
Abstract 

Our goal is to embed free-form constraints into a graphical 
model.  With such constraints a graphic can maintain its visual 
integrity—and break rules tastefully—while being manipulated 
by a casual user.  A typical parameterized graphic does not meet 
these needs because its configuration space contains nonsense 
images in much higher proportion than desirable images, and 
the casual user is apt to ruin the graphic on any attempt to 
modify or animate it. 

We therefore model the small subset of a given graphic’s 
configuration space that maps to desirable images.  In our 
solution, the basic building block is a simplicial complex—the 
most practical data structure able to accommodate the variety of 
topologies that can arise.  The configuration-space model can be 
built from a cross product of such complexes.  We describe how 
to define the mapping from this space to the image space.  We 
show how to invert that mapping, allowing the user to 
manipulate the image without understanding the structure of the 
configuration-space model.  We also show how to extend the 
mapping when the original parameterization contains hierarchy, 
coordinate transformations, and other nonlinearities. 

Our software implementation applies simplicial configuration 
modeling to 2D vector graphics. 

CR Categories and Subject Descriptors: I.3.6 [Computer 
Graphics]: Methodology and Techniques – Graphics Data 
Structures and Data Types, Interaction Techniques; I.3.8 
[Computer Graphics]: Applications. 
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1 Introduction  

1.1 Goal 

Constraints often provide coherence and creative freedom.  That 
principle has been exploited pervasively in computer graphics 
since the days of Ivan Sutherland’s Sketchpad system [18], in 
forms ranging from user-specified constraints such as those 
found in CAD systems [3] and dataflow systems [9] to 
constraint-inference engines [10]  Even bitmap-based tools such 
as Painter [14] empower the user’s creativity by constraining the 
modifications she can make to an image. 

We are interested in how to re-parameterize graphical models so 
that they are constrained enough to hold their visual form when 
modified or animated by a casual user.  Target applications 
include creativity software, dynamic clip art, cartoons, 
performance-based avatars, and charts.  Most existing 
parameterized representations (e.g., 2D vector graphics, NURBS 
surfaces, and CSG) are not constraining enough to meet our 
requirements.  Consider the spline-based example in Figure 1.  In 
that diagram, the blue cube represents the configuration space of 
the spline.  Each configuration is a set of numerical values for 
the parameters of the spline (the coordinates of its control 
points).  Most configurations correspond to meaningless 
scribbles.  A rare few generate humanoid shapes. 

Our task, then, is configuration modeling : representing a subset of 
the configuration space of an existing parameterized graphic.  
Because this subset can have arbitrarily topology, our modeling 
scheme must not impose any a priori restrictions on topology.  
Moreover, the resulting re-parameterization might not map in 
any convenient way to a user’s “mental parameterization.”  We 
therefore seek to shield the user from knowing the structure of 
the parameterization by allowing for direct manipulation of the 
graphical object.  We refer to such direct manipulation as tugging . 

Configuration modeling is a fundamental open problem in 
computer graphics; the need to represent a subset of a graphical 
object’s configuration space is pervasive.1  Although our test 
implementation is designed for 2D spline-based graphics, we 
expect simplicial configuration modeling to be applicable to 
other forms of parameterized graphics, including morphs, 
physically based models, and so forth. 

1.2 Structure of paper 

Section 2 describes a configuration-modeling pipeline in a 
qualitative way.   Quantitative and other algorithmic details are 
deferred for the appendices.  Section 3 discusses how the re-
parameterization used in configuration modeling can be used in 
concert with domain-specific techniques, primarily to 
incorporate hierarchy.  Section 4 describes selected pieces of 
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content made using our authoring system.  Section 5 compares 
our technique with related work, employing the modeling 
abstractions introduced in earlier sections.  Section 6 
recapitulates our main contributions and lists avenues of future 
work.  

2 Qualitative description  

2.1 Configuration-modeling pipeline 

Any configuration-modeling technique can be described in terms 
of the modeling pipeline depicted in Figure 2.  The rightmost 
component in that pipeline, the image space , represents the space 
of all possible images that can be rendered on the display device.  
The middle component, the configuration space, represents the 
freedom in the given parameterized image: a configuration is a 
set of parameter values, one for each parameter.  Its dimensions 
are therefore called configuration parameters, or simply parameters. 

The mapping from the configuration space to the image space is 
the rendering map.  It determines how the parameter values in a 
configuration are interpreted to generate an image on the display 
device; thus, it subsumes all processes normally associated with 
modeling, rendering, and display.  Together, these two spaces 
and the intervening map define a parameterized graphic—an 
object whose re-parameterization is the goal of our work. 

The leftmost component of the pipeline is the state space.  The 
mapping from it to the configuration space is the re-
parameterization map.  The goal in configuration modeling is to 
define a state space and re-parameterization map so that the 
range of the map is a set of desirable configurations. 

Thus, a state determines2 a configuration under the re-
parameterization map, and a configuration determines an image 
under the rendering map.  Most computer graphics research, 
including work on modeling, rendering, and display, is concerned 
with the rendering map.  This paper describes an approach to 
defining the re-parameterization map. 

2.2 Nature of the configuration parameters 

As we have described it, configuration-modeling tasks usually 
involve continuous configuration parameters: geometry (e.g., 2D 
or 3D coordinates of control points or lengths of line segments), 
colors, and even physical parameters such as forces and masses 
in a relaxed mesh.  In most such cases, it is appropriate to define 
a re-parameterization map that is a function.  

A significant twist on configuration modeling can arise when 
continuous configuration parameters represent coordinate 
transformations.  Consider a gedanken experiment in which the 
original parameterized image is a closed 2D spline.  The goal in 
this experiment is to build a configuration model that represents 
a complete human walk cycle in profile, a complete crawl cycle, 
and any gait between walking and crawling.  The state space is 
isomorphic to a square: one dimension represents progress in the 
gait cycle; the other, interpolation between walking and crawling.  
Assuming that a walk cycle covers more horizontal distance than 
a crawl cycle, the path through the state space depicted in Figure 
3 produces a net horizontal translation.  Thus, the addition of a 

                                                                 
2 We will later introduce hysteresis into the re-parameterization map, so the 

word “determine” is used loosely. 

global horizontal translation is required to avoid representing 
configurations that differ from each other only by translation.  
Moreover, the horizontal-translation variable is not a function of 
state: it experiences hysteresis. 

When a discrete parameter is present, one can arrange for the re-
parameterization map to map patches of the state space to values 
of the discrete parameter. 

2.3 Structure of the state space  

In our solution, the state space is represented by a data structure 
that is topologically general and computationally practical: the 
simplicial complex [15].  For convenience in expressing certain 
common relationships, we allow for a cross product of simplicial 
complexes. 

Combinatorially, a simplicial complex S can be specified3 by a set V 
of symbols, and subsets of V chosen so that none is a subset of 
any other.  Each of those subsets is called a simplex: a point, a 
line segment, a triangle, a tetrahedron, or a higher-order simplex, 
depending on the number of symbols in the subset.  The 
standard embedding of that combinatorial object is then the 
subset Λ of RV such that every λ in Λ lies in a simplex.4  A 
vector λ lies in a simplex s if each of its coordinates lies in the 
unit interval [0,1], the coordinates sum to unity, and all 
coordinates corresponding to symbols outside the simplex are 
zero.  The coordinates corresponding to symbols inside the 
simplex are called barycentric coordinates.  We use the combinatorial 
representation of a simplex as shorthand for its standard 
embedding. 

Suppose, for example, that the simplicial complex S1 comprises 
the set of symbols {o,p,q,r} and simplices {{o,p,q},{q,r}}.  It 
consists of a triangle {o,p,q} and a line segment {q,r}.  Using the 
symbol ordering (o,p,q,r), the points (3/4,1/8,1/8,0) and 
(0,0,1/3,2/3) both lie in the standard embedding of this simplicial 
complex because (3/4,1/8,1/8) lies in {o,p,q}, and so forth.  Thus, 
a simplicial complex can be used as a data structure for 
generating interpolation weights; the simplices restrict certain 
groups of weights from being simultaneously non-zero. 

We define the state space Ψ to be a cross product of k simplicial 
complexes: Ψ=S1×S2×…×Sk.  We use the term state to denote an 
element of the state space.  Thus, a state ψ lies in the state space 
Ψ if it can be expressed as a tuple (λ1;λ2;…;λk) such that each λi 
lies in the corresponding simplicial complex Si.  We use the term 
vertex to refer to a “corner” of the state space, i.e., a state 
ψ=(λ1;λ2;…;λk) in which each λi has exactly one coordinate 
equal to 1. 

Suppose, for example, that a state space is equal to S1×S2, where 
S1 is as defined above, and S2 comprises the set of symbols 
{u,v,w} and the simplices {{u,v},{v,w}}.  Using the symbol 
ordering (o,p,q,r; u,v,w), the points (1/4,1/2,1/4,0; 3/7,4/7,0) and 
(0,0,1,0; 0,1,0) both lie in the state space.  The latter is a vertex. 

We use the term zone to refer to a linear region of the state space, 

                                                                 
3Only top-level simplices—simplices that are not sub-faces of other 

simplices—are specified by the user and explicitly represented in the 
implementation. 

4 The notation RV denotes a Euclidean space whose |V| dimensions are 
named according to the symbols in V. 



i.e., a tuple of simplices, with one simplex taken from each factor 
in the cross product of simplicial complexes.  Thus, the state 
space S1×S2 contains four zones. 

2.4 Re-parameterization map 

We use re-parameterization maps of various levels of complexity, 
depending on the nature of the configuration parameters.  In its 
simplest form, a re-parameterization map on a k-factor state 
space is specified by an arbitrary configuration for each vertex in 
the state space, and is k-linear within each zone (linear within 
each factor simplex).  Thus, a re-parameterization map for the 
state space S1×S2 would be specified by twelve independent 
configurations: one for each symbol pair in the cross product 
{o,p,q,r}×{u,v,w}.  Configurations admitted by the map would 
be of the form  

x’ = Σa∈{o,p,q,r} Σb∈{u,v,w} λ1[a] λ2[b] x[a][b] 

where square brackets denote indexing by the symbols in the set 
{o,p,q,r} ∪ {u,v,w}, x[a][b] denotes the configuration associated 
with symbols a and b, and the state ψ=(λ1;λ2) lies in the state 
space S1×S2.  In our current software implementation, those 
twelve configurations are supplied by an artist with a drawing 
tool.  In other systems they might be automatically generated. 

A re-parameterization map can also take more complicated 
forms if the configuration space contains some discrete 
parameters, or some parameters control coordinate 
transformations. 

In the case of a discrete parameter, one can tessellate the state 
space into regions, each of which maps to a different value of the 
parameter.  We have implemented a form of such a discrete map 
in which the regions are zones and the discrete parameter 
controlled the front-to-back permutation ordering of the 
primitives in a 2D vector graphic.  

Appendix A.2 describes the case of a continuous parameter that 
represents a coordinate transformation and therefore can 
undergo hysteresis. 

2.5 Forward process: “driving” 

We use the term driving to describe any process in which a 
sequence of states, generated either automatically or interactively, 
is used to compute a sequence of configurations, and hence an 
animation.  Driving can be used in many ways. 

Clip motions.  A sequence of states can be used to animate any 
simplicial configuration model whose state space is compatible5 
with it, and therefore can be used as a clip motion.  The term 
“clip motion” has been used previously in a different way.  In 
Litwinowicz’ Inkwell system [13], for example, a clip motion is a 
collection of animated Coons patches that can be textured 
differently to generate different characters.  By contrast, two 
simplicial configuration models can use the same clip motion if 
they have isomorphic state spaces, even if they bear no 

                                                                 
5 For example, if two simplicial configuration models can use the same clip 

motion if they have state spaces that are isomorphic to each other, even if 
their appearance is radically different.  The condition for compatibility is 
weaker than isomorphism: the clip motion can also be used for a model 
whose state space is a superset of the aforementioned isomorphic state 
spaces. 

geometric resemblance. 

Factor synchronization.  If two configuration models are 
authored with state spaces whose cross products have one or 
more factors in common (e.g., S1×S2 and S2×S3), then the 
barycentric coordinates associated with the two instances of the 
shared factors (e.g., S2) can be synchronized.  This is useful when 
two models contain some logical dependency; for example, the 
position of a drawn shadow can be synchronized with the 
position of a light source. 

Factor sharing is also critical in abating the exponential explosion 
that can occur when a model contains many degrees of freedom.  
In a model with hierarchy, it is typical for different graphical 
elements to depend on different—but overlapping—sets of 
hierarchical levels.  Consider a human figure: trousers could 
depend on the knee and hip degrees of freedom; a T-shirt, on 
the hip and shoulders; and a scarf, on the shoulders and neck.  
Without factor sharing, each element would need to be re-
parameterized with a state space that includes factors associated 
with every joint.  With it, each element’s state space needs to 
include only the factors on which it depends. 

Algorithmic behavior.  Some or all of the factors in a model 
can be driven algorithmically.  We have implemented, for 
instance, a behavior that executes cartoon-like squash and 
stretch, taking into account the magnitude and direction of flight, 
and impacts with the ground.  This behavior can be applied to 
any model that contains a squash-and-stretch factor in its state 
space that is isomorphic to the one expected by the behavior.  
Because it interfaces with the model at the level of state—not 
geometry—it is sufficiently general to be applied to both a soft, 
round beach ball and a rigid block of wood.  Moreover, the same 
behavior code can be used either interactively (for performance 
or play) or offline (for authoring). 

2.6 Inverse process: “tugging” 

Tugging means inverting the re-parameterization map so that a 
user or some exogenous process can manipulate the model 
through some of its configuration parameters, rather than its 
state.  The system answers each requested change in 
configuration with a change in state that matches the request as 
closely as possible.  The configuration parameters being 
manipulated are often an (x,y) pair;6 we refer to them collectively 
as the tug point. 

The algorithms for tugging, described in Appendix A.1, address 
two principal challenges. 

1. The re-parameterization map on a zone is often ill-
conditioned.  We invert it safely using the Moore-Penrose 
inverse [7]. 

2. At boundaries between zones, the re-parameterization map 
contains discontinuities in the first derivative.  Our 
algorithms handle these discontinuities seamlessly, so that 
inter-zone boundaries—and therefore the structure of the 
state space—can be transparent to the user. 
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less than two.  For example, a mixing station or armature could control 
many parameters simultaneously.  In a 3D environment, the tug point 
might often be a (x,y,z) point.  Non-geometric parameters such as colors 
can also be tugged. 



Because configuration parameters are generally more intuitive to 
use than states, tugging is the primary mechanism by which both 
users and software interact with the graphic.  Like driving, 
tugging can be used in many ways. 

Direct manipulation.  The user specifies desired configuration 
changes by dragging the tug point with a pointing device.  This 
style of interaction obviates the need for (but still permits the 
creation of) separate graphical user-interface elements.  It is also 
well suited for perform ance-driven animation. 

Combination with factor sharing .  When factor sharing makes 
objects in a scene mutually dependent, tugging can be used to 
control any of the objects. 

Simple software control.  The graphic is regarded as a software 
object whose tug point is its interface.  This technique permits an 
algorithmic behavior to be designed for reusability.  We have 
implemented, for instance, a dynamic behavior that simulates a 
mass in a viscous medium, attached to a user-translatable anchor 
point through a damped spring.  It can be used for any graphic 
with an (x,y) tug point and a 2D translation, regardless of state-
space topology. 

Factor locking.  Barycentric coordinates associated with one or 
more of the factors in a state space can be constrained not to 
change during a tug.  In our system, the author can arrange for 
certain factors to be locked whenever a given point is tugged. 

Hybrid driving and tugging.  One or more factors can be 
driven algorithmically while others are tugged.  This is useful in 
arranging for a combination of interactivity and autonomous 
behavior. 

3 Hybridizing with domain-specific techniques 

Configuration modeling is best suited for describing relatively 
free-form interdependencies that are difficult to express 
algebraically.  When constraints are more easily described by 
domain-specific techniques such as articulated-figure kinematics, 
the domain-specific techniques are preferable.  In addition, a 
mechanism to make one model depend on another improves 
model reusability: for example, a model of an eye might be made 
once and used with many faces. 

One approach to addressing these needs would be to use 
configuration modeling and an existing domain-specific 
technique independently.  For example, to develop a human 
character in a 2D vector-based system, one might use standard 
forward and inverse kinematics for articulated figures to define a 
complete skeleton, and express fragments of clothing using 
independent re-parameterized models, each in the local 
coordinate system of a different rod in the skeleton.  In this 
approach, clothing would not automatically deform in response 
to skeletal movements. 

Another approach would be to incorporate curvilinear 
interpolation into the re-parameterization map, which is linear on 
each simplex as we have presented it.  For instance, to mitigate 
the foreshortening effects characteristic of linear interpolation in 
Cartesian coordinates, one might make the re-parameterization 
map polynomial or transcendental on each simplex.  We have 
considered employing simplicial splines with differential 
constraints at boundaries.  Librande and Poggio have 
successfully developed a curvilinear re-parameterization 

technique that employs radial basis functions on a hypercube 
[12]. 

Instead of either approach, we place parameterized, domain-
specific coordinate transformations in the original model.  Thus, 
the coordinate transformations are executed in the rendering 
map, but because they are parameterized, their behavior can be 
influenced during re-parameterization.  Structural hierarchy is 
permitted in several ways: control points, entire models, and 
coordinate transformations can depend on other coordinate 
transformations.  This technique simultaneously addresses the 
needs for reusability and for domain-specific constraints.  In 
addition, we find that it permits the use of re-parameterization to 
break rules imposed by the domain-specific constraints. 

To amplify the last point, consider a 2D vector-based arm drawn 
as one spline around two rotational joints.  Parts of the spline are 
represented in a forearm coordinate system; others are in an 
upper-arm coordinate system; yet others are in absolute 
coordinates.  Rotating the two joints without re-parameterizing 
any spline coordinates causes the curve to move roughly as the 
outline of an arm, but with artifacts: the spline folds incorrectly 
at the elbow. 

Re-parameterization allows the artifact to be removed.  In 
addition, it permits the artist to arrange for the shoulder to 
dislocate artfully by adjusting translational joint parameters7 in 
the extreme poses.  Specifically, one might create a state space 
with topology {{elbow1,elbow2}, {elbow2,elbow3}} × 
{{shoulder1,shoulder2}, {shoulder2,shoulder3}}: simple bilinear 
interpolation in each of four zones generated from a 3×3 grid of 
example configurations.  By arranging for the nine 
configurations to differ only in their shoulder- and elbow-joint 
parameters, one would obtain the coarse movement described 
above.  The artifact repair and joint dislocation would be 
brought about by adjusting the spline coordinates in each of the 
nine configurations. 

4 Results 

We implemented an authoring system for the re-
parameterization of 2D vector graphics via simplicial 
configuration modeling.  We also implemented a number of 
smaller applications in which novice users could manipulate 
models created in the authoring system.  The authoring system 
and applications were written for the Win32 operating system 
and the Microsoft Foundation Classes.  For smooth real-time 
animation, a Pentium-class processor with a clock speed of at 
least 266 MHz is required.  Rendering—not tugging—is the slow 
step. 

Figure 4 shows selected content authored in our system. 

The fern, Figure 4d, exemplifies free-form constraints.  It was 
authored using twenty-one drawings of the fern in different 

                                                                 

7 Our domain-specific coordinate transformation has four 
parameters.  It represents a translatable rubber sheet that 
stretches along a preferred axis whose orientation is variable.  
When these transformations are chained, the origin of each 
rubber sheet is expressed in the coordinate system of the 
preceding transformation but the orientation and stretch are in 
absolute coordinates.  



positions.  Tugging its tip elicits flowing undulations.  A flattened 
diagram of its single-factor kite-shaped state space is in Figure 5. 
Moving along the “kite tail” from its tip to the “kite body” 
corresponds to unfurling of the fern from seed to seedling. 
Vertical movements within the “kite” region correspond 
roughly to further unfurling; and horizontal movements, to 
graceful swaying from left to right. 

The beach scene, Figure 4a, demonstrates factor 
synchronization.  It has five factors: two for the sun position, 
one for the shoreline shape, one for the castle shape, and one for 
the motion of the waves.  The first four factors are linear chains 
of three, two, three, and four symbols each; the fifth is a single 
triangle.  Each object in the scene depends on a different subset 
of the factors.  They are interrelated in several ways; for example, 
the position of the sun, its reflection, and the castle’s shadow are 
mutually dependent and all can be tugged. 

The Trapeze Guy, Figure 4b, illustrates how a simple behavior 
(the mass-spring dynamical system described in Section 2.6) can 
be reused [19].  The Trapeze Guy’s state space is a ring of eight 
symbols (which represents rotation about the trapeze), crossed 
with a linear chain of five symbols (which represents, roughly, 
the distance of the character’s feet from the trapeze).  The user-
translatable anchor point of the mass-spring system is attached 
to the trapeze; the dynamically controlled mass, to a tug point 
near the character’s feet.  His body swings about as the user 
moves the trapeze.  In the spirit of free-form constraints, an 
open red mouth and beads of sweat added to some of the forty 
authored configurations add to the comedy. 

Our most complex piece is the cartoon character model, Figure 
4c.  It contains extensive factor synchronization and 
hybridization using the modified form of articulated-figure 
kinematics described in Section 3.  Its fourteen separate 
simplicial configuration models represent body parts such as 
arms, legs, eyes, and eyelids.  They share subsets of the twelve 
factors, with the greatest amount of sharing used for axial 
rotation as well as left-right and part-to-part coordination of the 
eyes.  One of the more interesting factors is the one that governs 
the shape of the mouth: it contains four triangles and two 
tetrahedra, assembled into a kite-like structure. 

Articulation in each limb and the attachment of facial parts to 
the head are both accomplished using the hybrid scheme 
described in Section 3.  In both cases, the visual integrity of the 
cartoon depended critically on the re-parameterization 
component of the hybrid scheme, without which the 
coordination of body parts is only approximate. 

5 Related work 

In computer graphics, simplicial complexes have been used 
principally for modeling 3D geometry.  Hoppe et al. [8] exploited 
the well-understood topological properties of simplicial 
complexes to regulate changes to mesh representations of 
surfaces.  Edelsbrunner [5] used a multi-resolution approach (α-
shapes) to track scale-dependent topological changes in the 
Delaunay triangulation of a multi-scale point-data set. 

We use simplicial complexes to meet a goal much closer to that 
of Librande and Poggio [12], whose work may be described in 
the language of configuration modeling.  Viewed from that 
perspective, their technique prescribes a state space that is a 

hypercube, and therefore cannot represent topological holes.  
Representational power resides in the re-parameterization map, 
whose form is a superposition of radial basis functions, whereas 
ours is only piecewise linear.  Thus, their system is geometrically 
flexible but—in comparison to ours—topologically restricted.  
Holes are important, for example, when rotational degrees of 
freedom are involved.  Indeed, recent work by Rademacher on 
view-dependent deformations [17] essentially employed 
simplicial configuration modeling.  Rademacher’s work 
exemplifies how an artist’s expressiveness can be layered onto 
geometric relationships through the use of example-based 
modeling. 

Gleicher and Witkin [6] influenced us to ensure that any 
simplicial configuration model is, without any special effort on 
the part of the artist, responsive to direct manipulation.  Pai [16], 
among others, has applied similar concepts to robot control; his 
methods are based much more on half-space penalty functions. 

Also related are constraint-based systems that require the user to 
specify constraints explicitly, either algorithmically or through a 
more graphical interface.  Such systems are ideal when the 
desired constraints are relatively easy to state, as in industrial 
CAD [3], diagramming tools [1], and 3D animation tools that 
permit entry of algebraic constraints [2].  By reducing cognitive 
burden on the user, the work of Kurlander and Feiner on 
constraint inference [10] challenges our distinction between 
explicit and free-form constraints. 

Techniques for multi-target interpolation [4,11] are comple-
mentary to simplicial configuration modeling in the sense that 
each represents a new class of parameterized models to which 
the structured interpolation implied by simplicial configuration 
modeling may be applied.  In fact, the present work is part of a 
growing interest in structured interpolation between examples, 
either digitally captured or created by an artist. 

6 Epilogue 

We have identified the challenge of configuration modeling, 
which we believe to be an important open problem in computer 
graphics.  To address this challenge, we have proposed to use a 
modeling primitive based on the simplicial complex.  This choice 
leads to topological generality. 

We have shown how to run the maps from state space to image 
space both forward (by driving) and in reverse (by tugging).  We 
have identified a number of ways in which driving and tugging 
lead to economies related to reusability of code and content.  We 
have shown why the need for hysteresis arises in configuration 
modeling and have proposed techniques for obtaining it.  We 
have demonstrated how domain-specific coordinate 
transformations can be used in harmony with configuration 
modeling in a manner that exploits the strengths of both. 

Today’s simplicial configuration models are characterized by low 
simplex counts and labor-intensive authoring—much like the 
first polygonal models in 3D graphics.  If configuration modeling 
addresses a genuine need, one might expect to see further 
developments along lines analogous to the ones that have 
permitted polygonal models to grow in complexity by orders of 
magnitude.  These might include semi-automated authoring 
using high-level primitives and capture of configuration models 
from video sources. 
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A  Appendices 

A.1  Tugging algorithms 

This appendix describes how to invert the re-parameterization map.  
Given a requested change in one or more configuration parameters, 
the goal is to compute a state change that satisfies the request as 
closely as possible.  We describe cases in order of increasing 
complexity.  Following Gleicher and Witkin [6], we use local 
solutions instead of global ones to provide temporal continuity in 
animation. 

One factor, one zone.  In a single-factor model that contains one 
simplex, the re-parameterization map is linear.  Let x be a vector 
whose coordinates are the configuration parameters to be changed, 
and let ∆x be the desired change.  A state is said to improve upon the 
current state if it maps to a configuration x’ for which (x’ ∆x > 0. 

Let λ be the state in barycentric coordinates.  To constrain the 
barycentric coordinates to sum to unity, we use the redundant 
coordinate system ρ, defined by λi = ρi + (1–R)/k, where k is the 
number of symbols in the simplex and R = Σ iρi, summed over all 
symbols in the simplex. 

The state change is then ∆ρ = J‡ ∆x, where the components of the 
Jacobian J are the partial derivatives of x with respect to ρ, and the 
symbol ‡ denotes Moore-Penrose inversion, which handles rank-
deficient matrices by giving special treatment to singularities [7].  

If the requested state change ∆ρ would cause the state to exit the 
simplex, travel is halted at the simplex boundary.  At the simplex 
boundary, one or more barycentric coordinates are zero.  The 
Jacobian computation is repeated with the corresponding symbols in 
the simplex omitted from the computation, i.e., constraining the 
state to lie in the subface.  If a boundary of that subface is 
encountered, the procedure continues in subfaces of decreasing 
dimensionality until a subface of dimensionality zero is encountered. 

Multiple factors, one zone.  When k factors are involved, the re-
parameterization map is k-linear.  Let x and ∆x be defined as above, 
but let each ρi in the tuple (ρ1; ρ2; …; ρk) be the state coordinates 
from factor i.  The state change is then [∆ρ1T|∆ρ2T|…|∆ρkT]T = 
[J1|J2|…|Jk]‡ ∆x, where each Jacobian Ji is defined as above with 
respect to the corresponding ρi while keeping ρj fixed for all j≠i.  In 
a multilinear map, rectilinear movements produce linear effects, but 
diagonal movements can produce polynomial effects because each 
Jacobian Ji depends on every ρj for all j≠i.  Therefore, local optima 
exist. 

Factor locking.  To lock factor i, i.e., prevent ρi from changing 
during tugging, we merely omit ρi and Ji from the equation given 
above.  Multiple omissions lock multiple factors.  When one factor is 
driven while another is tugged, we interleave steps of driving and 
tugging. 

One factor, multiple zones.  This is the piecewise linear case.  In 
contrast with the linear case, a simplex boundary can be the portal to 

one or more neighboring simplices.  When the state arrives at a 
simplex boundary, we first identify neighboring simplices, i.e., ones 
that share the subface in which the state resides.  We remove from 
consideration each neighboring simplex8 that contains no states that 
improve upon the current state.  (Because the re-parameterization 
map is linear on the neighboring simplex, it is sufficient to test each 
vertex in the neighboring simplex that lies outside the current 
subface.)  If zero neighboring simplices remain, tugging proceeds in 
the subface, as in the linear case.  If one neighboring simplex 
remains, tugging proceeds in that simplex.9 

The subcase in which multiple neighboring simplices remain is one 
for which we have discussed and implemented various heuristics, 
but that we have not yet encountered in practice.  We leave as an 
open problem the development of a universally acceptable way 
either to choose an appropriate neighboring simplex, or to control 
the topology of the state space so that this subcase cannot arise. 

Multiple factors, multiple zones.  This is the piecewise multilinear 
case.  It raises additional issues that are also open problems.  As in 
the piecewise linear case, the only challenges that are not present in 
the purely multilinear case arise at boundaries between zones.  If the 
state encounters a zone boundary that is a simplex boundary in only 
one of the factors, the decision reduces to the one-factor, multiple-
zone case.  At a zone boundary that is a simplex boundary in more 
than one factor—this case does arise in practice—the decision is 
more complicated.  The remainder of this section discusses that 
decision. 

Recall that in a state space formed from the cross product of k 
simplicial complexes, a zone is a k-tuple of simplices, with one 
simplex taken from each factor.  In the situation under 
consideration, the state lies on a subface in more than one of those 
simplices.  Another zone is considered to be a neighbor if at least 
one of the simplices is replaced by a neighboring simplex that shares 
one of those subfaces. 

One difficulty arises because the re-parameterization map associated 
with a zone can be polynomial for moves that are not rectilinear.  
The simple test used in the piecewise linear case to determine 
whether a neighboring simplex should be eliminated does not 
necessarily work.  A neighboring zone can contain states that 
improve upon the current state even if none of its vertices do.  We 
have therefore replaced the global test over vertices by a local test: 
we compute the anticipated state change from ∆x in each 
neighboring zone and eliminate any neighboring zone from which 
the state would immediately exit.  

The second difficulty is that the test given above may admit multiple 
neighboring zones.  This particular difficulty has not occurred for us 
in practice, but a universally acceptable solution (or way to guarantee 
that the situation is never encountered) would be desirable for the 
sake of completeness. 

A.2  Re-parameterization map with hysteresis 

This appendix shows how to define a re-parameterization map with 
hysteresis.  We have developed re-parameterization maps with three 
differing levels of hysteresis.  

A conservative  map is one for which traversing a closed loop in the 
state space always produces a closed loop in the configuration space.  
Outside of this appendix, all re-parameterization maps described in 

                                                                 
8 Moving into such a simplex cannot produce any movement in the direction 

of the requested configuration change. 
9 Infinite looping is prevented by eliminating a simplex from consideration 

for the duration of a single tugging step once it has been exited. 



this paper are conservative. 

A semi-conservative map is one for which traversing a closed loop in 
the state space can be guaranteed to produce a closed loop in the 
configuration space only if the loop in state space crosses no zone 
boundaries. 

A non-conservative  map is one for which traversing a closed loop in the 
state space can never be guaranteed to produce a closed loop in the 
configuration space. 

We describe semi-conservative and non-conservative maps.  Each of 
these developments requires to departures from the mechanisms put 
forth outside this appendix. 

First, we modify the definition of a simplicial complex.  A simplicial 
complex is normally defined as a union of simplices in which each 
simplex is an open set.  Instead, we define each top-level simplex as 
a closed set, deliberately creating redundancy at shared subfaces.  
Under this definition, every state on a shared subface has one or 
more siblings that have the same barycentric coordinates but are 
associated with different top-level simplices. 

Second, we distinguish between the relative values of a configuration 
parameter (which are present in the range of the map) and the actual 
values (which are supplied to the rendering map and may differ from 
the relative values). 

Semi-conservative map.  Suppose x is a continuous configuration 
parameter for which we wish to define a semi-conservative map.  In 
each zone, we permit the author to specify an arbitrary, relative value 
of x at every vertex.  Thus, a vertex can have a different relative 
value of x in every zone of which it is a member.  We define the re-
parameterization map to be multi-linear within each zone, just as in 
the conservative case, but possibly discontinuous at zone 
boundaries.  As the state moves continuously within a zone, the 
infinitesimal changes in the relative value of x are accumulated into 
the actual value of x; but when it moves from one zone to another, 
the non-infinitesimal changes in the relative value of x are ignored. 

A semi-conservative map could be used, for example, to control the 
rotation of a 2D wheel on or near a high-friction 1D surface.  The 
parameters of the wheel are (x,y,θ), where x and y are the position of 
the wheel’s center and θ is its rotation angle.  For x and y, the re-
parameterization map is conservative and defined so that a zone 
boundary maps to a horizontal line just above the surface.   For θ, 
the map is semi-conservative.  It is defined so that the relative value 
of θ is constant in the zone above the surface, and linearly related to 
x in the zone on the surface.   The wheel exhibits the physically 
correct hysteresis that results from rotating only when moved 
horizontally while in contact with the surface. 

Non-conservative map.   Suppose, now, that x is a continuous 
configuration parameter for which we wish to define a non-
conservative map.  In each zone, we permit the author to specify an 
arbitrary relative-value difference ∆x at every edge (ordered vertex 
pair).  When the state moves within a zone from barycentric-
coordinate vector λ to barycentric-coordinate vector λ’, we 
accumulate into the actual value of x the following quantity:  

∆X(λ,λ’) = Σv Σv’ λ(v) ∆x(v,v’) λ’(v’),  

where each sum is over all vertices in the zone, each ∆x(v,v’) is an 
relative-value difference supplied by the author, and λ(v) is a scalar 
quantity extracted from the vector λ by multiplying together all 
components of λ associated with symbols in the symbol tuple v.  As 
with the semi-conservative case, we do not change the actual value 
of x when crossing a zone boundary. 

This procedure has a number of attractive properties.  First, it 
produces hysteresis.  Second, ∆X(λ,λ’) is a smooth function of λ 
and λ’.  Third, when moving from one vector (v) to another (v’) it 
produces a change in x equal to the one specified by the author, i.e., 
∆x(v,v’).  Fourth, under some circumstances10 we have been able to 
show that a linear path through the state space can be executed in 
any number of smaller steps without affecting the total change in x.  
Fifth, when the values of ∆x(v,v’) are conservative (i.e., ∆x(v,v’) + 
∆x(v’,v”) = ∆x(v,v”) for any v, v’, and v”), the procedure reduces to 
the semi-conservative case. 

A non-conservative map could be used to provide the hysteresis 
called for in Figure 3.  
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Figure 1.   Configuration space

Figure 2.   Modeling Pipel ine:  State space → Configuration space → Image space 

Figure 3.   Continuous configurat ion parameters  with 
coordinate transformations:   walk vs .  crawl

Figure 4.   Content Samples.  
a) Beach scene with factor sharing
b) Trapeze guy with state space diagram
c)  Car toon charac ter  model
d)  Fern  unfolding and bending

4d .

Figure 5.   State space diagram for fern content
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