
Abstract

Our goal is to embed free-form constraints into a graphical
model. With such constraints a graphic can maintain its visual
integrity—and break rules tastefully—while being manipulated
by a casual user. A typical parameterized graphic does not meet
these needs because its configuration space contains nonsense
images in much higher proportion than desirable images, and
the casual user is apt to ruin the graphic on any attempt to
modify or animate it.

We therefore model the small subset of a given graphic’s
configuration space that maps to desirable images. In our
solution, the basic building block is a simplicial complex—the
most practical data structure able to accommodate the variety of
topologies that can arise. The configuration-space model can be
built from a cross product of such complexes. We describe how
to define the mapping from this space to the image space. We
show how to invert that mapping, allowing the user to
manipulate the image without understanding the structure of the
configuration-space model. We also show how to extend the
mapping when the original parameterization contains hierarchy,
coordinate transformations, and other nonlinearities.

Our software implementation applies simplicial configuration
modeling to 2D vector graphics.

CR Categories and Subject Descriptors: I.3.6 [Computer
Graphics]: Methodology and Techniques – Graphics Data
Structures and Data Types, Interaction Techniques; I.3.8
[Computer Graphics]: Applications.

Keywords: Animation with constraints, geometric modeling,
weird math, WWW applications

* Corresponding author.
† Present address: NetLens, 10975 N. Wolfe Rd., Cupertino, CA 95014,

doug@netlens.com.
‡ Present address: Dartmouth Computer Science Dept., 6211 Sudikoff Lab.,

Rm. 113, Hanover, NH 03755, brd@cs.dartmouth.edu.
§ Present address: Stanford Computer Science Dept., Stanford, CA 94304,

lorie@graphics.stanford.edu.
Present address: Integral Development Corp., 156 University Ave., Palo

Alto, CA 94301, shunhui.zhu@integral.com.

1 Introduction

1.1 Goal

Constraints often provide coherence and creative freedom. That
principle has been exploited pervasively in computer graphics
since the days of Ivan Sutherland’s Sketchpad system [18], in
forms ranging from user-specified constraints such as those
found in CAD systems [3] and dataflow systems [9] to
constraint-inference engines [10] Even bitmap-based tools such
as Painter [14] empower the user’s creativity by constraining the
modifications she can make to an image.

We are interested in how to re-parameterize graphical models so
that they are constrained enough to hold their visual form when
modified or animated by a casual user. Target applications
include creativity software, dynamic clip art, cartoons,
performance-based avatars, and charts. Most existing
parameterized representations (e.g., 2D vector graphics, NURBS
surfaces, and CSG) are not constraining enough to meet our
requirements. Consider the spline-based example in Figure 1. In
that diagram, the blue cube represents the configuration space of
the spline. Each configuration is a set of numerical values for
the parameters of the spline (the coordinates of its control
points). Most configurations correspond to meaningless
scribbles. A rare few generate humanoid shapes.

Our task, then, is configuration modeling : representing a subset of
the configuration space of an existing parameterized graphic.
Because this subset can have arbitrarily topology, our modeling
scheme must not impose any a priori restrictions on topology.
Moreover, the resulting re-parameterization might not map in
any convenient way to a user’s “mental parameterization.” We
therefore seek to shield the user from knowing the structure of
the parameterization by allowing for direct manipulation of the
graphical object. We refer to such direct manipulation as tugging .

Configuration modeling is a fundamental open problem in
computer graphics; the need to represent a subset of a graphical
object’s configuration space is pervasive.1 Although our test
implementation is designed for 2D spline-based graphics, we
expect simplicial configuration modeling to be applicable to
other forms of parameterized graphics, including morphs,
physically based models, and so forth.

1.2 Structure of paper

Section 2 describes a configuration-modeling pipeline in a
qualitative way. Quantitative and other algorithmic details are
deferred for the appendices. Section 3 discusses how the re-
parameterization used in configuration modeling can be used in
concert with domain-specific techniques, primarily to
incorporate hierarchy. Section 4 describes selected pieces of

1 The technique might also be applied to objects that are not graphical, such

as parameterized sounds.

Accessible Animation and Customizable Graphics
via Simplicial Configuration Modeling

Tom Ngo,* Doug Cutrell,† Jenny Dana, Bruce Donald,‡ Lorie Loeb,§ and Shunhui Zhu#
Interval Research Corporation, 1801 Page Mill Rd., Palo Alto, CA 94304-1216

{ngo,jdana}@interval.com

content made using our authoring system. Section 5 compares
our technique with related work, employing the modeling
abstractions introduced in earlier sections. Section 6
recapitulates our main contributions and lists avenues of future
work.

2 Qualitative description

2.1 Configuration-modeling pipeline

Any configuration-modeling technique can be described in terms
of the modeling pipeline depicted in Figure 2. The rightmost
component in that pipeline, the image space , represents the space
of all possible images that can be rendered on the display device.
The middle component, the configuration space, represents the
freedom in the given parameterized image: a configuration is a
set of parameter values, one for each parameter. Its dimensions
are therefore called configuration parameters, or simply parameters.

The mapping from the configuration space to the image space is
the rendering map. It determines how the parameter values in a
configuration are interpreted to generate an image on the display
device; thus, it subsumes all processes normally associated with
modeling, rendering, and display. Together, these two spaces
and the intervening map define a parameterized graphic—an
object whose re-parameterization is the goal of our work.

The leftmost component of the pipeline is the state space. The
mapping from it to the configuration space is the re-
parameterization map. The goal in configuration modeling is to
define a state space and re-parameterization map so that the
range of the map is a set of desirable configurations.

Thus, a state determines2 a configuration under the re-
parameterization map, and a configuration determines an image
under the rendering map. Most computer graphics research,
including work on modeling, rendering, and display, is concerned
with the rendering map. This paper describes an approach to
defining the re-parameterization map.

2.2 Nature of the configuration parameters

As we have described it, configuration-modeling tasks usually
involve continuous configuration parameters: geometry (e.g., 2D
or 3D coordinates of control points or lengths of line segments),
colors, and even physical parameters such as forces and masses
in a relaxed mesh. In most such cases, it is appropriate to define
a re-parameterization map that is a function.

A significant twist on configuration modeling can arise when
continuous configuration parameters represent coordinate
transformations. Consider a gedanken experiment in which the
original parameterized image is a closed 2D spline. The goal in
this experiment is to build a configuration model that represents
a complete human walk cycle in profile, a complete crawl cycle,
and any gait between walking and crawling. The state space is
isomorphic to a square: one dimension represents progress in the
gait cycle; the other, interpolation between walking and crawling.
Assuming that a walk cycle covers more horizontal distance than
a crawl cycle, the path through the state space depicted in Figure
3 produces a net horizontal translation. Thus, the addition of a

2 We will later introduce hysteresis into the re-parameterization map, so the

word “determine” is used loosely.

global horizontal translation is required to avoid representing
configurations that differ from each other only by translation.
Moreover, the horizontal-translation variable is not a function of
state: it experiences hysteresis.

When a discrete parameter is present, one can arrange for the re-
parameterization map to map patches of the state space to values
of the discrete parameter.

2.3 Structure of the state space

In our solution, the state space is represented by a data structure
that is topologically general and computationally practical: the
simplicial complex [15]. For convenience in expressing certain
common relationships, we allow for a cross product of simplicial
complexes.

Combinatorially, a simplicial complex S can be specified3 by a set V
of symbols, and subsets of V chosen so that none is a subset of
any other. Each of those subsets is called a simplex: a point, a
line segment, a triangle, a tetrahedron, or a higher-order simplex,
depending on the number of symbols in the subset. The
standard embedding of that combinatorial object is then the
subset Λ of RV such that every λ in Λ lies in a simplex.4 A
vector λ lies in a simplex s if each of its coordinates lies in the
unit interval [0,1], the coordinates sum to unity, and all
coordinates corresponding to symbols outside the simplex are
zero. The coordinates corresponding to symbols inside the
simplex are called barycentric coordinates. We use the combinatorial
representation of a simplex as shorthand for its standard
embedding.

Suppose, for example, that the simplicial complex S1 comprises
the set of symbols {o,p,q,r} and simplices {{o,p,q},{q,r}}. It
consists of a triangle {o,p,q} and a line segment {q,r}. Using the
symbol ordering (o,p,q,r), the points (3/4,1/8,1/8,0) and
(0,0,1/3,2/3) both lie in the standard embedding of this simplicial
complex because (3/4,1/8,1/8) lies in {o,p,q}, and so forth. Thus,
a simplicial complex can be used as a data structure for
generating interpolation weights; the simplices restrict certain
groups of weights from being simultaneously non-zero.

We define the state space Ψ to be a cross product of k simplicial
complexes: Ψ=S1×S2×…×Sk. We use the term state to denote an
element of the state space. Thus, a state ψ lies in the state space
Ψ if it can be expressed as a tuple (λ1;λ2;…;λk) such that each λi
lies in the corresponding simplicial complex Si. We use the term
vertex to refer to a “corner” of the state space, i.e., a state
ψ=(λ1;λ2;…;λk) in which each λi has exactly one coordinate
equal to 1.

Suppose, for example, that a state space is equal to S1×S2, where
S1 is as defined above, and S2 comprises the set of symbols
{u,v,w} and the simplices {{u,v},{v,w}}. Using the symbol
ordering (o,p,q,r; u,v,w), the points (1/4,1/2,1/4,0; 3/7,4/7,0) and
(0,0,1,0; 0,1,0) both lie in the state space. The latter is a vertex.

We use the term zone to refer to a linear region of the state space,

3Only top-level simplices—simplices that are not sub-faces of other

simplices—are specified by the user and explicitly represented in the
implementation.

4 The notation RV denotes a Euclidean space whose |V| dimensions are
named according to the symbols in V.

i.e., a tuple of simplices, with one simplex taken from each factor
in the cross product of simplicial complexes. Thus, the state
space S1×S2 contains four zones.

2.4 Re-parameterization map

We use re-parameterization maps of various levels of complexity,
depending on the nature of the configuration parameters. In its
simplest form, a re-parameterization map on a k-factor state
space is specified by an arbitrary configuration for each vertex in
the state space, and is k-linear within each zone (linear within
each factor simplex). Thus, a re-parameterization map for the
state space S1×S2 would be specified by twelve independent
configurations: one for each symbol pair in the cross product
{o,p,q,r}×{u,v,w}. Configurations admitted by the map would
be of the form

x’ = Σa∈{o,p,q,r} Σb∈{u,v,w} λ1[a] λ2[b] x[a][b]

where square brackets denote indexing by the symbols in the set
{o,p,q,r} ∪ {u,v,w}, x[a][b] denotes the configuration associated
with symbols a and b, and the state ψ=(λ1;λ2) lies in the state
space S1×S2. In our current software implementation, those
twelve configurations are supplied by an artist with a drawing
tool. In other systems they might be automatically generated.

A re-parameterization map can also take more complicated
forms if the configuration space contains some discrete
parameters, or some parameters control coordinate
transformations.

In the case of a discrete parameter, one can tessellate the state
space into regions, each of which maps to a different value of the
parameter. We have implemented a form of such a discrete map
in which the regions are zones and the discrete parameter
controlled the front-to-back permutation ordering of the
primitives in a 2D vector graphic.

Appendix A.2 describes the case of a continuous parameter that
represents a coordinate transformation and therefore can
undergo hysteresis.

2.5 Forward process: “driving”

We use the term driving to describe any process in which a
sequence of states, generated either automatically or interactively,
is used to compute a sequence of configurations, and hence an
animation. Driving can be used in many ways.

Clip motions. A sequence of states can be used to animate any
simplicial configuration model whose state space is compatible5
with it, and therefore can be used as a clip motion. The term
“clip motion” has been used previously in a different way. In
Litwinowicz’ Inkwell system [13], for example, a clip motion is a
collection of animated Coons patches that can be textured
differently to generate different characters. By contrast, two
simplicial configuration models can use the same clip motion if
they have isomorphic state spaces, even if they bear no

5 For example, if two simplicial configuration models can use the same clip

motion if they have state spaces that are isomorphic to each other, even if
their appearance is radically different. The condition for compatibility is
weaker than isomorphism: the clip motion can also be used for a model
whose state space is a superset of the aforementioned isomorphic state
spaces.

geometric resemblance.

Factor synchronization. If two configuration models are
authored with state spaces whose cross products have one or
more factors in common (e.g., S1×S2 and S2×S3), then the
barycentric coordinates associated with the two instances of the
shared factors (e.g., S2) can be synchronized. This is useful when
two models contain some logical dependency; for example, the
position of a drawn shadow can be synchronized with the
position of a light source.

Factor sharing is also critical in abating the exponential explosion
that can occur when a model contains many degrees of freedom.
In a model with hierarchy, it is typical for different graphical
elements to depend on different—but overlapping—sets of
hierarchical levels. Consider a human figure: trousers could
depend on the knee and hip degrees of freedom; a T-shirt, on
the hip and shoulders; and a scarf, on the shoulders and neck.
Without factor sharing, each element would need to be re-
parameterized with a state space that includes factors associated
with every joint. With it, each element’s state space needs to
include only the factors on which it depends.

Algorithmic behavior. Some or all of the factors in a model
can be driven algorithmically. We have implemented, for
instance, a behavior that executes cartoon-like squash and
stretch, taking into account the magnitude and direction of flight,
and impacts with the ground. This behavior can be applied to
any model that contains a squash-and-stretch factor in its state
space that is isomorphic to the one expected by the behavior.
Because it interfaces with the model at the level of state—not
geometry—it is sufficiently general to be applied to both a soft,
round beach ball and a rigid block of wood. Moreover, the same
behavior code can be used either interactively (for performance
or play) or offline (for authoring).

2.6 Inverse process: “tugging”

Tugging means inverting the re-parameterization map so that a
user or some exogenous process can manipulate the model
through some of its configuration parameters, rather than its
state. The system answers each requested change in
configuration with a change in state that matches the request as
closely as possible. The configuration parameters being
manipulated are often an (x,y) pair;6 we refer to them collectively
as the tug point.

The algorithms for tugging, described in Appendix A.1, address
two principal challenges.

1. The re-parameterization map on a zone is often ill-
conditioned. We invert it safely using the Moore-Penrose
inverse [7].

2. At boundaries between zones, the re-parameterization map
contains discontinuities in the first derivative. Our
algorithms handle these discontinuities seamlessly, so that
inter-zone boundaries—and therefore the structure of the
state space—can be transparent to the user.

6 The number of configuration parameters in the tug point could be more or

less than two. For example, a mixing station or armature could control
many parameters simultaneously. In a 3D environment, the tug point
might often be a (x,y,z) point. Non-geometric parameters such as colors
can also be tugged.

Because configuration parameters are generally more intuitive to
use than states, tugging is the primary mechanism by which both
users and software interact with the graphic. Like driving,
tugging can be used in many ways.

Direct manipulation. The user specifies desired configuration
changes by dragging the tug point with a pointing device. This
style of interaction obviates the need for (but still permits the
creation of) separate graphical user-interface elements. It is also
well suited for perform ance-driven animation.

Combination with factor sharing . When factor sharing makes
objects in a scene mutually dependent, tugging can be used to
control any of the objects.

Simple software control. The graphic is regarded as a software
object whose tug point is its interface. This technique permits an
algorithmic behavior to be designed for reusability. We have
implemented, for instance, a dynamic behavior that simulates a
mass in a viscous medium, attached to a user-translatable anchor
point through a damped spring. It can be used for any graphic
with an (x,y) tug point and a 2D translation, regardless of state-
space topology.

Factor locking. Barycentric coordinates associated with one or
more of the factors in a state space can be constrained not to
change during a tug. In our system, the author can arrange for
certain factors to be locked whenever a given point is tugged.

Hybrid driving and tugging. One or more factors can be
driven algorithmically while others are tugged. This is useful in
arranging for a combination of interactivity and autonomous
behavior.

3 Hybridizing with domain-specific techniques

Configuration modeling is best suited for describing relatively
free-form interdependencies that are difficult to express
algebraically. When constraints are more easily described by
domain-specific techniques such as articulated-figure kinematics,
the domain-specific techniques are preferable. In addition, a
mechanism to make one model depend on another improves
model reusability: for example, a model of an eye might be made
once and used with many faces.

One approach to addressing these needs would be to use
configuration modeling and an existing domain-specific
technique independently. For example, to develop a human
character in a 2D vector-based system, one might use standard
forward and inverse kinematics for articulated figures to define a
complete skeleton, and express fragments of clothing using
independent re-parameterized models, each in the local
coordinate system of a different rod in the skeleton. In this
approach, clothing would not automatically deform in response
to skeletal movements.

Another approach would be to incorporate curvilinear
interpolation into the re-parameterization map, which is linear on
each simplex as we have presented it. For instance, to mitigate
the foreshortening effects characteristic of linear interpolation in
Cartesian coordinates, one might make the re-parameterization
map polynomial or transcendental on each simplex. We have
considered employing simplicial splines with differential
constraints at boundaries. Librande and Poggio have
successfully developed a curvilinear re-parameterization

technique that employs radial basis functions on a hypercube
[12].

Instead of either approach, we place parameterized, domain-
specific coordinate transformations in the original model. Thus,
the coordinate transformations are executed in the rendering
map, but because they are parameterized, their behavior can be
influenced during re-parameterization. Structural hierarchy is
permitted in several ways: control points, entire models, and
coordinate transformations can depend on other coordinate
transformations. This technique simultaneously addresses the
needs for reusability and for domain-specific constraints. In
addition, we find that it permits the use of re-parameterization to
break rules imposed by the domain-specific constraints.

To amplify the last point, consider a 2D vector-based arm drawn
as one spline around two rotational joints. Parts of the spline are
represented in a forearm coordinate system; others are in an
upper-arm coordinate system; yet others are in absolute
coordinates. Rotating the two joints without re-parameterizing
any spline coordinates causes the curve to move roughly as the
outline of an arm, but with artifacts: the spline folds incorrectly
at the elbow.

Re-parameterization allows the artifact to be removed. In
addition, it permits the artist to arrange for the shoulder to
dislocate artfully by adjusting translational joint parameters7 in
the extreme poses. Specifically, one might create a state space
with topology {{elbow1,elbow2}, {elbow2,elbow3}} ×
{{shoulder1,shoulder2}, {shoulder2,shoulder3}}: simple bilinear
interpolation in each of four zones generated from a 3×3 grid of
example configurations. By arranging for the nine
configurations to differ only in their shoulder- and elbow-joint
parameters, one would obtain the coarse movement described
above. The artifact repair and joint dislocation would be
brought about by adjusting the spline coordinates in each of the
nine configurations.

4 Results

We implemented an authoring system for the re-
parameterization of 2D vector graphics via simplicial
configuration modeling. We also implemented a number of
smaller applications in which novice users could manipulate
models created in the authoring system. The authoring system
and applications were written for the Win32 operating system
and the Microsoft Foundation Classes. For smooth real-time
animation, a Pentium-class processor with a clock speed of at
least 266 MHz is required. Rendering—not tugging—is the slow
step.

Figure 4 shows selected content authored in our system.

The fern, Figure 4d, exemplifies free-form constraints. It was
authored using twenty-one drawings of the fern in different

7 Our domain-specific coordinate transformation has four
parameters. It represents a translatable rubber sheet that
stretches along a preferred axis whose orientation is variable.
When these transformations are chained, the origin of each
rubber sheet is expressed in the coordinate system of the
preceding transformation but the orientation and stretch are in
absolute coordinates.

positions. Tugging its tip elicits flowing undulations. A flattened
diagram of its single-factor kite-shaped state space is in Figure 5.
Moving along the “kite tail” from its tip to the “kite body”
corresponds to unfurling of the fern from seed to seedling.
Vertical movements within the “kite” region correspond
roughly to further unfurling; and horizontal movements, to
graceful swaying from left to right.

The beach scene, Figure 4a, demonstrates factor
synchronization. It has five factors: two for the sun position,
one for the shoreline shape, one for the castle shape, and one for
the motion of the waves. The first four factors are linear chains
of three, two, three, and four symbols each; the fifth is a single
triangle. Each object in the scene depends on a different subset
of the factors. They are interrelated in several ways; for example,
the position of the sun, its reflection, and the castle’s shadow are
mutually dependent and all can be tugged.

The Trapeze Guy, Figure 4b, illustrates how a simple behavior
(the mass-spring dynamical system described in Section 2.6) can
be reused [19]. The Trapeze Guy’s state space is a ring of eight
symbols (which represents rotation about the trapeze), crossed
with a linear chain of five symbols (which represents, roughly,
the distance of the character’s feet from the trapeze). The user-
translatable anchor point of the mass-spring system is attached
to the trapeze; the dynamically controlled mass, to a tug point
near the character’s feet. His body swings about as the user
moves the trapeze. In the spirit of free-form constraints, an
open red mouth and beads of sweat added to some of the forty
authored configurations add to the comedy.

Our most complex piece is the cartoon character model, Figure
4c. It contains extensive factor synchronization and
hybridization using the modified form of articulated-figure
kinematics described in Section 3. Its fourteen separate
simplicial configuration models represent body parts such as
arms, legs, eyes, and eyelids. They share subsets of the twelve
factors, with the greatest amount of sharing used for axial
rotation as well as left-right and part-to-part coordination of the
eyes. One of the more interesting factors is the one that governs
the shape of the mouth: it contains four triangles and two
tetrahedra, assembled into a kite-like structure.

Articulation in each limb and the attachment of facial parts to
the head are both accomplished using the hybrid scheme
described in Section 3. In both cases, the visual integrity of the
cartoon depended critically on the re-parameterization
component of the hybrid scheme, without which the
coordination of body parts is only approximate.

5 Related work

In computer graphics, simplicial complexes have been used
principally for modeling 3D geometry. Hoppe et al. [8] exploited
the well-understood topological properties of simplicial
complexes to regulate changes to mesh representations of
surfaces. Edelsbrunner [5] used a multi-resolution approach (α-
shapes) to track scale-dependent topological changes in the
Delaunay triangulation of a multi-scale point-data set.

We use simplicial complexes to meet a goal much closer to that
of Librande and Poggio [12], whose work may be described in
the language of configuration modeling. Viewed from that
perspective, their technique prescribes a state space that is a

hypercube, and therefore cannot represent topological holes.
Representational power resides in the re-parameterization map,
whose form is a superposition of radial basis functions, whereas
ours is only piecewise linear. Thus, their system is geometrically
flexible but—in comparison to ours—topologically restricted.
Holes are important, for example, when rotational degrees of
freedom are involved. Indeed, recent work by Rademacher on
view-dependent deformations [17] essentially employed
simplicial configuration modeling. Rademacher’s work
exemplifies how an artist’s expressiveness can be layered onto
geometric relationships through the use of example-based
modeling.

Gleicher and Witkin [6] influenced us to ensure that any
simplicial configuration model is, without any special effort on
the part of the artist, responsive to direct manipulation. Pai [16],
among others, has applied similar concepts to robot control; his
methods are based much more on half-space penalty functions.

Also related are constraint-based systems that require the user to
specify constraints explicitly, either algorithmically or through a
more graphical interface. Such systems are ideal when the
desired constraints are relatively easy to state, as in industrial
CAD [3], diagramming tools [1], and 3D animation tools that
permit entry of algebraic constraints [2]. By reducing cognitive
burden on the user, the work of Kurlander and Feiner on
constraint inference [10] challenges our distinction between
explicit and free-form constraints.

Techniques for multi-target interpolation [4,11] are comple-
mentary to simplicial configuration modeling in the sense that
each represents a new class of parameterized models to which
the structured interpolation implied by simplicial configuration
modeling may be applied. In fact, the present work is part of a
growing interest in structured interpolation between examples,
either digitally captured or created by an artist.

6 Epilogue

We have identified the challenge of configuration modeling,
which we believe to be an important open problem in computer
graphics. To address this challenge, we have proposed to use a
modeling primitive based on the simplicial complex. This choice
leads to topological generality.

We have shown how to run the maps from state space to image
space both forward (by driving) and in reverse (by tugging). We
have identified a number of ways in which driving and tugging
lead to economies related to reusability of code and content. We
have shown why the need for hysteresis arises in configuration
modeling and have proposed techniques for obtaining it. We
have demonstrated how domain-specific coordinate
transformations can be used in harmony with configuration
modeling in a manner that exploits the strengths of both.

Today’s simplicial configuration models are characterized by low
simplex counts and labor-intensive authoring—much like the
first polygonal models in 3D graphics. If configuration modeling
addresses a genuine need, one might expect to see further
developments along lines analogous to the ones that have
permitted polygonal models to grow in complexity by orders of
magnitude. These might include semi-automated authoring
using high-level primitives and capture of configuration models
from video sources.

Acknowledgments

We thank Subutai Ahmad, Neal Bhadkamkar, Frank Brooks,
Michele Covell, Frank Crow, Kevin Hunter, Yan -Bin Jia, Scott
Klemmer, Andrew Kunz, Bud Lassiter, Golan Levin, Joy
Mountford, Chris Seguine, Malcolm Slaney, and Meg Withgott
for their thoughtful contributions to this work. We also thank
the reviewers for their many useful and constructive suggestions.

A Appendices

A.1 Tugging algorithms

This appendix describes how to invert the re-parameterization map.
Given a requested change in one or more configuration parameters,
the goal is to compute a state change that satisfies the request as
closely as possible. We describe cases in order of increasing
complexity. Following Gleicher and Witkin [6], we use local
solutions instead of global ones to provide temporal continuity in
animation.

One factor, one zone. In a single-factor model that contains one
simplex, the re-parameterization map is linear. Let x be a vector
whose coordinates are the configuration parameters to be changed,
and let ∆x be the desired change. A state is said to improve upon the
current state if it maps to a configuration x’ for which (x’ ∆x > 0.

Let λ be the state in barycentric coordinates. To constrain the
barycentric coordinates to sum to unity, we use the redundant
coordinate system ρ, defined by λi = ρi + (1–R)/k, where k is the
number of symbols in the simplex and R = Σ iρi, summed over all
symbols in the simplex.

The state change is then ∆ρ = J‡ ∆x, where the components of the
Jacobian J are the partial derivatives of x with respect to ρ, and the
symbol ‡ denotes Moore-Penrose inversion, which handles rank-
deficient matrices by giving special treatment to singularities [7].

If the requested state change ∆ρ would cause the state to exit the
simplex, travel is halted at the simplex boundary. At the simplex
boundary, one or more barycentric coordinates are zero. The
Jacobian computation is repeated with the corresponding symbols in
the simplex omitted from the computation, i.e., constraining the
state to lie in the subface. If a boundary of that subface is
encountered, the procedure continues in subfaces of decreasing
dimensionality until a subface of dimensionality zero is encountered.

Multiple factors, one zone. When k factors are involved, the re-
parameterization map is k-linear. Let x and ∆x be defined as above,
but let each ρi in the tuple (ρ1; ρ2; …; ρk) be the state coordinates
from factor i. The state change is then [∆ρ1T|∆ρ2T|…|∆ρkT]T =
[J1|J2|…|Jk]‡ ∆x, where each Jacobian Ji is defined as above with
respect to the corresponding ρi while keeping ρj fixed for all j≠i. In
a multilinear map, rectilinear movements produce linear effects, but
diagonal movements can produce polynomial effects because each
Jacobian Ji depends on every ρj for all j≠i. Therefore, local optima
exist.

Factor locking. To lock factor i, i.e., prevent ρi from changing
during tugging, we merely omit ρi and Ji from the equation given
above. Multiple omissions lock multiple factors. When one factor is
driven while another is tugged, we interleave steps of driving and
tugging.

One factor, multiple zones. This is the piecewise linear case. In
contrast with the linear case, a simplex boundary can be the portal to

one or more neighboring simplices. When the state arrives at a
simplex boundary, we first identify neighboring simplices, i.e., ones
that share the subface in which the state resides. We remove from
consideration each neighboring simplex8 that contains no states that
improve upon the current state. (Because the re-parameterization
map is linear on the neighboring simplex, it is sufficient to test each
vertex in the neighboring simplex that lies outside the current
subface.) If zero neighboring simplices remain, tugging proceeds in
the subface, as in the linear case. If one neighboring simplex
remains, tugging proceeds in that simplex.9

The subcase in which multiple neighboring simplices remain is one
for which we have discussed and implemented various heuristics,
but that we have not yet encountered in practice. We leave as an
open problem the development of a universally acceptable way
either to choose an appropriate neighboring simplex, or to control
the topology of the state space so that this subcase cannot arise.

Multiple factors, multiple zones. This is the piecewise multilinear
case. It raises additional issues that are also open problems. As in
the piecewise linear case, the only challenges that are not present in
the purely multilinear case arise at boundaries between zones. If the
state encounters a zone boundary that is a simplex boundary in only
one of the factors, the decision reduces to the one-factor, multiple-
zone case. At a zone boundary that is a simplex boundary in more
than one factor—this case does arise in practice—the decision is
more complicated. The remainder of this section discusses that
decision.

Recall that in a state space formed from the cross product of k
simplicial complexes, a zone is a k-tuple of simplices, with one
simplex taken from each factor. In the situation under
consideration, the state lies on a subface in more than one of those
simplices. Another zone is considered to be a neighbor if at least
one of the simplices is replaced by a neighboring simplex that shares
one of those subfaces.

One difficulty arises because the re-parameterization map associated
with a zone can be polynomial for moves that are not rectilinear.
The simple test used in the piecewise linear case to determine
whether a neighboring simplex should be eliminated does not
necessarily work. A neighboring zone can contain states that
improve upon the current state even if none of its vertices do. We
have therefore replaced the global test over vertices by a local test:
we compute the anticipated state change from ∆x in each
neighboring zone and eliminate any neighboring zone from which
the state would immediately exit.

The second difficulty is that the test given above may admit multiple
neighboring zones. This particular difficulty has not occurred for us
in practice, but a universally acceptable solution (or way to guarantee
that the situation is never encountered) would be desirable for the
sake of completeness.

A.2 Re-parameterization map with hysteresis

This appendix shows how to define a re-parameterization map with
hysteresis. We have developed re-parameterization maps with three
differing levels of hysteresis.

A conservative map is one for which traversing a closed loop in the
state space always produces a closed loop in the configuration space.
Outside of this appendix, all re-parameterization maps described in

8 Moving into such a simplex cannot produce any movement in the direction

of the requested configuration change.
9 Infinite looping is prevented by eliminating a simplex from consideration

for the duration of a single tugging step once it has been exited.

this paper are conservative.

A semi-conservative map is one for which traversing a closed loop in
the state space can be guaranteed to produce a closed loop in the
configuration space only if the loop in state space crosses no zone
boundaries.

A non-conservative map is one for which traversing a closed loop in the
state space can never be guaranteed to produce a closed loop in the
configuration space.

We describe semi-conservative and non-conservative maps. Each of
these developments requires to departures from the mechanisms put
forth outside this appendix.

First, we modify the definition of a simplicial complex. A simplicial
complex is normally defined as a union of simplices in which each
simplex is an open set. Instead, we define each top-level simplex as
a closed set, deliberately creating redundancy at shared subfaces.
Under this definition, every state on a shared subface has one or
more siblings that have the same barycentric coordinates but are
associated with different top-level simplices.

Second, we distinguish between the relative values of a configuration
parameter (which are present in the range of the map) and the actual
values (which are supplied to the rendering map and may differ from
the relative values).

Semi-conservative map. Suppose x is a continuous configuration
parameter for which we wish to define a semi-conservative map. In
each zone, we permit the author to specify an arbitrary, relative value
of x at every vertex. Thus, a vertex can have a different relative
value of x in every zone of which it is a member. We define the re-
parameterization map to be multi-linear within each zone, just as in
the conservative case, but possibly discontinuous at zone
boundaries. As the state moves continuously within a zone, the
infinitesimal changes in the relative value of x are accumulated into
the actual value of x; but when it moves from one zone to another,
the non-infinitesimal changes in the relative value of x are ignored.

A semi-conservative map could be used, for example, to control the
rotation of a 2D wheel on or near a high-friction 1D surface. The
parameters of the wheel are (x,y,θ), where x and y are the position of
the wheel’s center and θ is its rotation angle. For x and y, the re-
parameterization map is conservative and defined so that a zone
boundary maps to a horizontal line just above the surface. For θ,
the map is semi-conservative. It is defined so that the relative value
of θ is constant in the zone above the surface, and linearly related to
x in the zone on the surface. The wheel exhibits the physically
correct hysteresis that results from rotating only when moved
horizontally while in contact with the surface.

Non-conservative map. Suppose, now, that x is a continuous
configuration parameter for which we wish to define a non-
conservative map. In each zone, we permit the author to specify an
arbitrary relative-value difference ∆x at every edge (ordered vertex
pair). When the state moves within a zone from barycentric-
coordinate vector λ to barycentric-coordinate vector λ’, we
accumulate into the actual value of x the following quantity:

∆X(λ,λ’) = Σv Σv’ λ(v) ∆x(v,v’) λ’(v’),

where each sum is over all vertices in the zone, each ∆x(v,v’) is an
relative-value difference supplied by the author, and λ(v) is a scalar
quantity extracted from the vector λ by multiplying together all
components of λ associated with symbols in the symbol tuple v. As
with the semi-conservative case, we do not change the actual value
of x when crossing a zone boundary.

This procedure has a number of attractive properties. First, it
produces hysteresis. Second, ∆X(λ,λ’) is a smooth function of λ
and λ’. Third, when moving from one vector (v) to another (v’) it
produces a change in x equal to the one specified by the author, i.e.,
∆x(v,v’). Fourth, under some circumstances10 we have been able to
show that a linear path through the state space can be executed in
any number of smaller steps without affecting the total change in x.
Fifth, when the values of ∆x(v,v’) are conservative (i.e., ∆x(v,v’) +
∆x(v’,v”) = ∆x(v,v”) for any v, v’, and v”), the procedure reduces to
the semi-conservative case.

A non-conservative map could be used to provide the hysteresis
called for in Figure 3.

References
[1] Aldus Corp. IntelliDraw. Computer Program (1992).
[2] Alias|Wavefront Corp. PowerAnimator 9. Computer Program (1998).
[3] Autodesk Inc. AutoCAD 2000. Computer Program (2000).
[4] Shenchang Eric Chen, Lance Williams. View interpolation for image

synthesis. In James T. Kajiya, ed., SIGGRAPH 93 Conference
Proceedings, Annual Conference Series, pages 279-288. ACM
SIGGRAPH, Addison Wesley, August 1993. ISBN 0-201-58889-7.

[5] Herbert Edelsbrunner, Ernst P. Mücke. Three-dimensional alpha
shapes. ACM Transactions on Graphics, 13 (1), pp. 43-72 (January
1994). ISSN 0730-0301.

[6] Michael Gleicher, Andrew Witkin. Through-the-lens camera control.
In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH 92
Conference Proceedings), volume 26, 2 (July 1992), ACM SIGGRAPH,
New York, 1992, pages 331-340. ISBN 0-201-51585-7.

[7] Gene H. Golub, Charles F. Van Loan. Matrix Computations, p. 243.
Johns Hopkins University Pr ess, Baltimore, MD (1989).

[8] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
Werner Stuetzle. Mesh optimization. In James T. Kajiya, ed.,
SIGGRAPH 93 Conf. Proceedings, Annual Conference Series, pages
19-26. ACM SIGGRAPH, Addison Wesley, Aug 1993. ISBN 0-201-
58889-7.

[9] Michael Kass. CONDOR: Constraint-based dataflow. In Edwin C.
Catmull, editor, Computer Graphics (SIGGRAPH 92 Conference
Proceedings), volume 26, pages 321-330. Addison Wesley, July 1992.
ISBN 0-89791-479-1.

[10] David Kurlander, Steve Feiner. Inferring constraints from multiple
snapshots. ACM Transactions on Graphics, 12 (4), pp. 277-304
(October 1993). ISSN 0730-0301.

[11] Seungyong Lee, George Wolberg, Sung Yong Shin. Polymorph:
morphing among multiple images. IEEE Computer Graphics and
Applications, 18(1), pp.58-71 (January-February 1998).

[12] Steve E. Librande. Example-based character drawing. Master’s thesis,
Media Arts and Science, MIT (1992).

[13] Peter C. Litwinowicz. Inkwell: a 2 ½-D animation system. In Thomas
W. Sederberg, editor, Computer Graphics (SIGGRAPH 91 Conference
Proceedings), volume 25, pages 113-122. Addison Wesley, July 1991.
ISBN 0-201-56291-X.

[14] MetaCreations Corp. Painter 6. Computer Program (1999).
[15] James R. Munkres. Elements of Algebraic Topology. Addison-Wesley,

Reading, MA (1984).
[16] Dinesh K. Pai. Least constraint: a framework for the control of

complex mechanical systems. In Proc. American Control Conf.,
Boston, MA, 1615--1621 (June 1991).

[17] Paul Rademacher. View-dependent geometry. In Alyn Rockwood,
editor, SIGGRAPH 99 Conference Proceedings, Annual Conference
Series, pages 439-446. ACM SIGGRAPH, Addison Wesley, August
1999. ISBN 0-201-48560-5.

[18] Ivan E. Sutherland. Sketchpad: A man-machine graphical
communication system. Ph.D. thesis, Dept. of E.E., MIT (1963).

[19] Andrew Witkin, Kurt Fleischer, Alan Barr. Energy constraints on
parameterized models. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH 87 Conference Proceedings), volume 21, pages
225-232. ACM, July 1987. ISBN 0-89791-227-6.

10We have shown this property for the case of linear movement in one factor.

Figure 1. Configuration space

Figure 2. Modeling Pipel ine: State space → Configuration space → Image space

Figure 3. Continuous configurat ion parameters with
coordinate transformations: walk vs . crawl

Figure 4. Content Samples.
a) Beach scene with factor sharing
b) Trapeze guy with state space diagram
c) Car toon charac ter model
d) Fern unfolding and bending

4d .

Figure 5. State space diagram for fern content

4b .

4a.

4c.

