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Abstract 
Rivet is a visualization system for the study of complex computer 
systems. Since computer systems analysis and visualization is an 
unpredictable and iterative process, a key design goal of Rivet is 
to support the rapid development of interactive visualizations 
capable of visualizing large data sets. In this paper, we present 
Rivet’s architecture, focusing on its support for varied data 
sources, interactivity, composition and user-defined data trans-
formations. We also describe the challenges of implementing this 
architecture efficiently and flexibly. We conclude with several 
examples of computer systems visualizations generated within 
Rivet, including studies of parallel systems, superscalar proces-
sors, and mobile network usage. 

1 INTRODUCTION 
Computer systems are becoming increasingly complex due to both 
the growing number of users and their growing demand for func-
tionality. Processors are more elaborate, memory systems are 
larger, operating systems provide more functionality, and net-
works are faster. This increasing complexity magnifies the already 
difficult task developers face in designing and using the new tech-
nology. 

Computer systems visualization can be a powerful tool for ad-
dressing this problem, leveraging the immense power and band-
width of the human visual system and its pattern recognition ca-
pabilities. Most computer systems visualization tools developed 
up to this point, however, have focused on very specific prob-
lems [12][7][4]. While some of these tools have been successful, 
they do not meet the demands of most developers. First, a devel-
oper may not even know about these very specialized tools. Sec-
ond, these tools may not scale to the problem size. Even if they do 
scale, a steep learning curve is involved. Finally, even if the visu-
alization helps a developer solve one problem, the next problem 
may be completely different. Computer systems analysis and 
visualization is a highly unpredictable and iterative process, with 
the demands varying greatly not only from task to task, but also 
iteration to iteration. What is required is a single, cohesive visu-
alization environment that can be readily adapted to the users’ 
needs, so they can learn the tool once and apply that knowledge to 
any problem.  

Rivet is a visualization environment with the power and flexi-
bility to be used in understanding a wide range of real-world 
computer systems problems. In designing Rivet, we encountered 
several challenges: 

• Supporting data transformations. Providing data transfor-
mation capabilities within the visualization system greatly 
enhances its exploratory power. The environment must not 
only provide a robust set of standard operators, but also en-
able users to add their own transformations. 

• Interfacing with arbitrary data sources. Since data collec-
tion tools for computer systems vary widely, from hardware 
monitors to software instrumentation to simulation, the visu-

alization environment must be able to import large data sets 
from disparate sources. 

• Coordinating events, objects and data. In order to support 
interactive exploration of large data sets, the system must 
provide coordination of multiple views and facilities for for-
mulating visual queries. 

• Finding the right object model and interfaces. Determin-
ing the right object granularity and the parameterizations of 
those objects is critical for easy configurability of the system, 
necessary for applicability to a broad range of problems. 

In this paper, we provide a detailed description of the Rivet ar-
chitecture and the challenges faced in its design and implementa-
tion. We also present several visualizations, developed within 
Rivet, for analyzing real computer systems problems. 

2 ARCHITECTURE OVERVIEW 
Figure 1 illustrates the three basic steps of the visualization proc-
ess: modeling and managing data, providing visual representations 
of the data, and mapping the data to the visual. Visualizations may 
also provide some means for the user to interact with the data, its 
visual representation, and the mappings between them. In com-
puter systems visualizations focused on solving specific problems, 
these steps can be tightly integrated into a monolithic application. 
However, for Rivet to be applicable to a wide range of problem 
domains, its architecture must be modularized, exposing the inter-
faces of each step of the visualization process.  

In the remainder of this section, we present the architectural 
components and how they are combined to form visualizations. 
We first introduce the data and visual structures, followed by 
encodings, which map data to visual representations. We then 
describe coordination between objects in Rivet, and conclude with 
a brief discussion of our design choices. 

2.1 Data Tuples, Tables, and Transforms 
Data management in Rivet is done using a simplified relational 
model. The fundamental data element in Rivet is the tuple, an 
unordered collection of data attributes. Tuples with a common 
format may be grouped into tables, which store these tuples along 
with metadata describing the tuple contents. This homogeneous 
data model offers two benefits: its familiarity and the ability to 
easily visualize the same data set in many different ways. 

Providing this data management model is not sufficient, how-
ever: users need some way to operate on the data tables. Other-
wise, they would have to exit the visualization, change the data, 
and then import the transformed data back into the visualization 
environment. 

As shown in Figure 1, Rivet supports data operations through 
transforms, which take one or more tables as input and produce 
one or more tables as output. These transforms are quite expres-
sive, since they can be dynamically composed to form a transfor-
mation network expressing a more complex operation. They are 
also active: any changes in the data are automatically propagated. 
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This property is especially useful in computer systems analysis 
where the data can change in real time. Rivet includes a set of 
standard transforms, including filtering, sorting, aggregation, 
grouping, merging multiple tables, and joining tables together. 
However, since we cannot hope to provide all operations users 
may need, they may write their own transforms and easily incor-
porate them into their visualizations.  

Data can be imported from a variety of external sources. In 
particular, a commonly used data collection method for computer 
systems analysis is the generation of large ad hoc log files. To 
enable developers to easily visualize this data, we provide a regu-
lar expression parser for generating data tables from these files. 
To provide efficient access for multiple visualization sessions of a 
fixed data set, Rivet also includes the ability to directly load and 
save tables using a binary data format. 

Related Work: Many visualization systems utilize a relational 
data model. The aspect of Rivet’s data management distinguishing 
it from existing systems is its extensive support for data transfor-
mations within the visualization environment. Several different 
approaches have been taken by visualization systems to support 
data transformations. Some systems, such as IVEE  [1], rely on 
external SQL databases to provide data query and manipulation 
capabilities. However, as has been discussed in Goldstein et al. [9] 
and Gray et al. [10], the SQL query mechanism is limited and 
does not easily support the full range of visualization tasks, espe-
cially summarization and aggregation. Visual programming and 
query-by-example systems such as Tioga-2 [2] and VQE [8] pro-
vide data transformations internal to the visualization environ-
ment; their transformation sets are not extensible by the user, and 
the existing transformations must be sufficiently simple to support 
the paradigm of visual programming. IDES [9] and DEVise [16] 
are both very flexible systems that provide extensive data manipu-
lation and filtering capabilities through interaction with the visual 
representations; however, neither is easily extensible by the user. 
Data flow systems such as AVS [27], Data Explorer [17], 
Khoros [21] and VTK [23] closely match the flexibility and power 
offered by the data transformation components of Rivet, providing 
extensive prebuilt transformations and support for custom trans-
formations. However, their focus is on three-dimensional scien-
tific visualization, and thus they do not provide data models and 
visual metaphors appropriate for computer systems study. 

2.2 Visual Metaphors and Primitives 
Once the data to be studied has been imported and transformed 
into a collection of data tables, the tables are displayed using one 
or more visual metaphors. Metaphors create the visual representa-
tions for data tables by using primitives, which create the visual 
representations for individual data tuples.  

Specifically, a metaphor is responsible for drawing attributes 
common to the table, such as axes and labels. It also defines the 
coordinate space for the table; thus, for every tuple in the table, it 
computes a position and size which are passed to the primitive 
along with the tuple. The primitive is then responsible for drawing 
the tuple within this bounding box. 

In the simplest case, a metaphor uses a single primitive to 
draw each tuple. However, users may wish to distinguish subsets 
of the data within a metaphor; for instance, they may want to 
highlight or elide some tuples. This task is accomplished using 
selectors, objects that identify data subsets. Metaphors may con-
tain multiple selectors, each associated with a primitive to be used 
for displaying tuples in the specified subset. 

Related Work: The explicit mapping of individual data tuples 
directly to visual primitives first appeared in the APT [18] system, 
and has been used in numerous systems since, including Vis-
age [22], DEVise [16] and Tioga-2 [2]. However, the use of selec-
tors to selectively map tuples to different visual primitives is 
unique to the Rivet visualization environment. 

Rivet also provides mechanisms for allocating resources, such 
as drawing time and screen space, among metaphors. Redraw 
managers regulate the metaphor drawing process by allocating 
drawing time to each metaphor. Under the basic redraw manager, 
metaphors are given an unlimited amount of drawing time. How-
ever, more complex redraw managers may be used to restrict the 
metaphors’ drawing times in order to provide interactivity or 
smooth animation. These managers actively monitor and distrib-
ute redraw time amongst metaphors. For instance, if the user is 
interacting with a particular metaphor, a redraw manager might 
allocate more drawing time to it. A metaphor can adapt to its allo-
cation of time in a variety of ways, such as reducing the level of 
detail or omitting ornamentation. 

Multiple metaphors may be displayed in a single window by 
using a layout manager. Layout managers utilize different tech-
niques for allocating screen space to each metaphor, including the 
explicit specification of layout or the use of a regular layout such 
as a grid or a stack. In addition, layout managers enable the user 
to resize and reposition the metaphors through direct manipula-
tion. 

Finally, Rivet includes a set of display managers, which han-
dle interactions between Rivet and the underlying system. The 
display managers encapsulate the platform-specific display com-
ponents, making Rivet easily portable to different systems. Rivet 
currently runs on X Windows, Microsoft Windows, and Stan-
ford’s Interactive Mural [14]. 

 

 
Figure 1. A schematic depiction of the information flow in Rivet. Data is read from an external data source and then passed through a 
transformation network, which performs operations such as sorting, filtering and aggregation. The resulting tables are passed to vis-
ual metaphors, which map the data tuples to visual representations on the display. Interaction and coordination are not shown here. 
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2.3 Encodings From Data to Visuals 
Rivet uses encodings to map data to visual representations. There 
are two classes of encodings. Metaphors use spatial encodings to 
map fields of a data tuple to a spatial extent or location; primitives 
use attribute encodings to map fields to retinal properties [5] such 
as color, fill pattern, and size. Examples of these encodings are 
illustrated in Figure 2. 

Specifically, metaphors use one or more spatial encodings to 
determine the bounding box used by the primitive to render a 
given tuple. For example, a Gantt chart uses one encoding to de-
termine the horizontal extent of a tuple, while a two-dimensional 
scatterplot has separate spatial encodings for horizontal and verti-
cal axes. Because a spatial encoding can map any field or combi-
nation of fields in a tuple to a location, the metaphor itself is data 
independent. 

A primitive uses several encodings to determine the retinal 
properties of a tuple’s visual representation. For example, most 
primitives have a fill color encoding, which can be used to reflect 
some nominative field, such as process name, or some quantita-
tive field, such as cache misses, of the tuple being displayed. Us-
ing encodings provides great flexibility in how a tuple can be 
mapped to a primitive: the user can selectively map any field or 
fields to any encoded retinal property of the primitive.  

Related Work: The explicit use of encodings to parameterize 
visual metaphors and primitives is another innovation of the APT 
system. In APT and in subsequent systems such as Visage, encod-
ings formalize the expressive capabilities of visual representations 
and are utilized by knowledge-based systems to automatically 
generate graphical displays of information. We find that encod-
ings provide an ideal parameterization for visual representations 
within a programmable visualization environment. 

2.4 Coordination 
With the modular architecture of Rivet, we can achieve a lot of 
coordination simply by sharing objects. For example, metaphors 
can share a selector, enabling brushing across different displays. 
Metaphors can also share a spatial encoding, providing a common 

axis, or they can share a primitive, ensuring a consistent visual 
representation of data.  

However, shared objects must stay consistent. All objects in 
Rivet subscribe to the listener mechanism: objects dependent on 
other objects ‘listen’ for changes. When an object is notified, it 
updates itself to reflect the change. For example, when a meta-
phor’s spatial encoding is modified, the metaphor recomputes the 
bounding boxes for the tuples in its table. In addition to these 
simple examples, the listener model easily enables other features 
such as animation and active transformation networks. 

While the listener mechanism is powerful, some situations re-
quire a more sophisticated coordination between objects. To han-
dle these cases, Rivet provides two mechanisms: bindings and 
selectors. 

Rivet objects raise events to indicate when some action occurs. 
Bindings allow users to execute an arbitrary sequence of actions 
whenever a specific object raises a particular event. For instance, 
a metaphor may raise an event when a mouse click occurs within 
its borders, reporting that a tuple is selected; a binding on this 
event could display the contents of the selected tuple in a separate 
view. 

Selectors, introduced earlier, separate the selection process 
into two stages: the selection stage and the query stage. The first 
stage corresponds to the actions performed when selection occurs, 
such as raising an event or recording the tuple being selected. The 
second stage refers to querying the selector as to whether a tuple 
is selected. Metaphors use this second stage in deciding whether 
to elide or highlight a tuple, as described in Section 2.2. 

Figure 3 provides an example showing how a coordinated mul-
tiple-view visualization can be developed using the techniques 
discussed in this section. 

Related Work: North’s taxonomy of multiple window coordina-
tion [19] identifies three major types of coordination: (1) coupling 
selection in one view with selection in another view, (2) coupling 
navigation in one view with navigation in another view, and (3) 
coupling selection in one view with navigation in another view. 
Whereas many visualization systems provide some form of coor-
dination, the binding and selection mechanisms enable Rivet to 
support all three forms of coordination. Both the Visage and DE-
Vise visualization environments provide extensive coordination 
support: Visage includes a well-architected direct manipulation 
environment for inter-view coordination, and DEVise uses cur-
sors and links to implement inter-view navigation and selection. 
Whereas these implementations of coordination have highly re-
fined user interface characteristics, Rivet’s programmatic coordi-
nation architecture is more expressive and flexible. The Snap-
Together Visualization [20] project presents a cohesive architec-
ture for coordination, focusing only on the integration of numer-
ous compiled components into a cohesive visualization. It does 
not, however, provide support for developing the visualizations 
themselves.  

2.5 Architecture Discussion 
Choosing interfaces to enable maximal object reuse was the main 
challenge underlying many design choices, including:  

1. The separation of data objects from visual objects. 

2. The homogeneous data model. 

3. The use of encodings. 

4. The separation of visual metaphors from primitives. 

5. The abstraction of selectors into a separate object. 

 
(a) Detailed view of a Metaphor 

 
 

(b) Detailed view of a Primitive 

Figure 2. Diagrams depicting the creation of the visual repre-
sentation of a tuple. (a) Metaphors use spatial encodings to 
compute the bounding box to be used by the primitive; here, 
the tuple’s PID field determines its placement. (b) Primitives 
use attribute encodings to create the visual representation of 
the tuple within the bounding box. In this example, the color, 
fill pattern, and relative size of the rectangle encode three dif-
ferent fields of the tuple. 
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Figure 3. An example of creating a visualization in Rivet, using data from the execution of a multiprocessing application. The visuali-
zation consists of coordinated views of thread scheduling behavior and cache miss data.  
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These choices give rise to much of the functionality in Rivet. For 
example, the first two choices allow any data to be displayed us-
ing any visual metaphor: one visualization can have multiple 
views of the same data; conversely, the same metaphor can be 
used to display different data sets. The second choice also allows 
the user to build arbitrary transformation networks. The next two 
choices allow the user to explicitly define the mapping from data 
space to visual space: primitives use retinal encodings to display 
any data tuple, irrespective of dimensionality or type, and meta-
phors use spatial encodings to lay out any primitive. The last 
choice allows the user to have multiple views of different selected 
subsets of the same data; it also allows metaphors to be reused 
with a different interaction simply by changing which selector is 
used.  

Several iterations were made during the evolution of the Rivet 
architecture. Previous Rivet implementations were more mono-
lithic, resulting in an inability to easily change the imported data 
or visualizations. By choosing this modular architecture with a 
relatively small granularity and shareable objects, we have devel-
oped an easily configurable visualization environment applicable 
to a wide range of real-world computer systems problems.  

3 IMPLEMENTATION CHALLENGES 
The design goals of Rivet place two fundamental constraints on its 
implementation. First, visualizing the large, complex data sets 
typical of computer systems requires Rivet to be fast and efficient. 
Second, the desire for flexibility in the development and configu-
ration of visualizations requires Rivet to export a readily accessi-
ble interface. In this section, we discuss these two implementation 
challenges. 

3.1 Performance 
In order to support interactive visualizations of computer systems 
data, a visualization system must be able to efficiently display 
very large data sets. This constraint requires us to use a compiled 
language and a high-powered graphics system. An early imple-
mentation of Rivet done entirely in Tcl/Tk was flexible but unable 
to scale beyond small data sets due to the performance limitations 
of the interpreter and the graphics library. 

Consequently, the Rivet implementation now uses C++ and 
OpenGL. OpenGL is a widely used standard for the implementa-
tion of sophisticated graphics displays. It achieves high perform-
ance through hardware acceleration and is platform independent 
unlike most windowing systems, such as X11. Furthermore, using 
OpenGL enables Rivet to run on the Interactive Mural [14], which 
provides a large, contiguous screen space and support for collabo-
rative interaction. 

While OpenGL gives us the performance we need, it is not 
straightforward to incorporate into our modular design. Specifi-
cally, because context-switching in OpenGL is expensive, Rivet 
provides context management, allowing many metaphors to seam-
lessly share a single context.  

3.2 Flexibility 
While all objects in Rivet are implemented in C++ for perform-
ance, we also want to provide a more flexible mechanism for rap-
idly developing, modifying, and extending visualizations. Our 
implementation uses the Simplified Wrapper and Interface Gen-
erator (SWIG) [3] to automatically export the C++ object inter-
faces to standard scripting languages such as Tcl or Perl. SWIG 
greatly simplifies the tedious task of generating these interfaces 
and gives us a degree of scripting language independence. Since 
all Rivet object APIs are exported through SWIG, users create 

 
Figure 4. A visualization used in an iterative performance analysis of the Argus parallel rendering library. The visualization is shown 
displaying kernel lock, processor utilization and thread scheduling information for a 39-processor run of the Argus library. This data 
is shown in the top view using a stack of resizable and moveable Gantt charts. The bottom view shows these application events aggre-
gated according to process type. The legend’s color scheme can be directly manipulated; any changes are propagated to the charts 
via the listener mechanism. The checkbuttons to the left of the legend control which event types are displayed in the top view. The time 
control in the bottom window acts as a dynamic query slider on the charts in the top window. 
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visualizations by writing scripts that instantiate objects, establish 
relationships between objects, and bind actions to object events. 

One potential pitfall when using a scripting language is the 
performance cost, since the interpreter can quickly become a bot-
tleneck if it is invoked too frequently, especially in the main event 
loop. However, in Rivet, high-frequency interactions are handled 
by the listener and selector mechanisms, which completely bypass 
the interpreter. While the binding mechanism relies on the inter-
preter to execute scripts bound to events, bindings are typically 
used to respond to user interactions, which are relatively infre-
quent (from the point of view of the computer). Thus, we are able 
to realize the benefits of flexibility without suffering a significant 
performance cost. 

Related Work: Several other information visualization systems 
also use Tcl for describing visualizations [11][24]. VTK [23], like 
Rivet, integrates C++ with multiple scripting languages. 

4 APPLICATIONS 
The Rivet visualization environment has been successfully ap-
plied to studying several real-world computer systems problems. 
We discuss four applications of Rivet demonstrating its breadth of 
application within the computer systems domain. 

4.1 Parallel Systems Performance 
Achieving good application performance on scalable shared 
memory multiprocessors is a challenging task. We used Rivet to 
study the performance of Argus [15], a parallel rendering library 
for use in large real-time graphics applications such as scientific 
visualization systems. Specifically, the Argus developers encoun-
tered a scalability problem: Argus only scaled well to 26 proces-
sors before showing a sharp performance decline. They were un-
able to solve the problem using several traditional analysis tools, 
such as software profiling and hardware performance counters. 

We used Rivet coupled with SimOS [13], a complete machine 
simulator, to perform multiple simulation and visualization itera-
tions, each focusing on different aspects of the application and 
operating system. Several types of per-process events, such as 
thread scheduling and kernel traps, were displayed using two dif-
ferent metaphors according to the time scale: Gantt charts were 
used for detailed displays of individual events, and strip charts 
were used to display aggregates computed using data transforms. 
During the analysis process, we uncovered several surprising 
problems, including large amounts of contention for a kernel lock 
caused by a bug in the operating system [6]. Figure 4 shows one 
visualization used in this iterative analysis. 

This study illustrates the importance of the design decisions 
made in Rivet. Because the data being visualized changed with 
each iteration, we needed to rapidly prototype different visualiza-
tions. Encodings enabled the Gantt charts and strip charts used to 
be easily applied to a wide range of data: processor utilization, 
kernel traps, lock activity and thread scheduling. Interactivity and 
efficient graphics were necessary to study millions of cycles of 
detailed activity across a large number of processes. 

4.2 Superscalar Pipeline Analysis 
Motivated by concerns about the increasing complexity of 

mainstream microprocessors and the inability of software to take 
full advantage of these processors, we developed a visualization 
for studying application behavior on superscalar processors [25]. 
This tool, shown in Figure 5, combines three separate views to 
provide an “overview-plus-detail” display of an application’s 
execution. The application developer uses the timeline view to 
examine processor utilization statistics over the entire execution to 
locate problem areas, and then uses the animated pipeline view for 
a detailed study of its behavior in those areas. The source code 
views allow the developer to correlate the events in the other two 
windows with the application source code. This visualization can 
also be used for compiler design, hardware design and simulator 
debugging.  

 
Figure 5. A visualization designed for the study of application behavior on superscalar processors. The visualization includes three 
tightly coordinated components, which together provide a complete picture of the application’s behavior. The timeline view (a) dis-
plays pipeline utilization and occupancy statistics for the entire period of study, and uses an interactive multi-tiered strip chart to pro-
vide rapid navigation and exploration capabilities. The pipeline view (b) animates instructions as they traverse the stages of the pipe-
line during regions of interest identified using the timeline view. The source code views (c) correlate the behavior being displayed in 
the animated pipeline view with the application source code. 
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Coordination was essential to this visualization, since naviga-
tion and selection in all three views are linked. The modular archi-
tecture was also key, since the tool needed to be readily adaptable 
to different processors and processor configurations. Thus, the 
animated pipeline view used several simple pipe and container 
metaphors, rather than a single monolithic pipeline metaphor. 
Composing these simple metaphors together into an animated 
visualization of a superscalar processor was possible only by lev-
eraging Rivet’s coordination architecture. 

4.3 Mobile Radio Network Usage Patterns 
Studying mobile network usage patterns is important given the 
increasing number of people using wireless networked devices. 
Current research in mobile networking relies heavily on simula-
tion; therefore, researchers need models of user movement based 
on actual observation. Rivet was used to help perform a detailed 
analysis [26] of a seven-week trace of the Metricom metropolitan-
area packet radio wireless network; some of the visualizations are 
shown in Figure 6. 

The researchers considered several other visualization tools 
before deciding on Rivet. However, applying several custom clus-
tering algorithms from within the visualization environment was 
critical, since exiting the visualization to apply the clustering 
would have been time-consuming and frustrating. Also, the selec-
tion mechanisms in Rivet allowed the researchers to toggle be-
tween the full data set and specific subsets, necessary for under-
standing the data in its entirety. 

4.4 Memory System Access Behavior 
Most large-scale multiprocessors in use today are built using a 
non-uniform memory access (NUMA) model, in which knowl-
edge of data placement and interconnection topology is necessary 
for achieving peak performance. Figure 7 shows a visualization of 
memory system behavior on a large-scale NUMA multiprocessor. 
In order to convey a complete picture of memory access patterns, 
this visualization consists of several linked views, such as an ex-

panded version of the cache window presented in Figure 3. This 
visualization is heavily dependent on data transformation net-
works. Real-time or logged data is displayed directly in the pri-
mary view, and different transformation networks aggregate this 
data for display in the other four views. 

5 CONCLUSION AND FUTURE WORK 
We developed the Rivet information visualization environment to 
provide a cohesive platform for the analysis and visualization of 
modern computer systems. It uses a component-based architecture 
in which complex visualizations can be composed from simple 
data objects, visual objects and data transformations. Rivet addi-
tionally provides powerful coordination mechanisms, which can 
be used to add extensive interactivity to the resulting visualiza-
tions. The object interfaces chosen in the design of Rivet demon-
strate how, with the proper parameterization, the design of a so-
phisticated and interactive visualization can be a relatively simple 
task.  

Rivet has been successfully applied in focused studies of a 
wide range of computer systems: parallel applications, superscalar 
processors, memory systems, and wireless networks. In addition 
to continuing these focused studies, we plan to use Rivet to de-
velop two new visualization frameworks: the Visible Computer 
and Visual Pivot Tables. 

We have demonstrated several independent visualizations for 
portraying different components of computer systems, from the 
processor and caches to the memory system and networks. We 
would like to combine these components (as well as others) into a 
single Visible Computer interface. Starting with an overview, 
users will be able to interact with the display, allocating screen 
space to subsystems of interest while still providing context about 
the rest of the system. Such a system would be valuable both for 
pedagogical purposes and for detailed study of computer systems 
behavior. 

 
Figure 6: Three visualizations developed to analyze mobile network usage: (a) is used to find user mobility patterns, (b) to find us-
age patterns in time rather than mobility, and (c) to allow the user to probe overall network statistics. (a) contains four scatterplots 
of the same data set, each with four pulldown menus controlling the spatial and color encodings and a legend describing the color 
encoding. Both (a) and (b) contain a control panel for configuring the current run of a custom clustering algorithm integrated into 
Rivet; the legends serve as selectors controlling which data subsets are displayed. In (a), any changes in one legend (made via a 
popup colorwheel) are propagated to the other views. Although the same algorithm is used in both visualizations, different visual 
metaphors are used, one focusing on mobility and the other on how usage varies by time of day. (c) shows a graph of the network in 
the San Francisco Bay Area, with an inset zoom. The control panel lets the user dynamically select which nodes and edges are dis-
played, as well as which parameters to use in encoding the colors of the nodes and edges. 
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While Rivet was developed as an environment for computer 
systems visualization, this problem domain is sufficiently com-
plex that the resulting environment is also appropriate for other 
information visualization tasks. For example, one interface we 
plan to explore is the pivot table, effective for navigating and 
exploring high-dimensional data. We plan to implement Visual 
Pivot Tables in Rivet, extending them to display tables of meta-
phors rather than just numbers. By encoding multiple data dimen-
sions in both the tabular layout and the visual representations, 
Visual Pivot Tables will greatly simplify the task of analyzing 
complex data sets.  
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