
Fast Volume Segmentation With Simultaneous Visualization
Using Programmable Graphics Hardware

Anthony Sherbondy Mike Houston
Stanford University

Sandy Napel∗

(a) (b) (c) (d)

Figure 1: These four volume renderings utilize a fully opaque transfer function, but are segmented using the method discussed in this paper.
The segmented volumes show: (a) abdominal aortic branch vessels, (b) an aortic aneurysm, (c) an aorta, and (d) peripheral blood vessels in
the lung. The yellow arrows indicate the location of the user’s initial seeds that were evolved to form the presented segmentations.

Abstract

Segmentation of structures from measured volume data, such as
anatomy in medical imaging, is a challenging data-dependent task.
In this paper, we present a segmentation method that leverages the
parallel processing capabilities of modern programmable graphics
hardware in order to run significantly faster than previous methods.
In addition, collocating the algorithm computation with the visual-
ization on the graphics hardware circumvents the need to transfer
data across the system bus, allowing for faster visualization and in-
teraction. This algorithm is unique in that it utilizes sophisticated
graphics hardware functionality (i.e., floating point precision, ren-
der to texture, computational masking, and fragment programs) to
enable fast segmentation and interactive visualization.

CR Categories: I.4.6 [Segmentation]: Region Growing,
Edge and Feature Detection; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Volume Rendering; I.3.8
[Computer Graphics]: Applications

Keywords: region growing, diffusion, segmentation, graphics pro-
cessor, streaming computation

∗{sherbond,mhouston,snapel}@stanford.edu

1 Introduction

In current radiological practice, highly trained medical imaging
specialists segment anatomical regions of interest from computed
tomography (CT) and magnetic resonance (MR) volumes for fur-
ther analysis. The segmentation process involves the trained oper-
ator selecting the voxels that belong to the anatomy of interest by
drawing contours around cross-sectional views and linking these
cross-sections together.

This manual procedure can be an extremely tedious chore be-
cause of the complexities of anatomical structures. For instance,
arterial vessels may take many odd shapes as they twist and turn
throughout the anatomy making them very difficult to track along
the multitude of cross-sections of the volume. The vessels may
also not have clearly defined edges separating them from nearby
objects of similar intensity (i.e., bone for contrast enhanced images
and soft tissue otherwise) and may have multiple regions where the
anatomy stops and then begins again due to constrictions or scan-
ner artifacts. Manually segmented data is impacted by the user’s
training and judgement. For example, one must decide whether or
not to include calcium deposits, thrombus, constricted regions, and
different portions of the vessel.

Many contributions have been made to the field of automatic seg-
mentation. However, the complicated structures found in medical
imaging offer several unsolved challenges to automated algorithms,
including the lack of global defining morphological characteristics,
scanner noise and artifacts, and an incomplete or weak separation
between voxels representing neighboring tissue. Any of the exis-
tent automated algorithms can be shown to fail on certain datasets
for reasons specific to each algorithm [Kirbas and Quek 2003; Lev-
enton et al. 2000].

Another major drawback of the automated algorithms to date is
that they offer limited “trial and error” based user interaction. The
user often sets global parameters and runs the algorithm hoping to
get the correct results. If the desired result is not achieved, the
user attempts to adjust the parameters and runs the algorithm again.

This iterative, indirect approach can be quite time consuming and,
because of the often global effect of these adjustable parameters,
the desired results may never be achieved.

This paper proposes a fast segmentation method that leverages
the computational power of modern programmable graphics hard-
ware to combine some of the successful components of automated
algorithms efficiently with real-time animation of the segmenta-
tion’s progress. The segmentation algorithm is based on seeded
region growing with the merging criteria based on intensity and
gradient values, with the gradient sensitivity scaled using nonlin-
ear diffusion.

Since the proposed method allows the human operator to ob-
serve the segmentation in real time, it removes the necessity of
manually marking edges along hundreds of cross-sections through
a CT volume. The speed of the segmentation combined with direct
visualization offers the ability for the operator to interact with an
evolving volume segmentation. Our technique facilitates local con-
trol for “expert-based” input and a rapid segment/view/edit cycle,
providing practical improvements that are applicable to diagnostic
medical imaging.

2 Related Work

There are many useful formulations of the segmentation problem
for intensity images. Adams and Bischof separate the techniques
into the following four categories: threshold based, boundary local-
ization, region growing, and hybrid approaches that are combina-
tions of the previous methods [1994]. Others have noted that these
categories may represent low-level or voxel-level approaches to the
problem and that one may also add top-down approaches [Zucker
2001]. One example is to compare the image to be segmented with a
database of images with known segmentations and then to segment
the image by mapping it to its best match in the database [Leventon
2000; Zucker 2001]. In addition, hybrid approaches have been de-
veloped that bridge top-down and bottom-up approaches [Leventon
et al. 2000].

To date, no algorithm has been proven to be perfect at automati-
cally segmenting regions of interest from surrounding volume data.
In many of these algorithms, user input often involves restarting a
fast algorithm with new parameters [Felkel 2000]. Even extremely
fast algorithms perform slowly in such “trial and error” based ap-
proaches because many iterations, with careful operator scrutiny of
the results, may be required to achieve an adequate result.

Because the programmability and performance of modern graph-
ics hardware continues to increase at such a rapid pace, many re-
searchers are beginning to adapt computationally intensive algo-
rithms to run on GPUs. These modern high performance graphics
processors, such as the ATI Radeon 9800 [2003] and the nVidia
GeForce FX [2003], are already capable of outperforming current
CPUs in certain compute intensive applications, and the perfor-
mance difference is expected to increase in the future [Khailany
et al. 2003]. Matrix operations [Larsen and McAllister 2001;
Thompson et al. 2002], non-linear diffusion [Rumpf and Strzodka
2001b], and many other computationally intensive algorithms have
been shown to run faster on GPUs than similar implementations on
CPUs. While these first attempts to utilize graphics hardware pro-
vided excellent performance, they suffered from limited precision
(8-bit fixed point) provided by the hardware at the time. But as
faster hardware with floating point precision has become available,
it has become possible to implement high precision algorithms on
graphics hardware.

To capitalize on the performance available in graphics hardware,
several graphics hardware segmentation approaches have been pro-
posed. Yang et al. implemented image segmentation and morphol-
ogy operations on an nVidia GeForce4 that was 3-5 times faster for
segmentation than an optimized version running on a 2.2GHz In-

tel P4 [2003]. This approach falls into the category of providing
fast segmentation using global parameters and thresholding alone,
which is not a successful technique for many segmentation prob-
lems [Kirbas and Quek 2003].

Rumpf et al. wrote a 2D level set segmentation algorithm on
graphics hardware utilizing the image processing operations pro-
vided by the SGI Onyx2 and also the GeForce4 [2001a]. Despite
the 8-bit computation limitations of their platform, they were able
to produce visually accurate results. Our approach to the segmen-
tation problem differs in that we are concerned with simultaneous
visualization and evolution of a 3D hybrid seeded region growing
algorithm.

Lefohn et al. proposed an efficient 3D level set solver with cur-
vature flow integrated with a GPU volume renderer for interactive
feedback which they implemented on an ATI Radeon 9700 [2003].
Their implementation was between 10-15 times as fast as an equiv-
alent CPU implementation of the same algorithm. In order to limit
computation to active voxels, they use an intricate packing scheme
from which they evolve and render their level set. Our method dif-
fers mainly in our choice of segmentation algorithm, the way in
which a user interacts with the segmentation, and method of limit-
ing computation. Our method of limiting computation is similar to
[Purcell et al. 2002], which proposed the notion of preventing com-
putation at certain pixels, as part of a GPU-based ray tracer. Our
paper presents “computation masks,” a generalization of this idea,
to eliminate unnecessary computation on a per pixel basis.

3 Algorithm

In this paper, the segmentation problem is mainly posed as one of
growing the regions that the user initializes with seed data. The
seeds placed by the user indicate to the algorithm the structure that
the user would like to separate from the volume. The seeds are then
evolved and either diffuse into other regions or move away from
regions based on a Perona and Malik nonlinear diffusion metric
[Adams and Bischof 1994; Perona and Malik 1990]. The imple-
mentation of this algorithm consists of four stages: seed selection,
segmentation evolution, optional image smoothing, and computa-
tional masking.

3.1 Seed Selection

The current system interface is shown in Figure 2. The user paints
seeds by drawing on the sectional views of the volume. The user
can select a sub-volume from a larger volume for segmentation and
rendering. Mouse coordinates are sent to a fragment program on
the graphics hardware that adds seeds to voxels, or turns voxels
on, based on the geometry of the brush, usually a sphere with a
user definable radius. LetS(t,x,y,z) represent the number of seeds
at any positionx,y,z∈ Ωv at some evolution statet, wheret = 0
denotes the initial or user defined state andΩv represents the span
of all possible voxel locations. The maximum number of seeds at
any voxel location and evolution instance is 216.

3.2 Segmentation

The merging criteria for the seeded region growing algorithm is
based on the Perona and Malik nonlinear diffusion metric. This
metric allows the seeds to smoothly merge into regions of similar
intensity, while slowing the diffusion into voxels against high gradi-
ents. Therefore, the rate of diffusion is governed by the underlying
image characteristics. LetV(t,x,y,z) represent the image intensity
value of a voxel at the locationx,y,z∈ Ωv andS(t,x,y,z) be the
number of seeds per voxel. Then the diffusion equation governing

Figure 2: This figure shows our interface for visualizing and inter-
acting with the evolving segmentation. The bottom of the screen
presents an axial image section (intersects z axis) and also a coro-
nal image section (intersects y axis) of the volume. The red box
indicates the current active sub-volume for volume rendering and
segmentation that can be moved to the desired region of interest in
the larger volume. The presented data is from a 512x512x494 CT
scan and the active sub-volume is 2563. The user can interact with
the segmentation by drawing on the sectional views. The volume
renderer uses the evolving segmentation to choose the active vox-
els to render. The user can choose between multiple pre-defined
transfer functions. The current transfer function labels all voxels as
opaque and allows the segmentation to define the volume of inter-
est.

the seed flow can be written as:

∂S(t,x,y,z)
∂t

= div(g(|∇V(t,x,y,z)|)∇S(t,x,y,z)) (1)

whereg(s) = ν ·exp−
s2

K2

Note thatt is a variable that represents the current evolution state.
K is a cutoff term that controls how fastg(s) goes to zero for high
gradients.ν is a regularization term that controls the sensitivity to
noise and speed of grouping nearby objects [Catté et al. 1992]. The
discretization of this equation will also add a regularization factor,
but we place it into the continuous equation to directly show the in-
fluence it has on the edge stopping criteria. In addition to the metric
imposed by the diffusion, there is an added maximal drift criteria
that will not allow seeds to diffuse into regions that are beyond a
user definable intensity difference from the last voxel directly se-
lected by the user’s brush.

We discretized the diffusion using a standard explicit forward
Euler approach. Without loss of generality, we present a discretized
version of Equation (1) along the x axis:

Sn+1
i = Sn

i +h·
(
(Sn

i+1−Sn
i) ·g

(
Vi+1−Vi

∆x

)
− (Sn

i −Sn
i−1) ·g

(
Vi−Vi−1

∆x

))
(2)

whereSn
i ≈ S(n ·∆t, i ·∆x), Vi = V(i ·∆x), 0≤ n ≤ N, 0 ≤ i ≤

W,∆x = 1/W, andh = ∆t/∆x2.

Note that our spatial discretization ofx,y,z leads to a kernel that
spans the six neighbors of the voxel being computed.N is the to-
tal number of iterations for the segmentation computation, andW
is the total width of the image.Sn+1

j and Sn+1
k are similarly de-

rived.We recognize that the explicit kernel solution to the PDE lim-
its the “speed” of the evolution (such thath < 1

2) in order to main-
tain stability [Morton and Mayers 1994]. The explicit Euler scheme
in Equation (2) avoids communication overhead between the GPU
and the CPU that may be required for an implicit discretization.
This savings reduces the total time required for interactively chang-
ing parameters and running the algorithm again as communication
across the system bus is not required. In addition, we are able to
limit computation to active voxels by utilizing computation masks
described in Section 3.4.

The number of iterations of the diffusion is controllable by the
user. Each iteration through the volume is broken down into steps
in the 3D texture’sz direction. Eachz slice defines one rendering
pass and the results of that pass are rendered to the opposite or
output 3D texture for that iteration, as shown in Figure 3. After
every 3D iteration, a 3D texture-based real time volume rendering
engine generates a view of the segmentation seeds and the image
data, each with its own transfer function.

3.3 Image Smoothing

This optional stage provides a scaling to the image that allows the
algorithm to perform well under noisy conditions, with ill-defined
edges or other factors that may affect the connectedness of voxels
within regions. We introduce scaling through the Perona and Ma-
lik nonlinear model, which can be considered a piecewise smooth-
ing process, where we expect to evolve the image toward separate,
piecewise contiguous regions [Weickert 1997]. As stated in Sec-
tion 3.2,V(t,x,y,z) represents the image intensity value of a voxel
at the locationx,y,z∈ Ωv. If t is an arbitrary term that represents
the current iteration of the diffusion, then the evolution of the image
smoothing can be represented by the following equation:

∂V(t,x,y,z)
∂t

= div(g(|∇V(t,x,y,z)|)∇V(t,x,y,z))

If the image smoothing stage is run, it only requires a small num-
ber of iterations as it converges quickly towards the minimal energy
solution [Leclerc 1989]. When applied, the image smoothing stage
is performed before the segmentation evolution and lies outside the
segmentation iteration loop.

3.4 Computational Masking

The explicit scheme used for the segmentation algorithm allows the
computation of the segmentation to iterate without using any in-
termediate representation of the volume data. Consequently, the
algorithm may compute on voxels that have no chance of a seed en-
tering the voxel in the current iteration. In order to compensate for
this, a “viable” subvolume must be tracked and the computation on
voxels outside of this subvolume prevented. The most conservative
subvolume, without knowing any particular seed values in the cur-
rent iteration, is a dilation of the current segmented volume by one
voxel in each direction. We use this dilation to create a mask that
represents the currently active voxels.

4 Implementation

We implemented our proposed algorithm on the ATI Radeon 9800
Pro 256MB using the ARB fragment program extensions [2002]
and the board’s unique support for render to 3D texture. Our

Lo
op

 un
til

se
gm

en
ta

tio
n d

on
e

Lo
op

 th
ro

ug
h

sli
ce

s i
n z

Image Smoothing

Generate Compute Mask

Evolve Segmentation

Volume Render Segmentation

Segmentation Kernel

Volume Input

Dilated Compute
Mask

Seeds Inserted into Volume

Figure 3: This flow chart represents a simplified implementation
of our segmentation algorithm. The image smoothing stage is op-
tional and only included for noisy images. The dilated computation
mask inset to the right shows the current seeds in yellow, the six
neighbor dilation in red, and the masked out portion in blue. The
segmentation inset describes the explicit diffusion kernel in which
the six neighbors are weighted by scaled Gaussians that differ in
shape based on each neighbor’s direction to calculate the value of
the current pixel. Note that the computation renders to sections of
the 3D texture and therefore must iterate through all sections in the
z direction before a complete volume iteration is completed.

method is implemented as depicted in Figure 3. The volume data is
loaded into a 3D texture on the graphics card before the algorithm
starts. The 3D texture is stored using 32 bits/voxel with 16 bits al-
located to the intensity from the CT image data (ALPHA) and 16
bits allocated to the seeds (LUMINANCE). Therefore, each voxel
may contain multiple seeds and the maximum number of seeds at
any voxel is 216. It should also be noted that arithmetic operations
on the ATI 9800 are limited to 24-bit precision.

The image smoothing fragment program was written using 30 in-
structions composed of 7 3D texture lookups (6-neighbors plus the
current voxel), 10 4-vector operations and 13 scalar operations. Six
of the scalar operations are power (POW) operations that expand
into three hardware instructions each on the ATI 9800 Pro. The
segmentation evolution fragment program is similar to the image
smoothing program, as they are both discretized with the scheme
described in Equation (2), but it requires slightly more instructions.
The segmentation program requires 39 total instructions. These in-
structions expand to 56 floating point operations with 8 of those
being 4-vector operations and 24 being scalar operations. These al-
gorithms require only one rendering pass per slice of the volume,
which allows for efficient execution.

Before the computation of the segmentation is run on the current
section, an additional fragment program is run to calculate the cur-
rent computational mask. The computational masking step alters
the depth buffer on a per pixel basis by placing a high depth value
for any voxel that contains seeds or is a six-neighbor of a voxel with
seeds. If the current voxel fails this test, then the depth buffer value

Data Set Iterations Time (s) Rate (Mvox/s)
C. Vessels 450 9.5 (14.7) 99 (64)
Aorta 1 150 3.7 (4.9) 85 (64)
Aorta 2 350 7.8 (11.5) 94 (64)
Lung 305 9.1 (10.0) 70 (64)

Table 1: The results of our segmentation algorithm on various 1283

datasets: C. Vessels (Figure 1a), Aorta 1 (Figure 1b), Aorta 2 (Fig-
ure 1c), and the Lung (Figure 1d). Each segmentation was seeded
in the location depicted in Figure 1. The numbers in parenthesis
represent the performance without computational masking. Notice
the improvement that computational masking provides.

will be set to a very low value. The segmentation computation will
then fail a depth test at any location that has the very low value.
Since the depth test occurs before the fragment program runs, early
z-kill can be done by the hardware, preventing the fragment pro-
gram from executing on masked-out portions.

An important note is that the ATI Radeon 9800 Pro’s implemen-
tation of render to 3D texture does not allow reading from and writ-
ing to the same texture. Because of this, the algorithm must ‘ping-
pong’, or write between, two 3D volumes. This requires twice the
amount of memory as the volume we want to segment, limiting the
maximum volume resolution to 2563.

5 Results

All results were collected using an ATI Radeon 9800 Pro with
256MB of onboard memory on a 2.4GHz P4 with a 533MHz front
side bus. We utilized a 1283 volume of 16-bit intensity data from a
CT scan for all presented results.

Table 1 presents the results of running the segmentation al-
gorithm while continuously pumping seeds into the already seg-
mented voxels, to test the maximum throughput of the algorithm.
The results of the table show the benefits of the computation mask.

We also measured the performance of the individual fragment
program components. Each execution of the segmentation frag-
ment program requires 0.22 ms. Just doing the 3D texture lookup
from within a fragment program takes 0.09 ms of that time. To per-
form any computation, we need to flip-flop textures, which costs
an additional 0.04 ms. This gives a total time of 0.26 ms for each
slice of the volume, or 33 ms per full volume iteration. We mea-
sured the time for the building the computation mask to be 0.14
ms per slice in addition to the time for the segmentation evolution.
This means that the crossover point for gaining performance from
computational masking occurs when computation on about half of
the voxels in the volume can be prevented. These numbers scale
linearly for different volume/slice sizes up to the maximum 2563

volume limited by onboard memory. Without considering the sav-
ings from computational masking, the segmentation algorithm is
capable of processing 64 Mvoxels/s, or 128 MB/s, of volume data.

We also measured our performance when simultaneously dis-
playing the progress of the segmentation in a 3D texture hardware-
based volume renderer. Recent 3D texture-based volume renderers
are now capable of rendering at interactive rates on programmable
graphics hardware [Engel et al. 2001; Gelder and Kim 1996]. Us-
ing Blinn-Phong shading and calculating gradients on the fly for
lighting, the volume renderer used for this paper is able to render
1283 volumes at 15-25 fps (40-66 ms per frame) and 2563 volumes
at 5-15 fps (66-200 ms per frame) at useful screen resolutions.

Figure 4: This figure shows the results of thresholding a 2563

subvolume of a contrast enhanced abdominal CT centered at 270
Hounsfield Units. In addition to the aorta, many other parts of the
lower abdomen anatomy are picked up by the threshold operation.

Figure 5: This figure depicts a segmentation of the aortic aneurysm
as well as the large vessels distal to the bifurcation from the same
subvolume shown in Figure 4. The arrow in the volume render-
ing image points to where one of the tiny vessels makes contact
with bone and the segmentation leaks through the weak interface
between the bone and the vessel.

6 Discussion

The animation of the segmentation evolution does not substantially
affect the volume rendering performance. In fact, a full iteration
in the evolution of the volume segmentation runs roughly the same
speed or faster than the volume rendering. This allows for effec-
tive visualization of the evolving segmentation, and the shared data
structures between the computation and rendering allow for a sim-
ple and efficient implementation.

Our GPU-based volume segmentation algorithm achieves a
speedup of ten to twenty times over a SSE2 optimized CPU-based
solution. It should be noted that the CPU implementation used 32-
bit precision while the GPU implementation is limited to 24-bit
precision. Whereas we are able to process 64 Mvoxels/s without
computational masking, the CPU is only able process 3 Mvoxels/s.
Using computational masking, our GPU-based algorithm is more
than twenty times faster than the CPU-based solution when we can
prevent computation on about half of the voxels. When we can no
longer limit our computation on voxels as efficiently as the CPU-
based solution can, at the worst point, we are still more than an
order of magnitude faster (33 Mvoxels/s vs. 3 Mvoxels/s).

A qualitative comparison of thresholding and our segmentation
method is shown in Figures 4 and 5. In Figure 4 the thresholded im-

age picks up the desired aortic aneurysm as well as bone and other
tissue, which were present in the selected subvolume and were sim-
ilar in intensity. Using the same transfer function for rendering as
Figure 4, Figure 5 shows the result of an iterative use of the segmen-
tation algorithm on the aorta. One can clearly see the aneurysm and
the stenosis below the aneurysm as well as the vessels that feed
from it. However, the cursor on the volume rendering points to a
leak from one of the small vessel branches into the bone. The leak
of seeds across weak boundaries is a common difficulty with edge
based algorithms in general and is motivation for having an inter-
active segmentation process.

In comparison to the packing technique employed by Lefohn et
al. [2003], the computation masks allow more straightforward com-
putation and visualization. In addition, as the arithmetic intensity
of the computation stage increases, e.g. by adding geometric con-
straints or other operations per evolution, the cost of building the
computation masks would have a smaller impact on the total per-
formance of the algorithm, thus continuing to provide speedups for
much larger active regions. Furthermore, by employing more ag-
gressive culling techniques, such as only tracking the evolving front
or “most active” voxels, one may stay well below our current fifty
percent cutoff for computation savings.

The performance advantages of the computational masking sug-
gest that our algorithm would benefit from improved support for
building computation masks. Currently, the depth of a fragment
cannot be set from within a program outputting floating point val-
ues. This requires us to take an additional rendering pass, com-
prised mostly of the same texture lookups as in the segmentation
evolution pass, to build the computation mask. Besides the cost of
the redundant texture lookups, there is also some overhead involved
with setting up and running an additional fragment program. Cur-
rently, our conservative application of computational masking im-
proves performance if more than one half of the volume compu-
tation can be saved. As better support for computational masking
becomes available, the added cost of building the masks can be re-
duced, substantially increasing the benefits of tracking the subvol-
ume.

7 Future Work and Conclusion

A segmentation algorithm with interactive visual feedback allows
human operators to segment complex 3D structures in real time.
New mechanisms for interacting with an evolving 3D scene would
allow the user to more effectively harness the speed of such algo-
rithms. Alternative 3D scene painting techniques could enhance the
user’s local control provided by this algorithm. For instance, the
user could paint simple 3D strokes, suggesting structure, that the
algorithm would interactively evolve into a detailed volume bound-
ary. The segmentation process would also benefit from carefully
crafted visualizations that facilitate discerning the changing seg-
mentation surface from the volume data.

This future proposal for user steering of the segmentation is sim-
ilar to other researchers’ [Falcao et al. 2000; Mortensen and Barrett
1995] approaches for 2D tracing utilizing a live-wire method. Our
method also involves user guidance; however, ours would be a 3D
approach, and rather than having the user’s attention on the bound-
ary, we allow the user to force structure segments to be included
or not by painting seeds in the volume. This input would help the
automatic part of the segmentation grow through structures and/or
avoid “leaking” into adjacent structures.

This paper has shown that computational masking can be an ef-
fective and simple way to save computation and speed up GPU-
based algorithms. Although we only explore one method for cre-
ating computational masks in this paper, a simple dilation of the
segmentation, more aggressive methods could be considered. For
example, one could mask out all voxels containing seeds not likely

to evolve in future time steps, i.e. voxels surrounded by voxels with
identical seed values. By employing more aggressive methods, one
could limit the number of active voxels to be below the computa-
tional mask crossover point.

This paper presents a segmentation method that allows interac-
tive visualization and control because of its computation speed and
coordination with a hardware accelerated volume renderer. In ad-
dition, using the GPU for general computation will become even
more advantageous as graphics processors continue to outpace the
performance of CPUs. Also, through the use of computational
masking we are able to use the computational resources of modern
graphics hardware more effectively. With interactive 3D segmen-
tation available, researchers can now explore volumetric segmenta-
tion with human intervention.

8 Acknowledgments

We would like to thank James Percy at ATI for all of his help with
render to 3D texture and all of the help getting beta drivers and also
Mark Segal from ATI for giving us early access to the R300 and
R350 which made this work possible. We would also like to thank
Tim Purcell, Ian Buck and Pradeep Sen from Stanford University
for thoughts and ideas on optimizing our fragment programs and
many conversations about computational masking. Also, we ap-
preciate the support of everyone at the 3D Radiology Lab for their
thoughts on interactive segmentation and its application. We would
especially like to thank Pat Hanrahan for the many conversations
that sparked the original idea and supported our continued efforts.

References

ADAMS, R., AND BISCHOF, L. 1994. Seeded Region Growing.
IEEE Transactions on Pattern Analysis and Machine Intelligence
16, 6 (June), 641–647.

ATI, 2003. RADEON 9800.http://www.ati.com.

CATTÉ, F., LIONS, P., MOREL, J., AND COLL , T. 1992. Image
Selective Smoothing and Edge Detection by Nonlinear Diffu-
sion. SIAM Journal of Numerical Analysis 29, 7, 182–193.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-
Quality Pre-Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
ACM Press, 9–16.

FALCAO , A., UDUPA, J., AND M IYAZAWA , F. 2000. An Ultra-
Fast User-Steered Image Segmentation Paradigm: Live Wire on
the Fly. IEEE Transaction on Medical Imaging 19, 1 (January),
55–62.

FELKEL , P. 2000. Segmentation of Vessels in Peripheral
CTA Datasets. VRVis Technical report TR-VRVis-2000-008,
VRVis Center, Donau-City-Straße 1, A-1220 Vienna, Austria,
www.vrvis.at, Dec.

GELDER, A. V., AND K IM , K. 1996. Direct Volume Rendering
With Shading in Three-Dimensional Textures. InProceedings of
the 1996 symposium on Volume visualization, IEEE Press, 23–ff.

KHAILANY , B., DALLY , W., RIXNER, S., KAPASI, U., OWENS,
J., AND TOWLES, B. 2003. Exploring the VLSI Scalability of
Stream Processors. InProceedings of the Ninth Symposium on
High Performance Computer Architecture.

K IRBAS, C., AND QUEK, F. 2003. Vessel Extraction Techniques
and Algorithms: A Survey. InIn Review: IEEE Conference Bio-
Informatics and Bio-Engineering (BIBE).

LARSEN, E. S.,AND MCALLISTER, D. 2001. Fast Matrix Multi-
plies using Graphics Hardware. InSupercomputering 2001.

LECLERC, Y. 1989. Constructing Simple Stable Descriptions for
Image Partitioning.International Journal of Computer Vision 3,
73–102.

LEFOHN, A., KNISS, J., HANSEN, C., AND WHITAKER , R. 2003.
Interactive Deformation and Visualization of Level Set Surfaces
Using Graphics Hardware. InTo Appear in Proceedings of IEEE
Visualization 2003.

LEVENTON, M., GRIMSON, E.,AND FAUGERAS, O. 2000. Statis-
tical Shape Influence in Geodesic Active Contours. InComputer
Vision and Pattern Recognition (CVPR), 75–84.

LEVENTON, M., 2000. Statistical Models for Medical Image Anal-
ysis. MIT Ph.D. Thesis.

MORTENSEN, E., AND BARRETT, W. 1995. Intelligent Scissors
for Image Composition. InIn SIGGRAPH’95, 191–198.

MORTON, K., AND MAYERS, D. 1994. Numerical Solution of
Partial Differential Equations. Cambridge University Press.

NVIDIA, 2003. nVidia GeForce FX.http://www.nvidia.com/.

OPENGL ARCHITECTURE REVIEW BOARD, 2002.
ARB fragmentprogram.http://www.opengl.org/.

PERONA, P.,AND MALIK , J. 1990. Scale-space And Edge Detec-
tion Using Anisotropic Diffusion.IEEE Transactions on Pattern
Analysis and Machine Intelligence 12, 7 (June), 629–639.

PURCELL, T., BUCK, I., MARK , W., AND HANRAHAN , P. 2002.
Ray Tracing on Programmable Graphics Hardware.ACM Trans-
actions on Graphics 21, 3 (July), 703–712. ISSN 0730-0301
(Proceedings of ACM SIGGRAPH 2002).

RUMPF, M., AND STRZODKA, R. 2001. Level Set Segmentation in
Graphics Hardware. InIEEE International Conference on Image
Processing, 1103–1106.

RUMPF, M., AND STRZODKA, R. 2001. Level Set Segmentation
in Graphics Hardware. InProceedings of EG/IEEE TCVG Sym-
posium on Visualization VisSym ’01, 75–84.

THOMPSON, C., HAHN , S., AND OSKIN, M. 2002. Using Mod-
ern Graphics Architectures for General-Purpose Computing: A
Framework and Analysis.International Symposium on Microar-
chitecture.

WEICKERT, J. 1997. A Review of Nonlinear Diffusion Filtering.
In Scale-Space Theories in Computer Vision, 3–28.

YANG, R., AND WELCH, G. 2003. Fast Image Segmentation and
Smoothing Using Commodity Graphics Hardware.To appear in
the Journal of Graphics Tools Special Issue on Hardware Accel-
erated Rendering Techniques.

ZUCKER, S. W. 2001. Relaxation Labelling: 25 years and Still
Iterating. Kluwer Academic Publisher.

