

Rivet: A Flexible Environment for Computer Systems Visualization

Robert Bosch, Chris Stolte, Diane Tang, John Gerth, Mendel Rosenblum, and Pat Hanrahan

Computer Science Department

Stanford University

Abstract
Rivet is a visualization system for the study of complex computer
systems. Since computer systems analysis and visualization is an
unpredictable and iterative process, a key design goal of Rivet is
to support the rapid development of interactive visualizations
capable of visualizing large data sets. In this paper, we present
Rivet’s architecture, focusing on its support for varied data
sources, interactivity, composition and user-defined data trans-
formations. We also describe the challenges of implementing this
architecture efficiently and flexibly. We conclude with several
examples of computer systems visualizations generated within
Rivet, including studies of parallel systems, superscalar proces-
sors, and mobile network usage.

1 INTRODUCTION
Computer systems are becoming increasingly complex due to both
the growing number of users and their growing demand for func-
tionality. Processors are more elaborate, memory systems are
larger, operating systems provide more functionality, and net-
works are faster. This increasing complexity magnifies the already
difficult task developers face in designing and using the new tech-
nology.

Computer systems visualization can be a powerful tool for ad-
dressing this problem, leveraging the immense power and band-
width of the human visual system and its pattern recognition ca-
pabilities. Most computer systems visualization tools developed
up to this point, however, have focused on very specific prob-
lems [12][7][4]. While some of these tools have been successful,
they do not meet the demands of most developers. First, a devel-
oper may not even know about these very specialized tools. Sec-
ond, these tools may not scale to the problem size. Even if they do
scale, a steep learning curve is involved. Finally, even if the visu-
alization helps a developer solve one problem, the next problem
may be completely different. Computer systems analysis and
visualization is a highly unpredictable and iterative process, with
the demands varying greatly not only from task to task, but also
iteration to iteration. What is required is a single, cohesive visu-
alization environment that can be readily adapted to the users’
needs, so they can learn the tool once and apply that knowledge to
any problem.

Rivet is a visualization environment with the power and flexi-
bility to be used in understanding a wide range of real-world
computer systems problems. In designing Rivet, we encountered
several challenges:

• Supporting data transformations. Providing data transfor-
mation capabilities within the visualization system greatly
enhances its exploratory power. The environment must not
only provide a robust set of standard operators, but also en-
able users to add their own transformations.

• Interfacing with arbitrary data sources. Since data collec-
tion tools for computer systems vary widely, from hardware
monitors to software instrumentation to simulation, the visu-

alization environment must be able to import large data sets
from disparate sources.

• Coordinating events, objects and data. In order to support
interactive exploration of large data sets, the system must
provide coordination of multiple views and facilities for for-
mulating visual queries.

• Finding the right object model and interfaces. Determin-
ing the right object granularity and the parameterizations of
those objects is critical for easy configurability of the system,
necessary for applicability to a broad range of problems.

In this paper, we provide a detailed description of the Rivet ar-
chitecture and the challenges faced in its design and implementa-
tion. We also present several visualizations, developed within
Rivet, for analyzing real computer systems problems.

2 ARCHITECTURE OVERVIEW
Figure 1 illustrates the three basic steps of the visualization proc-
ess: modeling and managing data, providing visual representations
of the data, and mapping the data to the visual. Visualizations may
also provide some means for the user to interact with the data, its
visual representation, and the mappings between them. In com-
puter systems visualizations focused on solving specific problems,
these steps can be tightly integrated into a monolithic application.
However, for Rivet to be applicable to a wide range of problem
domains, its architecture must be modularized, exposing the inter-
faces of each step of the visualization process.

In the remainder of this section, we present the architectural
components and how they are combined to form visualizations.
We first introduce the data and visual structures, followed by
encodings, which map data to visual representations. We then
describe coordination between objects in Rivet, and conclude with
a brief discussion of our design choices.

2.1 Data Tuples, Tables, and Transforms
Data management in Rivet is done using a simplified relational
model. The fundamental data element in Rivet is the tuple, an
unordered collection of data attributes. Tuples with a common
format may be grouped into tables, which store these tuples along
with metadata describing the tuple contents. This homogeneous
data model offers two benefits: its familiarity and the ability to
easily visualize the same data set in many different ways.

Providing this data management model is not sufficient, how-
ever: users need some way to operate on the data tables. Other-
wise, they would have to exit the visualization, change the data,
and then import the transformed data back into the visualization
environment.

As shown in Figure 1, Rivet supports data operations through
transforms, which take one or more tables as input and produce
one or more tables as output. These transforms are quite expres-
sive, since they can be dynamically composed to form a transfor-
mation network expressing a more complex operation. They are
also active: any changes in the data are automatically propagated.

 2

This property is especially useful in computer systems analysis
where the data can change in real time. Rivet includes a set of
standard transforms, including filtering, sorting, aggregation,
grouping, merging multiple tables, and joining tables together.
However, since we cannot hope to provide all operations users
may need, they may write their own transforms and easily incor-
porate them into their visualizations.

Data can be imported from a variety of external sources. In
particular, a commonly used data collection method for computer
systems analysis is the generation of large ad hoc log files. To
enable developers to easily visualize this data, we provide a regu-
lar expression parser for generating data tables from these files.
To provide efficient access for multiple visualization sessions of a
fixed data set, Rivet also includes the ability to directly load and
save tables using a binary data format.

Related Work: Many visualization systems utilize a relational
data model. The aspect of Rivet’s data management distinguishing
it from existing systems is its extensive support for data transfor-
mations within the visualization environment. Several different
approaches have been taken by visualization systems to support
data transformations. Some systems, such as IVEE [1], rely on
external SQL databases to provide data query and manipulation
capabilities. However, as has been discussed in Goldstein et al. [9]
and Gray et al. [10], the SQL query mechanism is limited and
does not easily support the full range of visualization tasks, espe-
cially summarization and aggregation. Visual programming and
query-by-example systems such as Tioga-2 [2] and VQE [8] pro-
vide data transformations internal to the visualization environ-
ment; their transformation sets are not extensible by the user, and
the existing transformations must be sufficiently simple to support
the paradigm of visual programming. IDES [9] and DEVise [16]
are both very flexible systems that provide extensive data manipu-
lation and filtering capabilities through interaction with the visual
representations; however, neither is easily extensible by the user.
Data flow systems such as AVS [27], Data Explorer [17],
Khoros [21] and VTK [23] closely match the flexibility and power
offered by the data transformation components of Rivet, providing
extensive prebuilt transformations and support for custom trans-
formations. However, their focus is on three-dimensional scien-
tific visualization, and thus they do not provide data models and
visual metaphors appropriate for computer systems study.

2.2 Visual Metaphors and Primitives
Once the data to be studied has been imported and transformed
into a collection of data tables, the tables are displayed using one
or more visual metaphors. Metaphors create the visual representa-
tions for data tables by using primitives, which create the visual
representations for individual data tuples.

Specifically, a metaphor is responsible for drawing attributes
common to the table, such as axes and labels. It also defines the
coordinate space for the table; thus, for every tuple in the table, it
computes a position and size which are passed to the primitive
along with the tuple. The primitive is then responsible for drawing
the tuple within this bounding box.

In the simplest case, a metaphor uses a single primitive to
draw each tuple. However, users may wish to distinguish subsets
of the data within a metaphor; for instance, they may want to
highlight or elide some tuples. This task is accomplished using
selectors, objects that identify data subsets. Metaphors may con-
tain multiple selectors, each associated with a primitive to be used
for displaying tuples in the specified subset.

Related Work: The explicit mapping of individual data tuples
directly to visual primitives first appeared in the APT [18] system,
and has been used in numerous systems since, including Vis-
age [22], DEVise [16] and Tioga-2 [2]. However, the use of selec-
tors to selectively map tuples to different visual primitives is
unique to the Rivet visualization environment.

Rivet also provides mechanisms for allocating resources, such
as drawing time and screen space, among metaphors. Redraw
managers regulate the metaphor drawing process by allocating
drawing time to each metaphor. Under the basic redraw manager,
metaphors are given an unlimited amount of drawing time. How-
ever, more complex redraw managers may be used to restrict the
metaphors’ drawing times in order to provide interactivity or
smooth animation. These managers actively monitor and distrib-
ute redraw time amongst metaphors. For instance, if the user is
interacting with a particular metaphor, a redraw manager might
allocate more drawing time to it. A metaphor can adapt to its allo-
cation of time in a variety of ways, such as reducing the level of
detail or omitting ornamentation.

Multiple metaphors may be displayed in a single window by
using a layout manager. Layout managers utilize different tech-
niques for allocating screen space to each metaphor, including the
explicit specification of layout or the use of a regular layout such
as a grid or a stack. In addition, layout managers enable the user
to resize and reposition the metaphors through direct manipula-
tion.

Finally, Rivet includes a set of display managers, which han-
dle interactions between Rivet and the underlying system. The
display managers encapsulate the platform-specific display com-
ponents, making Rivet easily portable to different systems. Rivet
currently runs on X Windows, Microsoft Windows, and Stan-
ford’s Interactive Mural [14].

Figure 1. A schematic depiction of the information flow in Rivet. Data is read from an external data source and then passed through a
transformation network, which performs operations such as sorting, filtering and aggregation. The resulting tables are passed to vis-
ual metaphors, which map the data tuples to visual representations on the display. Interaction and coordination are not shown here.

 3

2.3 Encodings From Data to Visuals
Rivet uses encodings to map data to visual representations. There
are two classes of encodings. Metaphors use spatial encodings to
map fields of a data tuple to a spatial extent or location; primitives
use attribute encodings to map fields to retinal properties [5] such
as color, fill pattern, and size. Examples of these encodings are
illustrated in Figure 2.

Specifically, metaphors use one or more spatial encodings to
determine the bounding box used by the primitive to render a
given tuple. For example, a Gantt chart uses one encoding to de-
termine the horizontal extent of a tuple, while a two-dimensional
scatterplot has separate spatial encodings for horizontal and verti-
cal axes. Because a spatial encoding can map any field or combi-
nation of fields in a tuple to a location, the metaphor itself is data
independent.

A primitive uses several encodings to determine the retinal
properties of a tuple’s visual representation. For example, most
primitives have a fill color encoding, which can be used to reflect
some nominative field, such as process name, or some quantita-
tive field, such as cache misses, of the tuple being displayed. Us-
ing encodings provides great flexibility in how a tuple can be
mapped to a primitive: the user can selectively map any field or
fields to any encoded retinal property of the primitive.

Related Work: The explicit use of encodings to parameterize
visual metaphors and primitives is another innovation of the APT
system. In APT and in subsequent systems such as Visage, encod-
ings formalize the expressive capabilities of visual representations
and are utilized by knowledge-based systems to automatically
generate graphical displays of information. We find that encod-
ings provide an ideal parameterization for visual representations
within a programmable visualization environment.

2.4 Coordination
With the modular architecture of Rivet, we can achieve a lot of
coordination simply by sharing objects. For example, metaphors
can share a selector, enabling brushing across different displays.
Metaphors can also share a spatial encoding, providing a common

axis, or they can share a primitive, ensuring a consistent visual
representation of data.

However, shared objects must stay consistent. All objects in
Rivet subscribe to the listener mechanism: objects dependent on
other objects ‘listen’ for changes. When an object is notified, it
updates itself to reflect the change. For example, when a meta-
phor’s spatial encoding is modified, the metaphor recomputes the
bounding boxes for the tuples in its table. In addition to these
simple examples, the listener model easily enables other features
such as animation and active transformation networks.

While the listener mechanism is powerful, some situations re-
quire a more sophisticated coordination between objects. To han-
dle these cases, Rivet provides two mechanisms: bindings and
selectors.

Rivet objects raise events to indicate when some action occurs.
Bindings allow users to execute an arbitrary sequence of actions
whenever a specific object raises a particular event. For instance,
a metaphor may raise an event when a mouse click occurs within
its borders, reporting that a tuple is selected; a binding on this
event could display the contents of the selected tuple in a separate
view.

Selectors, introduced earlier, separate the selection process
into two stages: the selection stage and the query stage. The first
stage corresponds to the actions performed when selection occurs,
such as raising an event or recording the tuple being selected. The
second stage refers to querying the selector as to whether a tuple
is selected. Metaphors use this second stage in deciding whether
to elide or highlight a tuple, as described in Section 2.2.

Figure 3 provides an example showing how a coordinated mul-
tiple-view visualization can be developed using the techniques
discussed in this section.

Related Work: North’s taxonomy of multiple window coordina-
tion [19] identifies three major types of coordination: (1) coupling
selection in one view with selection in another view, (2) coupling
navigation in one view with navigation in another view, and (3)
coupling selection in one view with navigation in another view.
Whereas many visualization systems provide some form of coor-
dination, the binding and selection mechanisms enable Rivet to
support all three forms of coordination. Both the Visage and DE-
Vise visualization environments provide extensive coordination
support: Visage includes a well-architected direct manipulation
environment for inter-view coordination, and DEVise uses cur-
sors and links to implement inter-view navigation and selection.
Whereas these implementations of coordination have highly re-
fined user interface characteristics, Rivet’s programmatic coordi-
nation architecture is more expressive and flexible. The Snap-
Together Visualization [20] project presents a cohesive architec-
ture for coordination, focusing only on the integration of numer-
ous compiled components into a cohesive visualization. It does
not, however, provide support for developing the visualizations
themselves.

2.5 Architecture Discussion
Choosing interfaces to enable maximal object reuse was the main
challenge underlying many design choices, including:

1. The separation of data objects from visual objects.

2. The homogeneous data model.

3. The use of encodings.

4. The separation of visual metaphors from primitives.

5. The abstraction of selectors into a separate object.

(a) Detailed view of a Metaphor

(b) Detailed view of a Primitive

Figure 2. Diagrams depicting the creation of the visual repre-
sentation of a tuple. (a) Metaphors use spatial encodings to
compute the bounding box to be used by the primitive; here,
the tuple’s PID field determines its placement. (b) Primitives
use attribute encodings to create the visual representation of
the tuple within the bounding box. In this example, the color,
fill pattern, and relative size of the rectangle encode three dif-
ferent fields of the tuple.

 4

Figure 3. An example of creating a visualization in Rivet, using data from the execution of a multiprocessing application. The visuali-
zation consists of coordinated views of thread scheduling behavior and cache miss data.

 5

These choices give rise to much of the functionality in Rivet. For
example, the first two choices allow any data to be displayed us-
ing any visual metaphor: one visualization can have multiple
views of the same data; conversely, the same metaphor can be
used to display different data sets. The second choice also allows
the user to build arbitrary transformation networks. The next two
choices allow the user to explicitly define the mapping from data
space to visual space: primitives use retinal encodings to display
any data tuple, irrespective of dimensionality or type, and meta-
phors use spatial encodings to lay out any primitive. The last
choice allows the user to have multiple views of different selected
subsets of the same data; it also allows metaphors to be reused
with a different interaction simply by changing which selector is
used.

Several iterations were made during the evolution of the Rivet
architecture. Previous Rivet implementations were more mono-
lithic, resulting in an inability to easily change the imported data
or visualizations. By choosing this modular architecture with a
relatively small granularity and shareable objects, we have devel-
oped an easily configurable visualization environment applicable
to a wide range of real-world computer systems problems.

3 IMPLEMENTATION CHALLENGES
The design goals of Rivet place two fundamental constraints on its
implementation. First, visualizing the large, complex data sets
typical of computer systems requires Rivet to be fast and efficient.
Second, the desire for flexibility in the development and configu-
ration of visualizations requires Rivet to export a readily accessi-
ble interface. In this section, we discuss these two implementation
challenges.

3.1 Performance
In order to support interactive visualizations of computer systems
data, a visualization system must be able to efficiently display
very large data sets. This constraint requires us to use a compiled
language and a high-powered graphics system. An early imple-
mentation of Rivet done entirely in Tcl/Tk was flexible but unable
to scale beyond small data sets due to the performance limitations
of the interpreter and the graphics library.

Consequently, the Rivet implementation now uses C++ and
OpenGL. OpenGL is a widely used standard for the implementa-
tion of sophisticated graphics displays. It achieves high perform-
ance through hardware acceleration and is platform independent
unlike most windowing systems, such as X11. Furthermore, using
OpenGL enables Rivet to run on the Interactive Mural [14], which
provides a large, contiguous screen space and support for collabo-
rative interaction.

While OpenGL gives us the performance we need, it is not
straightforward to incorporate into our modular design. Specifi-
cally, because context-switching in OpenGL is expensive, Rivet
provides context management, allowing many metaphors to seam-
lessly share a single context.

3.2 Flexibility
While all objects in Rivet are implemented in C++ for perform-
ance, we also want to provide a more flexible mechanism for rap-
idly developing, modifying, and extending visualizations. Our
implementation uses the Simplified Wrapper and Interface Gen-
erator (SWIG) [3] to automatically export the C++ object inter-
faces to standard scripting languages such as Tcl or Perl. SWIG
greatly simplifies the tedious task of generating these interfaces
and gives us a degree of scripting language independence. Since
all Rivet object APIs are exported through SWIG, users create

Figure 4. A visualization used in an iterative performance analysis of the Argus parallel rendering library. The visualization is shown
displaying kernel lock, processor utilization and thread scheduling information for a 39-processor run of the Argus library. This data
is shown in the top view using a stack of resizable and moveable Gantt charts. The bottom view shows these application events aggre-
gated according to process type. The legend’s color scheme can be directly manipulated; any changes are propagated to the charts
via the listener mechanism. The checkbuttons to the left of the legend control which event types are displayed in the top view. The time
control in the bottom window acts as a dynamic query slider on the charts in the top window.

 6

visualizations by writing scripts that instantiate objects, establish
relationships between objects, and bind actions to object events.

One potential pitfall when using a scripting language is the
performance cost, since the interpreter can quickly become a bot-
tleneck if it is invoked too frequently, especially in the main event
loop. However, in Rivet, high-frequency interactions are handled
by the listener and selector mechanisms, which completely bypass
the interpreter. While the binding mechanism relies on the inter-
preter to execute scripts bound to events, bindings are typically
used to respond to user interactions, which are relatively infre-
quent (from the point of view of the computer). Thus, we are able
to realize the benefits of flexibility without suffering a significant
performance cost.

Related Work: Several other information visualization systems
also use Tcl for describing visualizations [11][24]. VTK [23], like
Rivet, integrates C++ with multiple scripting languages.

4 APPLICATIONS
The Rivet visualization environment has been successfully ap-
plied to studying several real-world computer systems problems.
We discuss four applications of Rivet demonstrating its breadth of
application within the computer systems domain.

4.1 Parallel Systems Performance
Achieving good application performance on scalable shared
memory multiprocessors is a challenging task. We used Rivet to
study the performance of Argus [15], a parallel rendering library
for use in large real-time graphics applications such as scientific
visualization systems. Specifically, the Argus developers encoun-
tered a scalability problem: Argus only scaled well to 26 proces-
sors before showing a sharp performance decline. They were un-
able to solve the problem using several traditional analysis tools,
such as software profiling and hardware performance counters.

We used Rivet coupled with SimOS [13], a complete machine
simulator, to perform multiple simulation and visualization itera-
tions, each focusing on different aspects of the application and
operating system. Several types of per-process events, such as
thread scheduling and kernel traps, were displayed using two dif-
ferent metaphors according to the time scale: Gantt charts were
used for detailed displays of individual events, and strip charts
were used to display aggregates computed using data transforms.
During the analysis process, we uncovered several surprising
problems, including large amounts of contention for a kernel lock
caused by a bug in the operating system [6]. Figure 4 shows one
visualization used in this iterative analysis.

This study illustrates the importance of the design decisions
made in Rivet. Because the data being visualized changed with
each iteration, we needed to rapidly prototype different visualiza-
tions. Encodings enabled the Gantt charts and strip charts used to
be easily applied to a wide range of data: processor utilization,
kernel traps, lock activity and thread scheduling. Interactivity and
efficient graphics were necessary to study millions of cycles of
detailed activity across a large number of processes.

4.2 Superscalar Pipeline Analysis
Motivated by concerns about the increasing complexity of

mainstream microprocessors and the inability of software to take
full advantage of these processors, we developed a visualization
for studying application behavior on superscalar processors [25].
This tool, shown in Figure 5, combines three separate views to
provide an “overview-plus-detail” display of an application’s
execution. The application developer uses the timeline view to
examine processor utilization statistics over the entire execution to
locate problem areas, and then uses the animated pipeline view for
a detailed study of its behavior in those areas. The source code
views allow the developer to correlate the events in the other two
windows with the application source code. This visualization can
also be used for compiler design, hardware design and simulator
debugging.

Figure 5. A visualization designed for the study of application behavior on superscalar processors. The visualization includes three
tightly coordinated components, which together provide a complete picture of the application’s behavior. The timeline view (a) dis-
plays pipeline utilization and occupancy statistics for the entire period of study, and uses an interactive multi-tiered strip chart to pro-
vide rapid navigation and exploration capabilities. The pipeline view (b) animates instructions as they traverse the stages of the pipe-
line during regions of interest identified using the timeline view. The source code views (c) correlate the behavior being displayed in
the animated pipeline view with the application source code.

 7

Coordination was essential to this visualization, since naviga-
tion and selection in all three views are linked. The modular archi-
tecture was also key, since the tool needed to be readily adaptable
to different processors and processor configurations. Thus, the
animated pipeline view used several simple pipe and container
metaphors, rather than a single monolithic pipeline metaphor.
Composing these simple metaphors together into an animated
visualization of a superscalar processor was possible only by lev-
eraging Rivet’s coordination architecture.

4.3 Mobile Radio Network Usage Patterns
Studying mobile network usage patterns is important given the
increasing number of people using wireless networked devices.
Current research in mobile networking relies heavily on simula-
tion; therefore, researchers need models of user movement based
on actual observation. Rivet was used to help perform a detailed
analysis [26] of a seven-week trace of the Metricom metropolitan-
area packet radio wireless network; some of the visualizations are
shown in Figure 6.

The researchers considered several other visualization tools
before deciding on Rivet. However, applying several custom clus-
tering algorithms from within the visualization environment was
critical, since exiting the visualization to apply the clustering
would have been time-consuming and frustrating. Also, the selec-
tion mechanisms in Rivet allowed the researchers to toggle be-
tween the full data set and specific subsets, necessary for under-
standing the data in its entirety.

4.4 Memory System Access Behavior
Most large-scale multiprocessors in use today are built using a
non-uniform memory access (NUMA) model, in which knowl-
edge of data placement and interconnection topology is necessary
for achieving peak performance. Figure 7 shows a visualization of
memory system behavior on a large-scale NUMA multiprocessor.
In order to convey a complete picture of memory access patterns,
this visualization consists of several linked views, such as an ex-

panded version of the cache window presented in Figure 3. This
visualization is heavily dependent on data transformation net-
works. Real-time or logged data is displayed directly in the pri-
mary view, and different transformation networks aggregate this
data for display in the other four views.

5 CONCLUSION AND FUTURE WORK
We developed the Rivet information visualization environment to
provide a cohesive platform for the analysis and visualization of
modern computer systems. It uses a component-based architecture
in which complex visualizations can be composed from simple
data objects, visual objects and data transformations. Rivet addi-
tionally provides powerful coordination mechanisms, which can
be used to add extensive interactivity to the resulting visualiza-
tions. The object interfaces chosen in the design of Rivet demon-
strate how, with the proper parameterization, the design of a so-
phisticated and interactive visualization can be a relatively simple
task.

Rivet has been successfully applied in focused studies of a
wide range of computer systems: parallel applications, superscalar
processors, memory systems, and wireless networks. In addition
to continuing these focused studies, we plan to use Rivet to de-
velop two new visualization frameworks: the Visible Computer
and Visual Pivot Tables.

We have demonstrated several independent visualizations for
portraying different components of computer systems, from the
processor and caches to the memory system and networks. We
would like to combine these components (as well as others) into a
single Visible Computer interface. Starting with an overview,
users will be able to interact with the display, allocating screen
space to subsystems of interest while still providing context about
the rest of the system. Such a system would be valuable both for
pedagogical purposes and for detailed study of computer systems
behavior.

Figure 6: Three visualizations developed to analyze mobile network usage: (a) is used to find user mobility patterns, (b) to find us-
age patterns in time rather than mobility, and (c) to allow the user to probe overall network statistics. (a) contains four scatterplots
of the same data set, each with four pulldown menus controlling the spatial and color encodings and a legend describing the color
encoding. Both (a) and (b) contain a control panel for configuring the current run of a custom clustering algorithm integrated into
Rivet; the legends serve as selectors controlling which data subsets are displayed. In (a), any changes in one legend (made via a
popup colorwheel) are propagated to the other views. Although the same algorithm is used in both visualizations, different visual
metaphors are used, one focusing on mobility and the other on how usage varies by time of day. (c) shows a graph of the network in
the San Francisco Bay Area, with an inset zoom. The control panel lets the user dynamically select which nodes and edges are dis-
played, as well as which parameters to use in encoding the colors of the nodes and edges.

 8

While Rivet was developed as an environment for computer
systems visualization, this problem domain is sufficiently com-
plex that the resulting environment is also appropriate for other
information visualization tasks. For example, one interface we
plan to explore is the pivot table, effective for navigating and
exploring high-dimensional data. We plan to implement Visual
Pivot Tables in Rivet, extending them to display tables of meta-
phors rather than just numbers. By encoding multiple data dimen-
sions in both the tabular layout and the visual representations,
Visual Pivot Tables will greatly simplify the task of analyzing
complex data sets.

References
 [1] C. Ahlberg, and E. Wistrand. “IVEE: An information visualization

& exploration environment.” In Proceedings of IEEE Information
Visualization 1995, pages 66-73, 1995.

[2] A. Aiken, J. Chen, M. Stonebraker, and A. Woodruff. “Tioga-2: A
Direct Manipulation Database Visualization Environment.” In
Proceedings of the IEEE Conference on Data Engineering 1996,
pages 208-217, 1996.

[3] D. Beazley. “SWIG: An easy to use tool for integrating scripting
languages with C and C++.” In Proceedings of the Fourth Annual
USENIX Tcl/Tk Workshop, pages 129-139, 1996.

[4] R. Becker, S. Eick, and A. Wilks. “Visualizing Network Data.” In
IEEE Transactions on Visualization and Computer Graphics, 1(1),
pages 16-28, 1995.

[5] J. Bertin. Graphics and Graphic Information Processing. Berlin:
Walter de Gruyter & Co., 1981.

[6] R. Bosch, C. Stolte, M. Rosenblum, and P. Hanrahan. “Perform-
ance Analysis and Visualization of Parallel Systems using SimOS
and Rivet: A Case Study.” In Proceedings of the Sixth Interna-
tional Symposium on High Performance Computer Architecture,
pages 360-371, January 2000.

[7] A. Couch. “Visualizing huge tracefiles with Xscal.” In Proceed-
ings of the Systems Administration Conference 1996, pages 51-58,
1996.

[8] M. Derthick, J. Kolojejchick, and S. Roth. “An Interactive Visual
Query Environment for Exploring Data.” In Proceedings of ACM
SIGGRAPH Symposium on User Interface Software & Technology,
pages 189-198, 1997.

[9] J. Goldstein, S. Roth, J. Kolojejchick and J. Mattis. “A Framework
for Knowledge-Based, Interactive Data Exploration.” In Journal of
Visual Languages and Computing, pages 339-363, December
1994.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman and H. Pirahesh.
“Data-cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-total.” In Data Mining and Knowledge Dis-
covery, pages 29-53, 1997.

[11] T. He and S. Eick. “Constructing Interactive Visual Network Inter-
faces.” Bell Labs Technical Journal, 3(2), pages 47-57, Lucent
Technologies, April-June 1998.

[12] M. Heath and J. Etheridge. “Visualizing the Performance of Paral-
lel Programs.” In IEEE Software, 8(5), pages 29-39, September
1991.

[13] S. Herrod. “Using Complete Machine Simulation to Understand
Computer System Behavior.” Ph.D. Thesis, Stanford University,
February 1998.

[14] G. Humphreys and P. Hanrahan. “A Distributed Graphics System
for Large Tiled Displays.” In Proceedings of IEEE Visualization
1999, pages 215-223, 1999.

[15] H. Igehy, G. Stoll and P. Hanrahan. “The Design of a Parallel
Graphics Interface.” In Proceedings of SIGGRAPH 1998, pages
141-150, August 1998.

[16] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,
S. Lawande, J. Myllymaki and K. Wenger. “DEVise: Integrated
Querying and Visual Exploration of Large Datasets.” In Proceed-
ings of ACM SIGMOD, pages 301-312, May 1997.

Figure 7. A visualization of memory access patterns on a large-scale shared-memory multiprocessor. The collection of strip charts
displays the total memory stall fraction over time for each processor. The two histogram windows show the stall time as a function of
application virtual address and per-node physical address, and the source code overview shows the stall time incurred by each line of
code. The lower left window, an extension of the cache window in Figure 3, presents multiple views of cache miss behavior on the se-
lected processor, highlighted in the strip chart view.

 9

[17] B. Lucas, G. Abram, N. Collins, D. Epstein, D. Greesh and K.
McAuliffe. “An architecture for a scientific visualization system.”
In Proceedings of IEEE Visualization 1992, pages 107-114, Octo-
ber 1992.

[18] J. Mackinlay. “Automating the Design of Graphical Presentations
of Relational Information.” In ACM Transactions on Graphics,
5(2), pages 110-141, 1986.

[19] C. North and B. Shneiderman. “A Taxonomy of Multiple-Window
Coordination.” University of Maryland Computer Science Depart-
ment Technical Report #CS-TR-3854.

[20] C. North and B. Shneiderman. “Snap-Together Visualization: Co-
ordinating Multiple Views to Explore Information.” University of
Maryland Computer Science Department Technical Report #CS-
TR-4020, 1999.

[21] J. Rasure and M. Young. “An open environment for image
processing software development.” In Proceedings of the SPIE
Symposium on Electronic Image Processing, pages 300-310,
February 1992.

[22] S. Roth, P. Lucas, J. Senn, C. Gomberg, M. Burks, P. Stroffolino,
J. Kolojejchick and C. Dunmire. “Visage: A User Interface Envi-
ronment for Exploring Information.” In Proceedings of the IEEE
Information Visualization Symposium 1996, pages 3-12, 1996.

[23] W. Schroeder, K. Martin and B. Lorenson. The Visualization
Toolkit. An Object-Oriented Approach To 3D Graphics.
2nd Edition, Prentice Hall, 1997

[24] G. Sevitsky, J. Martin, M. Zhou, A. Goodarzi, H. Rabinowitz.
“The NYNEX network exploratorium visualization tool: visualiz-
ing telephone network planning.” In Proceedings of the SPIE - The
International Society for Optical Engineering 1996, vol. 2656,
pages 170-180, 1996.

[25] C. Stolte, R. Bosch, P. Hanrahan and M. Rosenblum. “Visualizing
Application Behavior on Superscalar Processors.” In Proceedings
of IEEE Information Visualization, 1999, pages 10-17, 1999.

[26] D. Tang and M. Baker. “Analysis of a Metropolitan-Area Wireless
Network.” To appear in Wireless Networks.

[27] C. Upson, T. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J.
Vroom, R. Gurwitz, A. van Dam. “The application visualization
system: A computational environment for scientific visualization.”
In IEEE Computer Graphics and Applications, 9(4), pages 30-42,
July 1989.

