. Top: Slices of the BRDF transfer function
of a teflon sphere for fixed exitant angle of 63◦. φ′

o varies linearly from 0◦ to 90◦ from top to
bottom, and | φ′o − φi | linearly from 0◦ to 360◦ from left to right. The central bright feature
is the specular highlight. Left is the BRDF slice independently measured using the approach of
Marschner et al. [55], middle is the recovered value using a maximum order 6, and right is the
recovered version for order 12. Ringing is apparent in both recovered BRDFs. The right version is
sharper, but exhibits more pronounced ringing. Bottom: Left is an actual photograph; the lighting
is low-frequency from a large area source. Middle is a rendering using the recovered BRDF for
order 6 and the same lighting. Since the lighting is low-frequency, only low-frequency components
of the BRDF are important, and the rendering appears very similar to the photograph even though
the recovered BRDF does not include frequencies higher than order 6. Right is a rendering with a
directional source at the viewpoint, and exhibits ringing.

error with respect to image pixels. In the inner procedure, a linear problem is solved for

Kd and Ks. For numerical work, we use the simplex method e04ccc and linear solvers

f01qcc and f01qdc in the NAG [25] C libraries. The main difference from previous

work is that equation 6.9 provides a principled way of accounting for all components of the

lighting and BRDF, allowing for the use of general illumination conditions.

We tested our algorithm on the spheres. Since the lighting includes high and low-

frequency components (a directional source and an area source), the theory predicts that

parameter estimation is well-conditioned. To validate our algorithm, we compared param-

eters recovered under complex lighting for one of the samples, a white teflon sphere, to

those obtained by fitting to the full BRDF separately measured by us using the method of
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Marschner et al. [55]. Unlike most previous work on BRDF estimation, we consider the

Fresnel term. It should be noted that accurate estimates for the refractive index µ require

correct noise-free measurements at grazing angles. Since these measurements tend to be

the most error-prone, there will be small errors in the estimated values of µ for some ma-

terials. Nevertheless, we find the Fresnel term important for reproducing accurate specular

highlights at oblique angles. It should also be noted that while the results are quite accurate,

there is still potential for future work on appropriate error metrics, especially for estimation

of the roughness σ; a linear RMS error may not always be optimal.

Parameter Our Method Fit to Data
Reflectance 0.86 0.87

Kd/(Kd +Ks) 0.89 0.91
Ks/(Kd +Ks) 0.11 0.09

µ 1.78 1.85
σ 0.12 0.13

RMS 9.3% 8.5%

Figure 6.3: Comparison of BRDF parameters recovered by our algorithm under complex lighting
to those fit to measurements made by the method of Marschner et al. [55].

The results in figure 6.3 show that the estimates of BRDF parameters from our method

are quite accurate, and there is only a small increase in the error-of-fit when using parame-

ters recovered by our algorithm to fit the measured BRDF. We also determined percentage

RMS errors between images rendered using recovered BRDFs and real photographs to be

between 5 and 10%. A visual comparison is shown in the first and third rows of figure 6.8.

All these results indicate that, as expected theoretically, we can accurately estimate BRDFs

even under complex lighting.

Textured objects with complex geometry: Handling concavities in complex geomet-

ric objects is not significantly more difficult, since we simply need to take visibility into

account, and use equation 6.12 instead of equation 6.9. Equation 6.12 can also be used

directly to estimate textured BRDFs. However, there are a number of subtle differences

from direct BRDF estimation, which are noted below.

In considering textured surfaces, we essentially wish to consider each point on the
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surface separately, estimating a BRDF for each point independently from observations of

that point alone. However, we now have only a few observations for each point (the number

of images used). If there were no image noise, and our simplified four parameter microfacet

model were a perfectly accurate description of the surface, this would still be sufficient.

However, in practice, we are not able to reliably estimate the nonlinear parameters from

such sparse data. This is true even for point source illumination, and has been observed

by many authors. In our case, since we have complex illumination, the problem is even

harder. Therefore, like much previous work, we assume the nonlinear parameters σ and

µ are constant across the surface. A weaker assumption would be to allow them to vary

slowly, or break the surface into regions of constant µ and σ.

Therefore, we will solve for the global nonlinear parameters σ and µ, as well as the

diffuse and specular textures, Kd(
x) and Ks(
x). The corresponding radiance values for

each image observation can be written as

B = Kd(
x)D +Ks(
x)S(µ, σ), (6.13)

whereD andS stand for the diffuse and specular components computed from equation 6.12.

These depend only on the lighting and viewing configuration, and S also depends on the

nonlinear parameters µ and σ. It should be noted that much previous work has assumed

constant values for the specular coefficient. The reason is that specularities are not usu-

ally observed over the whole object surface. By using complex illumination, we alleviate

this problem somewhat, since large regions of the object can exhibit specularity in a single

image. Nevertheless, there might be dimly lit regions or places where no specularities are

observed in a sequence of views, and we will not be able to estimate coefficients in these

regions. Therefore, we introduce confidence measures to enscapsulate the importance of

each observation,

Wd =
D cos θ′o
ε+ S

Ws = S cos θ′o. (6.14)
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Here, Wd and Ws are the confidence parameters for diffuse and specular reflection respec-

tively. The multiplication by cos θ′o is to give less weight to observations made at grazing

exitant angles. ε is a small constant to avoid divisions by 0. In the diffuse weight Wd, we

give greater importance to well illuminated pixels (high values of D) without too much

specularity. In the specular weight Ws, we give importance to pixels observing strong

specular reflections S.

Parameter estimation now proceeds much as BRDF estimation for untextured surfaces.

Initially, we solve for values of the nonlinear parameters µ and σ using a simplex algorithm

(outer loop). To account for regions where specularity is not strongly observed, in this

phase, we include Ks as a global parameter to be solved for. In the inner loop of the

procedure, we solve (at each point separately) for Kd(
x) to minimize the RMS error over

all views. The output from this stage are parameters Ks, µ and σ, as well as an initial

estimate of the diffuse texture Kd(
x). We use these global values of µ and σ. The global

estimated value of Ks will be used in regions where a better estimate is not possible, but

will in general be refined. In this first pass of the algorithm, we weight each observation

using the confidence weightWd.

We then use an iterative scheme to refine the estimates of Ks and Kd. While we could

simply solve a linear system, corresponding to equation 6.13, for each vertex on the object,

we have obtained better results using an iterative scheme, alternatively solving for Kd(
x)

and Ks(
x) while keeping the other fixed. Since we use the dielectric model, Ks has no

color, and we recover 4 linear texture parameters for each pixel (a diffuse RGB color and

a specular coefficient). It should be noted that different confidence weights (Wd or Ws)

are used in the iteration, depending on whether we are estimating the diffuse or specular

component of the texture. We start by using a constant value of Ks, and the corresponding

value of Kd(
x) recovered in the first phase, where we solved for µ and σ. We then hold

Kd(
x) fixed and solve for Ks(
x). Thereafter, we hold Ks(
x) fixed and solve for Kd(
x),

and repeat this process till convergence to the desired tolerance, which usually takes a few

iterations.

There can of course be cases where
∑
Ws or

∑
Wd (the summation is over all views of

that point) are too low (numerically zero) to accurately estimate specular or diffuse textures

respectively. This corresponds to not observing specularities (when
∑
Ws is close to 0), or
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having the point being so dimly lit that the texture isn’t discernible (when
∑
Wd is close

to 0). In the former case, we simply use the mean value of the specular texture, while in

the latter case, we mark the diffuse texture estimate as unreliable. It should be noted that

using complex illumination greatly reduces the number of points where this is an issue,

since much more of the object receives illumination and exhibits specularities than with a

point light source.

6.4.3 Inverse Lighting with Known BRDF

Previous methods for estimating the lighting have been developed only for the special cases

of mirror BRDFs (a gazing sphere), Lambertian BRDFs (Marschner and Greenberg [54]),

and when shadows are present (Sato et al. [75]). Previous methods [54, 75] have also re-

quired regularization using penalty terms with user-specified weights, and have been lim-

ited by the computational complexity of their formulations to a coarse discretization of the

sphere. We present two new algorithms for curved surfaces with general BRDFs. The

first method directly recovers spherical harmonic lighting coefficients Llm. The second

algorithm estimates parameters of the dual angular and frequency-space lighting model of

section 6.2. This method requires no explicit regularization, and yields high-resolution re-

sults that are sharper than those from the first algorithm, but is more difficult to extend to

concave surfaces.

The theory tells us that inverse lighting is ill-conditioned for high-frequencies. There-

fore, we will recover only low-frequency continuous lighting distributions, and will not

explicitly account for directional sources, i.e. we assume that Bs,fast = 0. The reflected

light field is essentially independent of the surface roughness σ under these conditions, so

our algorithms do not explicitly use σ. The theory predicts that the recovered illumination

will be a filtered version of the real lighting. Directional sources will appear as filtered into

continuous distributions of angular width approximately σ.

Estimation of Spherical Harmonic Lighting coefficients: We may represent the light-

ing entirely in frequency-space by coefficients Llm with l ≤ l∗, and solve a linear least-

squares system for Llm. The first term in parentheses below corresponds to Bd, and the
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second to Bs,slow. The cutoff l∗ is used for regularization, and should be of order l∗ ∼ σ−1.

Since most materials have σ ∼ .1, we use l∗ = 12,

B =
l∗∑
l=0

l∑
m=−l

Llm (Kdρ̂lYlm(α, β) +KsFYlm(θR, φR)) . (6.15)

To extend this to concave surfaces, we simply need to add terms corresponding to visi-

bility and shadowing, following equation 6.12, but the problem remains a linear system,

B =
l∗∑
l=0

l∑
m=−l

Llm
(
KdỸlm(
x) +KsFV (θR, φR)Ylm(θR, φR)

)
. (6.16)

Estimation of Parametric Dual Lighting Model: Another approach is to estimate the

dual angular and frequency-space lighting model of section 6.2. Our algorithm is based

on subtracting out the diffuse component Bd of the reflected light field. After this, we

treat the object as a mirror sphere, recovering a high-resolution angular-space version of

the illumination from the specular component alone. To determine Bd, we need only the

9 lowest frequency-space coefficients Llm with l ≤ 2. Our algorithm uses the following

methods to convert between angular and frequency-space:

1. 9 parameters to High-Resolution Lighting: The inputs to phase 1 are the coef-

ficients L1
lm. These suffice to find B1

d by equation 6.4. Since we assumed that

Bs,fast = 0,

Bs,slow = KsF (µ, θ
′
o)Lslow(
R) = B −B1

d(L
1
lm)

Lslow(
R) =
B −B1

d(L
1
lm)

KsF (µ, θ′o)
. (6.17)

We assume the BRDF parameters are known, and B is the input to the algorithm, so

the right-hand side can be evaluated.

In practice, we will have several observations corresponding to the reflected direc-

tion, and these will be weighted by the appropriate confidence and combined. For
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Figure 6.4: Estimation of dual lighting representation. In phase 1, we use frequency-space
parameters L1

lm to compute diffuse component B1
d . This is subtracted from the input image, leaving

the specular component, from which the angular-space lighting is found. In phase 2, we compute
coefficients L2

lm, which can be used to determine B2
d . The consistency condition is that B1

d = B2
d or

L1
lm = L2

lm. In this and all subsequent figures, the lighting is visualized by unwrapping the sphere
so θ ranges in equal increments from 0 to π from top to bottom, and φ ranges in equal increments
from 0 to 2π from left to right (so the image wraps around in the horizontal direction).

simplicity, the rest of the mathematical discussion will assume without loss of gen-

erality, that there is a single image observation for each reflected direction.

2. High-Resolution Lighting to 9 parameters: Using the angular space values L

found from the first phase, we can easily find the 9 frequency-space parameters of

the lighting L2
lm.

Now, assume we run phase 1 (with inputs L1
lm) and phase 2 (with outputs L2

lm) sequentially.

The consistency condition is that L1
lm = L

2
lm—converting from frequency to angular to fre-

quency space must not change the result. Equivalently, the computed diffuse components

must match, i.e. B1
d(L

1
lm) = B2

d(L
2
lm). This is illustrated in figure 6.4. Since everything

is linear in terms of the lighting coefficients, the consistency condition reduces to a sys-

tem of 9 simultaneous equations. After solving for Llm, we run phase 1 to determine the

high-resolution lighting in angular space.

More formally, phase 1 can be written as a linear system in terms of constants U and

Wlm, with (α, β) the coordinates of the surface normal,
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Lslow(θR, φR) = U(θR, φR)−
2∑
l=0

l∑
m=−l

Wlm(θR, φR)L
1
lm

U(θR, φR) =
B

KsF (µ, θ′o)

Wlm(θR, φR) =
Kdρ̂lYlm(α, β)

KsF (µ, θ′o)
. (6.18)

Phase 2 to compute the lighting coefficients can also be written as a linear expression

in terms of all the (discretized) reflected directions,

L2
lm =

2π2

N2

N∑
i=1

N∑
j=1

sin θiLslow(θi, φj)Y
∗
lm(θi, φj). (6.19)

Here, N is the angular resolution, with the summation being a discrete version of the inte-

gral to find lighting coefficients.

But, the summation on the right hand side can be written in terms of lighting coefficients

L1
lm, simply by plugging in the formula for Lslow. We now obtain

L2
lm =

2π2

N2

N∑
i=1

N∑
j=1

sin θi


U(θi, φj)− 2∑

l′=0

l′∑
m′=−l′

Wl′m′(θi, φj)L
1
l′m′


Y ∗

lm(θi, φj). (6.20)

Mathematically, the consistency condition allows us to drop the superscripts, reducing

the above to a linear system forLlm. This will involve a simple 9×9 linear system expressed

in terms of a matrix Ql′m′,lm,

2∑
l′=0

l′∑
m′=−l′

Qlm,l′m′Ll′m′ = Plm

Plm =
2π2

N2

N∑
i=1

N∑
j=1

sin θi U(θi, φj)Y
∗
lm(θi, φj) (6.21)

Qlm,l′,m′ = δlm,l′m′ +
2π2

N2

N∑
i=1

N∑
j=1

sin θiWl′m′(θi, φj)Y
∗
lm(θi, φj).
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The summations are just discrete versions of integrals that determine the appropriate

spherical harmonic coefficients. The above equation has a very intuitive explanation. It

may be derived direction from equation 6.9, considering the linear system that results for

the first 9 lighting terms. The key idea is that we have reparameterized by the reflection

vector, so we may simply take the first 9 coefficients of the reflected light field. The formula

for the irradiance becomes more complicated (because of the reparameterization) but can

still be expressed in terms of the first 9 lighting coefficients. Mathematically, we can rewrite

equation 6.9 for our purposes as

B(θR, φR) = Kd
2∑
l′=0

l′∑
m′=−l′

ρ̂l′Ll′m′Yl′m′(α, β) +KsF (µ, θ
′
o)Lslow(θR, φR). (6.22)

Here, we have simply parameterized the reflected light field by the reflected direction

(θR, φR). Remember that for simplicity, we’re assuming a single image, i.e. one value

of (α, β) corresponding to each (θR, φR), with (α, β) a function of (θR, φR). With multiple

images, we would have to weight contributions appropriately.

Now, it’s a simple enough matter to compute coefficients obtaining

Blm = Kd
∑
l′,m′

ρ̂l′Ll′m′ 〈Y ∗
lm(θR, φR), Yl′m′(α, β)〉+KsF (µ, θ′o)Llm. (6.23)

Here, we have used the notation< ·, · > for the integral or inner product over the spherical

domain of integration. This is what is computed discretely in equation 6.22. It can now be

seen that equation 6.23 has the same form as equation 6.22. Note that in equation 6.23, we

have multiplied out the denominators, and we use Blm here instead of Plm.

This inverse lighting method is difficult to extend to concave surfaces, since the 9 pa-

rameter diffuse model is no longer entirely valid. It is a subject of future work to see if it

can be applied simply by increasing the number of parameters and the size of the matrix of

simultaneous equations to be solved.

Positive regularization: So far, we have not explicitly tried to ensure positivity of the

illumination. In practical applications, the methods above when applied naively will result

in negative values, especially where the illumination is dark, and there is uncertainty about
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the precise value. Regularizing so the results are positive can also substantially improve

the quality of the results by reducing high-frequency noise centered close to the zero point

in dark regions.

We apply positive regularization to the unregularized solution from either of the previ-

ous two methods. For the first method (direct solution of linear system to determine lighting

coefficients), we simply add another term to the RMS error which penalizes negative re-

gions. While this method is a soft constraint and can still leave some negative regions,

we have observed that it works well in practice. We use a conjugate gradient method to

minimize

ν′ = ν + λ
(
ν0
κ0

)
κ. (6.24)

Here, ν is the RMS error corresponding to equation 6.15 or 6.16. κ is a new penalty term

added to penalize negative values of the lighting. ν0 and κ0 are initial values (for the unreg-

ularized solution), and λ weights the importance of the penalty term. λ is a dimensionless

quantity, and we have found experimentally that λ = 1 works well. The penalty term κ

is simply the sum of squares of all lighting pixels having negative values. Thus, negative

values are penalized, but no penalty is imposed for positive values.

For our second method (using a dual angular and frequency-space method to estimate

the lighting), regularization may be enforced (in step 1) simply by clamping Lslow to 0 if

the right hand side in the first line of equation 6.18 is negative. This must be taken into

account in the 9×9 simultaneous equations, and we solve the positivity enforced equations

with a conjugate gradient method, using as a starting guess the solution without enforced

positivity.

Comparison: Figure 6.5 compares the methods to each other, and to a reference solution

from a gazing sphere. Both algorithms give reasonably accurate results. As predicted by

the theory, high-frequency components are filtered by the roughness σ. In the first method,

involving direct recovery of Llm, there will still be some residual energy for l > l∗. Since

we regularize by not considering higher frequencies—we could increase l∗, but this makes

the result noisier—the recovered lighting is somewhat blurred compared to our dual angular

and frequency-space algorithm (second method). As expected, positive regularization in

algorithm 2 results in a smoother solution.
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Figure 6.5: Comparison of inverse lighting methods. From left to right, real lighting (from a
gazing sphere), recovered illumination by direct estimation of spherical harmonic coefficients with
l∗ = 12 and l∗ = 20, and estimation of dual angular and frequency-space lighting model. To make
the artifacts more apparent, we have set 0 to gray. The results from the dual algorithm are sharper,
but still somewhat blurred because of filtering by σ. A small amount of ringing occurs for direct
coefficient recovery, and can be seen for l∗ = 12. Using l∗ = 20 makes the solution very noisy.
Positive regularization (rightmost) gives a smoother solution.

6.4.4 Factorization—Unknown Lighting and BRDF

We can combine the inverse-BRDF and inverse-lighting methods to factor the reflected

light field, simultaneously recovering the lighting and BRDF when both are unknown.

Therefore, we are able to accurately recover BRDFs of curved surfaces under unknown

complex illumination, something which has not previously been demonstrated. There is

an unrecoverable global scale factor, so we set Kd + Ks = 1; we cannot find absolute

reflectance. Also, the theory predicts that for low-frequency lighting, estimation of the sur-

face roughness σ is ill-conditioned—blurring the lighting while sharpening the BRDF does

not significantly change the reflected light field. However, for high-frequency lighting, this

ambiguity can be removed. We will use a single manually specified directional source in

the recovered lighting distribution to estimate σ.

Algorithm: The algorithm consists of nested procedures. In the outer loop, we effec-

tively solve an inverse-BRDF problem—a nonlinear simplex algorithm adjusts the BRDF

parameters to minimize error with respect to image pixels. Since Kd +Ks = 1, and σ will

not be solved for till after the lighting and other BRDF parameters have been recovered,

there are only 2 free parameters, Ks and µ. In the inner procedure, a linear problem is

solved to estimate the lighting for a given set of BRDF parameters, using the methods of

the previous subsection. Pseudocode is given below.
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global Binput // Input images

globalKd,Ks,µ,σ // BRDF parameters

global L // Lighting

procedure Factor

Minimize(Ks,µ,ObjFun) // Simplex Method

σ = FindRoughness(L) // Figure 6.6, Equation 6.25

function ObjFun(Ks,µ)

Kd = 1−Ks //Kd +Ks = 1

L = Lighting(Kd,Ks,µ) // Inverse Lighting

Bpred = Predict(L,Kd,Ks,µ) // Predicted Light Field

return RMS(Binput,Bpred) // RMS Error

Finding σ using a directional source: If a directional source is present—and manually

specified by us in the recovered lighting—we can estimate σ by equating specular com-

ponents predicted by equations 6.6 and 6.8 for the center, i.e. brightest point, of the light

source at normal exitance. An illustration is in figure 6.6,

Lcen ≈
Ltotal

4πσ2
. (6.25)

Color: We have so far ignored issues of color, assuming the three color channels are con-

sidered separately. However, in the case of BRDF recovery under unknown lighting, there

is a separate scale factor associated with each color channel. In order to obtain accurate

colors for the BRDF and lighting components, we need some way to relate these 3 scale

factors. For dielectrics, the specular component Ks is not spectrally sensitive, i.e. it is the

same for red,green, and blue channels. The recovered BRDFs are scaled in order to make

this hold. The issue is trickier for metals. There is a fundamental ambiguity between the

color of the BRDF and the color of the lighting. We resolve this by considering the average
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Figure 6.6: Determining surface roughness parameter σ. We manually specify (red box) the
region corresponding to the directional source in a visualization of the lighting. The algorithm then
determines Lcen, the intensity at the center (brightest point), Ltot, the total energy integrated over
the region specified by the red box, and computes σ using equation 6.25. The method does not
depend on the size of the red box—provided it encloses the entire (filtered) source—nor the precise
shape into which the source is filtered in the recovered lighting.

color of the metallic surface as corresponding to white light. The use of more sophisti-

cated color-space separation methods such as that of Klinker et al [42] might bring further

benefits.

Results: We used the method of this subsection—with the dual angular and frequency-

space algorithm for inverse lighting—to factor the light field for the spheres, simultane-

ously estimating the BRDF and lighting. The same setup and lighting were used for all the

spheres so we could compare the recovered illumination distributions.

We see from figure 6.7 that the BRDF estimates under unknown lighting are accurate.

Absolute errors are small, compared to parameters recovered under known lighting. The

only significant anomalies are the slightly low values for the refractive index µ—caused

because we cannot know the high-frequency lighting components, which are necessary for

more accurately estimating the Fresnel term. We are also able to estimate a filtered version

of the lighting. As shown in figure 6.8, the recovered lighting distributions from all the

samples are largely consistent. As predicted by the theory, the directional source is spread

out to different extents depending on how rough the surface is, i.e. the value of σ. Finally,

figure 6.8 shows that rendered images using the estimated lighting and BRDF are almost

indistinguishable from real photographs.
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Material Kd Ks µ σ
Known Unknown Known Unknown Known Unknown Known Unkn.

Teflon 0.89 0.87 0.11 0.13 1.78 1.48 0.12 0.14
Delrin 0.87 0.88 0.13 0.12 1.44 1.35 0.10 0.11
Neoprene Rubber 0.92 0.93 0.08 0.07 1.49 1.34 0.10 0.10
Sandblasted Steel 0.20 0.14 0.80 0.86 0.20 0.19
Bronze (.15,.08,.05) (.09,.07,.07) (.85,.68,.59) (.91,.69,.55) 0.12 0.10
Painted (.62,.71,.62) (.67,.75,.64) 0.29 0.25 1.38 1.15 0.15 0.15

Figure 6.7: BRDFs of various spheres, recovered under known (section 6.4.2) and unknown (sec-
tion 6.4.4) lighting. The reported values are normalized so Kd+Ks = 1. RGB values are reported
for colored objects. We see that Ks is much higher for the more specular metallic spheres, and
that σ is especially high for the rough sandblasted sphere. The Fresnel effect is very close to 1 for
metals, so we do not consider the Fresnel term for these spheres.

6.5 Results on Complex Geometric Objects

In the previous section, we presented our new algorithms for inverse rendering with com-

plex illumination, illustrating their performance using spheres of different materials. To

demonstrate the practical applicability of these methods, in this section, we report on two

experiments using complex geometric objects that include concavities and self-shadowing.

The previous section has already discussed, where appropriate, how the algorithms for

BRDF and lighting estimation can be extended to concave and textured surfaces.

Our first experiment uses a white cat sculpture of approximately uniform material prop-

erties to demonstrate BRDF estimation under known and unknown complex illumination.

This is the first demonstration of accurate BRDF estimation under complex unknown illu-

mination for geometrically complex objects. Geometry was acquired using a Cyberware

range scanner and aligned to the images by manually specifying correspondences. The

lighting was slightly more complex than that for the spheres experiment; we used a second

directional source in addition to the area source.

To show that we can recover BRDFs using a small number of images, we used only 3

input photographs. We recovered BRDFs under both known lighting, using the method of

section 6.4.2, and unknown lighting—using the factorization method of section 6.4.4, with

the inverse lighting component being direct recovery of spherical harmonic coefficients

using l∗ = 12. Comparisons of photographs and renderings are in figures 6.9 and 6.10.

BRDF and lighting parameters are tabulated in figure 6.11. This experiment indicates that

our methods for BRDF recovery under known and unknown lighting are consistent, and
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Lighting
Known

Lighting
Unknown

Lighting

Images

Images

Images

BronzeSandblasted PaintedDelrin

φ

Teflon

σ=0.12
of real lighting
Filtered version

θ

Real

Rendered

Rendered

Recovered

Real lighting

Figure 6.8: Spheres rendered using BRDFs estimated under known (section 6.4.2) and unknown
(section 6.4.4) lighting. The algorithm in section 6.4.4 also recovers the lighting. Since there is an
unknown global scale, we scale the recovered lighting distributions in order to compare them. The
recovered illumination is largely consistent between all samples, and is similar to a filtered version
of the real lighting. As predicted by the theory, the different roughnesses σ cause the directional
source to be spread out to different extents. The filtered source is slightly elongated or asymmetric
because the microfacet BRDF is not completely symmetric about the reflection vector.

are accurate even for complex lighting and geometry. The rendered images are very close

to the original photographs, even under viewing and lighting conditions not used for BRDF

recovery. The most prominent artifacts are because of imprecise geometric alignment and

insufficient geometric resolution. For instance, since our geometric model does not include

the eyelids of the cat, that feature is missing from the rendered images.
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Real Photograph Rendered Image

Figure 6.9: Comparison of photograph and rendered image for cat sculpture. Left: Photograph
Right: Rendered image. The BRDF used for the rendered image was estimated under complex
unknown illumination from 3 photographs of a cat sculpture with known geometry. Our algorithm
also recovered the lighting distribution, which consisted of two directional sources and an area
source. The images above show a new view not used in BRDF recovery; the lighting is also new,
being composed of a single directional source (with known direction) not used in BRDF estimation.
These images show that the recovered BRDF accurately predicts appearance even under novel
viewing and lighting conditions.

Textured BRDFs: Since the theory shows that factorization of lighting and texture is

ambiguous, we consider only recovery of textured BRDFs under known lighting, using the

method described at the end of section 6.4.2. As an experimental test, we used a wooden

doll. We compared the real input photographs with images rendered using the recovered

textured BRDF. We also took a photograph of the same object under a single directional

source—directional sources have all the high-frequency components, and therefore bring

out all the features of the BRDF filter—and compared this to a rendering using the textured

BRDF recovered under complex illumination. The results in figure 6.12 show that our ren-

derings closely resemble real photographs. The main artifact is blurring of texture because

of geometry-image misregistration. This is unrelated to the use of complex lighting, and is
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Input
View

New
View

Rendered, Known Lighting Real Photograph Rendered, Unknown Lighting

Figure 6.10: Comparison of photographs (middle column) to images rendered using BRDFs
recovered under known lighting (left column), and using BRDFs (and lighting) estimated under
unknown lighting (right column). The top row is one of the 3 input views. The bottom row is a
new view, not used for BRDF estimation. Note that in the top row, we have composited the left and
right renderings over the same background as the middle photograph in order to make a meaningful
comparison.

also noted by Sato et al. [77].

6.6 Conclusions and Future Work

This chapter has considered the problem of complex illumination in inverse rendering. The

use of realistic lighting and materials is likely to be of increasing importance in graphics

and vision, and inverse rendering to acquire real-world material properties is likely to be a

significant future direction. The use of natural lighting is becoming increasingly common



170 CHAPTER 6. INVERSE RENDERING UNDER COMPLEX ILLUMINATION

Parameter Known Lighting Unknown Lighting
BRDF Parameters

Kd 0.88 0.90
Ks 0.12 0.10
µ 1.68 1.47
σ 0.12 0.14

Lighting Coefficients (l,m)
(l,m) = (0,0) 0.68 0.68

(1,-1) -0.06 -0.02
(1,0) -0.17 -0.15
(1,1) -0.02 -0.06

(2,-2) 0.10 0.04
(2,-1) 0.03 0.09
(2,0) -0.55 -0.51
(2,1) 0.30 0.28
(2,2) 0.84 0.88

Figure 6.11: BRDF and lighting parameters for the cat sculpture. We see good agreement between
BRDF parameter values recovered with known and unknown lighting, showing our methods are
consistent. Note that we normalize so Kd + Ks = 1. We may also check the accuracy of the
recovered lighting. Since there is an unknown global scale for the recovered values, we report
normalized lighting coefficient values for the first 9 spherical harmonic coefficients (in real form),
which are the most important, because they significantly affect the diffuse component of the BRDF.

in computer graphics and vision, and this chapter allows for inverse rendering techniques

to be applied in arbitrary uncontrolled conditions rather than a laboratory setting. Further-

more, in certain cases, complex illumination may help in solving inverse problems, such

as by allowing a much larger fraction of an image to exhibit specularity. Dror et al. [16]

have also shown that people perceive reflectance properties much more easily under natural

illumination.

This chapter first presents a taxonomy of inverse problems, identifying the many unex-

plored directions of work in solving inverse problems under complex illumination. We then

address some of these areas. The insights gained from our signal-processing framework for

reflection lead to a new practical representation. We can numerically represent quantities

in angular or frequency space, depending on where they are more local.

This leads to new algorithms which are often expressed in a combination of angular and
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Rendered

1 view in original input sequence

Real Rendered

Same view, novel lighting

Real

Figure 6.12: Recovering textured BRDFs under complex lighting. The rendered images closely
resemble the real photographs, even under novel lighting.

frequency-space. We can determine which BRDF and lighting parameters are important,

and can handle the various components appropriately. For BRDF estimation, the paramet-

ric recovery algorithms of Yu and Malik [90], Sato and Ikeuchi [76], and Love [50]—which

are designed specifically for natural lighting—can be seen as special cases of this general

approach; they treat sunlight (high-frequency) and skylight (low-frequency) separately. We

provide a general framework for arbitrary illumination, and also determine conditions un-

der which parameter recovery is robust. For instance, our theory predicts that estimation

of σ is ill-conditioned on a cloudy day, with only low-frequency lighting. Our framework

can also be applied to developing new frequency-space algorithms to estimate the lighting

from objects with general BRDFs. The use of frequency-space naturally handles contin-

uous lighting distributions. Our dual angular and frequency-space algorithm effectively

reduces the problem for general BRDFs to that for a gazing sphere, requires no explicit

regularization, and allows much higher angular resolutions to be obtained than with previ-

ous purely angular-space methods [54, 75]. Finally, we demonstrate a method for factoring

the light field to simultaneously estimate the lighting and BRDF. This allows us to estimate

BRDFs of geometrically complex objects under unknown general lighting, which has not
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previously been demonstrated.

Our results presented here do contain a number of limitations. The examples presented

here, while intended to show the proof of concept, have relatively simple lighting config-

urations. In the future, we would like to apply the methods of this chapter under more

complex outdoor and indoor illumination conditions. The BRDF model used by us is also

a relatively simple microfacet model. As noted, we have observed a number of difficulties

using a more general model based on spherical harmonic coefficients. In terms of algorith-

mic issues, we do not currently handle interreflections. We believe that in the future, they

could be addressed by an iterative method in a manner similar to that of Yu et al. [89]. We

have also presented results using only a single object and relatively distant illumination.

In the future, we wish to extend our results to entire scenes and possibly near-field illumi-

nation, as in the work of Boivin and Gagalowicz [6] or Yu et al. [89], thereby extending

those methods to complex illumination conditions. Finally, it should be pointed out that the

results obtained by us are not completely faithful to the original objects, which indicates

that further work is required on relaxing many of the assumptions made by us.

Note that the techniques presented in this chapter are only the first step in solving in-

verse problems under complex illumination. A number of the open problems identified in

our taxonomy remain subjects for future work. There has been relatively little work on

BRDFs in between low-parameter models and full measured representations. It is not clear

what the best way to measure factored or separable BRDF representations is, or how to

estimate these or higher-dimensional representations under complex illumination. We have

not considered statistical properties of the illumination, that may allow us to simultane-

ously determine the lighting, BRDF and texture. All of our examples use a small number

of images, and an interesting future direction is whether a single image suffices. We also

believe there are more insights to be obtained from frequency space analysis and new fre-

quency domain algorithms to be explored for inverse problems. Another interesting future

direction is to preserve and extrapolate the original images to new conditions, using inverse

rendering only as a guide in this extrapolation, but without explicitly computing lighting

and reflectance parameters. This would have the potential to unify inverse and image-based

(interpolatory) rendering methods.
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Finally, the use of measured reflectance and illumination properties is of growing im-

portance in graphics and vision, and we have taken a step towards finding general inverse

methods to determine these from image observations.

In chapters 4 and 5 of this dissertation, we have applied the signal-processing frame-

work developed in chapters 2 and 3 to forward rendering problems. In this chapter, we

have demonstrated the applicability to inverse rendering. The next chapter concludes this

dissertation, presenting a unified discussion of forward and inverse rendering, and suggests

directions for future work.



Chapter 7

Conclusions and Future Work

In this dissertation, we have presented a new way of analyzing a basic building block in

computer graphics rendering algorithms—the computational interaction between illumi-

nation and the reflective properties of a surface. We formalize the notion of reflection

on a curved surface as a spherical convolution of the incident illumination and the bi-

directional reflectance distribution function of the surface. This allows us to develop a

signal-processing framework for reflection, leading to new frequency domain and com-

bined angular and frequency-space methods for forward and inverse problems in computer

graphics, taking into account the effects of complex natural illumination, and physically

realistic BRDFs. We use the theoretical framework to develop new practical algorithms for

interactive forward rendering using environment maps and inverse rendering to estimate

lighting and material properties under complex illumination conditions.

The main thesis validated by this dissertation is that a deeper understanding of the

computational nature of reflection and illumination is important and leads to new practical

algorithms. Secondly, since the properties of the reflection operator impact a number of

different areas, the same fundamental insights lead to novel algorithms for a number of

different problems in forward and inverse rendering in graphics, as well as related areas in

computer vision. Since this dissertation has both a theoretical and practical component, we

discuss below our main conclusions, the bigger picture, and future directions for each of

the components.

174
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7.1 Computational Fundamentals of Reflection

Although the physical phenomena and mathematical framework for reflection in the spatial

or angular domain are well known, there has not so far been a deep understanding of the

computational issues. Therefore, it is important to lay the mathematical foundations for

this area, which I refer to as the computational fundamentals of reflection. This disserta-

tion has presented one such analysis in terms of signal-processing. Although the qualitative

notion of reflection as convolution has a fairly long history of nearly 20 years in the graph-

ics community and a number of people have tried to formalize this idea, this is the first

time a precise mathematical description has been derived, with an associated convolution

theorem. The analysis in chapters 2 and 3 has led to a number of basic questions being

answered including the fundamental limits and conditioning of inverse problems, i.e. from

observations of an object, what can we know about the lighting/reflectance? Our analysis

also leads to a number of interesting observations, some of which may be lines for future

work.

Relationship between Forward and Inverse Problems: Firstly, we have demonstrated

a significant duality between forward and inverse problems. An ill-posed or ill-conditioned

inverse problem is one where the input signal cannot be estimated from the output, because

it is attenuated or truncated by the reflection operator (or BRDF filter). An example is illu-

mination estimation from a diffuse or Lambertian surface. However, this also means that in

the forward direction, most of the information in the input signal is not required to synthe-

size the output image. In chapter 4, we saw that this made it very efficient to represent and

compute irradiance maps corresponding to reflections from diffuse or Lambertian surfaces.

It is likely that similar considerations of duality can be profitably employed to analyze and

create efficient and robust algorithms for forward and inverse problems in the future.

Dual Angular and Frequency-Space Representations: The Heisenberg uncertainty prin-

ciple can effectively be interpreted as saying that quantities cannot simultaneously be lo-

calized in the spatial (angular) and frequency domains. Thus, quantities local in angular

space have broad frequency spectra and vice-versa. However, we can turn this observation

to our advantage by making use of both angular and frequency domains simultaneously.
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By developing a frequency-space view of reflection, we ensure that we can use either the

angular-space or frequency-space representation, or even a combination of the two. The

diffuse BRDF component is slowly varying in angular-space, so we represent it in the

frequency domain where it is a very local low-pass filter. Similarly, it is often useful to rep-

resent the specular BRDF component in the angular domain, where it is local, as opposed

to the frequency domain where a large number of terms are required. This is the argument

behind our representation in section 6.3. This principle of duality is likely to have many

further implications, with algorithms being designed separately for high and low-frequency

components, and investigation of tradeoffs and crossover points between the two.

If we seek to extend and apply our signal-processing framework in cases where there

is no specific convolution formula, then it is likely that significant benefit can be obtained

using wavelet or multiresolution representations, one of whose properties is to create ba-

sis functions local in both spatial (angular) and frequency domains. Such representations

might provide a unified way to account for both high frequency (local in the angular do-

main) and low-frequency (local in the frequency domain) components.

Sampling Theory: An obvious extension of the signal-processing framework is to de-

velop a sampling theory for various problems in graphics, determining how many obser-

vations or samples are needed for reconstruction. For instance, in the Lambertian case,

our theory indicates that only 9 samples are required to reconstruct the irradiance map, if

resampling is done correctly. A general framework for determining reflection map reso-

lutions and sampling rates is described in chapter 5. More generally, we seek in future

to address some important problems in graphics and vision. Within the context of image-

based rendering, a long-standing question is how many images are needed to produce the

effects we desire. Too many, and data acquisition and manipulation become unwieldy. Too

few, and there are artifacts and we fail to get the effects we want. Some work on this

topic under the assumption of Lambertian surfaces and with imprecise geometry has been

presented by Chai et al. [33]. It is interesting to consider a framework based on our anal-

ysis, assuming good or perfect geometry, but taking into account the effects of complex

illumination and reflection models. A number of questions need to be answered such as

the number of images required for good reconstruction and the right interpolation approach
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taking into account the frequency variation of the various quantities.

Low-Dimensional Subspaces: One of the results of our theory is formalizing the notion

of low-dimensional subspaces for images of a Lambertian object (9D) and similar results

for other reflection functions. Similar ideas have been used by Nimeroff et al. [63] and Teo

et al. [82] for lighting design. One interesting question is whether the theoretical analysis

in this dissertation can be seen as a special case of a general framework for determining

good low-dimensional subspace approximations of the reflection operator, and whether our

theoretical analysis can be adapted to cases where information on probable lighting con-

ditions, reflection functions and object geometry are known. One approach is to find the

principal components or basis function images of the space of all possible images of an

object. This is a common approach used for compression in graphics and vision, but so far

without much understanding of the number of principal components required. A prelimi-

nary step has been taken by us [69], where we have shown how to analytically construct the

PCA for the space of images of a Lambertian object under all possible distant illumination

conditions. We have shown that under idealized assumptions, the principal components re-

duce to the spherical harmonic basis functions, but must be modified for a single viewpoint

where only the front-facing normals are visible. We have also shown how to adapt the 9D

Lambertian result to derive lower-dimensional subspaces when we have only a single view-

point. A promising future direction is to develop a general theory allowing for derivation of

low-dimensional results under arbitrary assumptions about lighting, reflectance, geometry,

and the effects to be considered in the reflection operator.

Integral Equations: It may be possible to view our convolution result as an analytic

formula for a special case of the integral equation corresponding to the reflection operator.

Similarly, the convolution result and the spherical harmonic basis functions may be the

optimal low-dimensional approximations under idealized assumptions. This leads to the

possibility of analyzing the integral equation corresponding to the reflection and rendering

operators to determine the ill-posedness and conditioning of inverse problems, and the rank

of the kernel directly to determine low-dimensional subspaces.



178 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Differential Framework: Of course, signal-processing is only one way of conducting a

computational analysis of the reflection operator. Another approach is to consider a dif-

ferential framework for reflection. This answers questions about how to interpolate and

extrapolate neighbouring views, or how much information is available from nearby obser-

vations, such as the slightly separated two eyes. A significant amount of work has been

carried out in the image domain in the computer vision community under the aegis of op-

tical flow methods. However, we believe significant insight and practical algorithms may

emerge from considering an analysis on the object surface, taking into account complex

illumination and reflection functions.

Perception: This dissertation has focussed on the physical computation of light transport.

However, humans do not perceive on a linear scale; rather, the perceptual response is log-

arithmically related to the physical intensity. This has been exploited within the context of

perceptual theories like the retinex framework [46] that often perform a logarithmic trans-

formation before applying particular algorithms. In this case, separation of high-frequency

texture and low-frequency illumination is made easier after a logarithmic transform. Sim-

ilarly, in computer graphics, a number of homomorphic factorization techniques [47, 57]

have been applied to represent reflected light fields and BRDFs by considering the error

and doing computations in a logarithmic space. All of these results lead to a number of

interesting questions about how approximations should be done, whether nonlinearities are

introduced and whether a perceptual-space analysis and convolution relation can be de-

rived. Considering perceptual aspects remains an important direction of future work.

7.2 High Quality Interactive Rendering

The first practical application discussed in the dissertation is of interactive rendering with

natural illumination and physically based BRDFs. High quality interactive rendering is

important in many applications including visualization, simulation and training, and video

games. However, current graphics hardware rendering is usually limited to very simple

lighting models (usually point and directional sources only) and reflection functions (Phong

and Lambertian BRDFs). This imposes a gap between photorealism and interactivity that
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we have seeked to bridge. Within this context, we expect a number of future improvements.

Interactive rendering with complex illumination, shading, visibility: In this disserta-

tion, we have addressed interactive rendering with complex illumination and reflectance

functions. Several further steps may be taken to improve the quality of interactive com-

puter graphics. Future work will encompass effects like spatially varying illumination,

interreflection, and cast shadows. In the long term, we would like to see all the effects

currently expensive to compute with global illumination simulations, incorporated into in-

teractive renderings.

Multidimensional rendering: Another area of future work concerns multidimensional

rendering. Most current computer graphics algorithms are optimized for creating a sin-

gle image. However, many current computer graphics techniques deal with multi-view,

multiple-light or other dimensions of data. While inverse rendering techniques to infer pa-

rameters for hardware rendering of multidimensional image spaces have been demonstrated

by Hakura [26], there has been very little work on efficient multidimensional rendering.

Halle [29] has shown how to efficient scan-convert a scene for multiple views, but much

future work needs to be done in the context of efficiently rendering surface light fields or

other multidimensional animations. We believe the fast prefiltering algorithms in sections 4

and 5 provide an important first step in this endeavor.

Application of computational fundamentals: Many of the theoretical analyses dis-

cussed in the previous subsection can be applied to a number of problems in rendering.

For instance, differential analysis can be applied to accurate interpolation, and incremental

changes to programmable shading calculations. Determining appropriate sampling rates

can lead to new methods for antialiasing or filtering bump maps. Low-dimensional sub-

space methods and angular-frequency tradeoffs could be profitably applied in a number of

domains in rendering.
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7.3 Inverse Rendering

Realism in computer-generated images requires accurate input models for lighting, textures

and reflectances (BRDFs). One of the best ways of obtaining high-quality data is through

measurements of scene attributes from real photographs by inverse rendering. Measuring

scene attributes also introduces structure into the raw imagery, allowing an artist to inde-

pendently manipulate the material properties or lighting. This dissertation has presented

a coherent mathematical framework for inverse rendering under general illumination con-

ditions. Besides the formal study of the well-posedness and conditioning of inverse prob-

lems, we have derived new practical representations and novel frequency domain and dual

spatial and frequency domain algorithms for BRDF and lighting estimation. Chapter 6

demonstrates examples of all these algorithms, and shows that the rendered images appear

nearly identical to real photographs.

There remain some limitations in our work that we seek to address in the future, such as

handling interreflections and extending the results to more complex illumination conditions

and entire scenes. Besides this, there remain a number of problems to be solved.

Structured BRDF and higher-order representations: There are a number of methods

for estimating BRDFs. These lead to incomplete information; from this, a full BRDF must

be reconstructed for practical use in applications. One future direction is to explore how

various representations—parametric, generative, and tabulated can be fit as data of increas-

ing precision arrives. We also wish to study ideas with respect to adaptive reconstruc-

tion. Also, based on differential analysis, a number of higher-order differential properties

are worth estimating. Finally, structured representations of the high-dimensional datasets

in graphics today are very important for representation, understanding, manipulation and

compression.

Factored BRDF representations: There has been relatively little theoretical or practical

work on BRDFs in between low-parameter models and full measured representations. This

remains a subject of future work. It is interesting to consider curve-based or factored BRDF

models, and how they can be estimated from a small number of photographs, under both

simple and complex illumination conditions. More generally, the idea of factoring the
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reflected light field, or of constructing structured representations of the high-dimensional

datasets currently prevalent in graphics (such as BRDFs, BTFs and light fields) is one of

growing interest.

Combined estimation of illumination, materials and geometry: Still another interest-

ing question is whether we can combine inverse rendering to find illumination and material

properties with geometry estimation, or at least use reflection information to determine im-

proved estimates of geometric properties. In any case, our work is clearly applicable in the

context of computer vision algorithms that determine geometry; we seek to extend these

methods to incorporate complex illumination and reflectance properties.

General frameworks for extrapolatory rendering: Taking a step back, our goals really

extend beyond estimating material properties. In computer graphics, we often wish to

actually use the difference (or “error”) between the photographs and the predicted model. It

is often this difference which gives the photograph its real-world, as opposed to computer-

generated, appearance. A simple example is the use of texture maps, wherein the real-world

texture can be used to modulate or multiply shading computations from a light transport

model that assumes homogeneous objects.

This is very different from most use of empirical data elsewhere in science—where

we expect the theory to fit the data, treating errors as experimental noise to be ignored.

Thus, one goal of future research is to derive a general framework for combining empirical

observations in the form of real photographs with a model-based approach, perhaps rely-

ing on inverse rendering, to get very realistic images that can be easily manipulated using

standard graphics operations. For instance, we could manipulate the low-frequency infor-

mation predicted by our rendering model, such as illumination effects, while preserving the

high-frequency information in the photograph, such as object texture.

A general framework along these lines would allow us to unify inverse and image-based

(interpolatory) rendering methods. Similar ideas are likely to be applicable to animation,

where we want to effectively edit or manipulate motion-capture data, and modeling, where

we want to manipulate range data.
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7.4 Summary

In summary, this dissertation has presented a new approach toward forward and inverse

problems in graphics and vision. We have analyzed the computational properties of the

reflection operator, in this case in terms of signal-processing. The ideas from this analysis

lead to new robust and efficient algorithms for domains that have hitherto been consid-

ered largely separate—interactive high quality rendering, and measurement of lighting and

material properties from photographs by inverse rendering. Basri and Jacobs [2, 3] have

shown the further application of these ideas to the problems of photometric stereo and

lighting-invariant recognition in computer vision. This suggests a new approach to prob-

lems in graphics and vision. We first make progress in understanding the computational

fundamentals of reflection. This in turn leads to broad practical impact for forward and

inverse problems in rendering and computer vision—domains that have hitherto been con-

sidered largely distinct. This dissertation has presented one such investigation in terms of

signal-processing, and we believe there is much progress to be made.



Appendix A

Properties of the Representation

Matrices

In this appendix, we derive the two properties of representation matrices listed in equa-

tion 2.35. The first property follows from the addition theorem for spherical harmonics

(see for instance, Jackson [34] equation 3.62),

Yl0(u, v) = Λl
l∑

m=−l
Y ∗
lm(θ, φ)Ylm(θ

′, φ′). (A.1)

Here, v is a dummy-variable since Yl0 has no azimuthal dependence, and u is the angle

between (θ, φ) and (θ′, φ′), i.e.

cos u = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (A.2)

Now, let (u, v) = Rα(θ
′, φ′). Here, Rα = Ry(α). We omit the z rotation since that does

not affect Yl0 which has no azimuthal dependence. The vector corresponding to coordinates
(u, v) is then given by


 sinu cos v

sinu sin v

cos u


 =


 cosα 0 sinα

0 1 0

− sinα 0 cosα




 sin θ′ cosφ′

sin θ′ sinφ′

cos θ′


 =


 cosα sin θ′ cosφ′ + sinα cos θ′

sin θ′ sinφ′

cosα cos θ′ + sinα sin θ′ (− cosφ′)


 . (A.3)
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Since (− cosφ′) = cos (π − φ′), we know from equation A.2 that u corresponds to the an-

gle between (α, π) and (θ′, φ′). In other words, we may set (θ, φ) = (α, π). To summarize,

Yl0 (Rα(θ
′, φ′)) = Λl

l∑
m=−l

Y ∗
lm(α, π)Ylm(θ

′, φ′). (A.4)

To proceed further, we write the rotation formula for spherical harmonics, omitting the z

rotation by β, since that has no significance for azimuthally symmetric harmonics.

Yl0 (Rα(θ
′, φ′)) =

l∑
m=−l

dl0m(α)Ylm(θ
′, φ′) (A.5)

A comparision of equations A.4 and A.5 yields the first property of representation matrices

in equation 2.35, i.e.

dl0m(α) = ΛlY
∗
lm(α, π). (A.6)

To obtain the second property in equation 2.35, we use the form of the spherical har-

monic expansion when the elevation angle is 0, i.e. we are at the north pole. Specifically,

we note that Ylm′(0′, φ′) = Λ−1
l δm′0. With this in mind, the derivation is as follows,

Ylm(α, β) = Ylm (Rα,β,γ(0
′, φ′))

=
l∑

m′=−l
Dlmm′(α, β, γ)Ylm′(0′, φ′)

= Λ−1
l D

l
m0(α, β, γ). (A.7)

This brings us to the second property stated in equation 2.35,

Dlm0(α, β, γ) = ΛlYlm(α, β). (A.8)
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