Shading Languages
for Graphics Hardware

Bill Mark and Kekoa Proudfoot

Stanford University

Collaborators:
Pat Hanrahan, Svetoslav Tzvetkov,
Pradeep Sen, Ren Ng

Sponsors:
ATI, NVIDIA, SGI, SONY, Sun, 3dfx, DARPA

Web page: http://graphics.stanford.edu/projects/shading/

Motivation

Current generation of hardware is very capable
Vector-based vertex processing
Multiple textures per pass
Advanced texture combining operations
Multiple passes for complex effects

Downside: Hardware is difficult to program
Programming can be like writing microcode

Splitting computations into multiple passes is
time-consuming

Functionality varies between chipsets

Real-time shading languages

Implement a shading language with two objectives:
Higher-level programming interface
Portability across platforms and chipsets

Borrow ideas from off-line rendering systems
e.g. PIXAR’s PhotoRealistic RenderMan

Tailor language to programmable graphics HW
Language must obey limitations of hardware

Topics

Survey of real-time shading systems
Overview of Stanford system
Demo
Compiler technology in Stanford system
Vertex programs
Register combiners / Pixel shaders
Concluding comments

Questions

Related systems

Quake 3 Arena (id Software)

ftp://fftp.idsoftware.com/idstuff/quake3/tools/
Q3Ashader_manual.doc

Interactive Multi-Pass Programmable Shading
Peercy, et al., SIGGRAPH 00
http://reality.sgi.com/olano/papers/

McCool’s SMASH API

http://www.cgl.uwaterloo.ca/Projects/
rendering/Papers/smash.pdf

Quake 3 Arena: shader scripts

Linear chain of image compositing stages
textures/testsurface

{
{

map t extures/basecol or.tga :
L [g Stage 1: base color

map $li ght map -
rgbgen identity Stage 2: lightmap
bl endfunc filter

Stages are mapped to rendering passes

Vertex colors, positions, and texcoords can be
generated/modified using builtin functions

Peercy et al.. overview

Two languages implemented:

Simple Shading Language for standard
OpenGL

RenderMan for extended OpenGL

System based on a SIMD processor abstraction:
Graphics hardware = SIMD processor

One rendering pass = SIMD instruction

Computations are compiled to many simple passes

Peercy et al.: pass generation

A tool called iburg maps computations to passes
Express computation as one or more trees
Express possible passes as rules

Dynamic programming optimally covers trees
given rules

Some example OpenGL 1.1 rules:

1 AR
fb C f fb C fb

b T

Peercy et al.: iburg example

Unextended
OpenGL requires
five passes to
cover this tree

1. fb = Base
2. fb = Bruns over fb

3. fb = Circle over fb

4. fb = fb x Marks x Cd
5.fb =fb + Cs
Brunswick

GDC 23-Mar-2001
© 2001, WRM & KP

Project goals

Provide a shading language as an abstraction
layer between programmer and graphics
hardware

Explore how current hardware may be used to
Implement shading language abstractions

Investigate new hardware architectures
optimized for programmable shading

Create new Iinteractive applications based on
shading languages

Design philosophy

Primary goals of current shading system
Make hardware easy-to-use

Make shaders portable across platforms

System only abstracts what hardware can do:

The system does not perform magic!!!

Multiple computation frequencies
@)
® '0 o

! A G

Constant Per Vertex

Per Primitive Group Per Fragment

Evaluated less often Evaluated more often

« More complex operations Simpler operations »

Floating point Fixed point

System overview

Shading Language

y

Compiler Front End

y

Intermediate Representation
+

Programmable Pipeline

y

Compiler Back End

y

Compiled Shader
“Object Code”

Geometry w/
Shader
Parameters

Shader
Execution
Engine

Framebuffer

Programmable pipeline abstraction

Geometry
w/ Shader
Parameters ¢ ¢

Primitive
Group
Processing

Vertex Fragment

Processing Processing :

e.g. matrix setup e.g. lighting e.g. texturing
e.g. transforms

Intermediate abstraction between language and HW

Virtualization of hardware:
No operation count limits
No temporary storage limits

Note: DX8/OpenGL do not have these properties

Restrictions

Hardware limitations
No data-dependent loops or conditionals
No random read/write memory accesses
No fully-general dependent texturing
Optional operators
Not all hardware supports every operation
No fully-orthogonal “float” type
Fragment values are currently fixed point

Fragment “float” is largest range possible on
hardware

Currently either [0,1] or [-1,1]

Anisotropic ball example

surface shader floatv
ani sotropic _ball (texref anisotex, texref star)
e . D
/| generate texture coordi nates

perlight floatv uv = { center(dot(B, E)),

center(dot (B, L)), v
0, 11};

< N
/1 conmpute reflection coefficient

perlight floatv fd max(dot (N, L), O0);

perlight floatv fr fd * texture(ani sotex, uv);

i<

[l conmpute anount of reflected |ight
floatv lightcolor = 0.2 * Ca + integrate(C * fr);

J)
/1 nodul ate reflected Iight color
floatv uv_base = { center(Pobj[2]), center(Pobj[0]),
0, 11};
return lightcolor * texture(star, uv_base);
g /

GDC 23-Mar-2001
© 2001, WRM & KP

Shading language

Features
Simple C-like language
Scalar, vector, and matrix operations
Separate surface and light shaders

Easy specification of computation
frequencies

Designed to be easily analyzed and optimized
Deformation shaders are coming soon
See also:
Conference Proceedings
Project Web Site (URL at end of talk)

API

Two APIs implemented
Vertex array interface

Immediate-mode interface

Both extend standard interfaces with:
Shader specification routines

Routines for specifying arbitrary params

APIs hide multiple rendering passes

Must buffer data if multiple passes required

GDC 23-Mar-2001
© 2001, WRM & KP

Compilation

Surface
shader

1. Parse

Light
shaders

Host-side vertex
and primitive
group code

Hardware
rendering passes

Per fragment

4. Generate code/passes

GDC 23-Mar-2001
© 2001, WRM & KP

System generates many types of code

Host Processor

C code or X86 code

Use as fallback when there’s no vertex HW
Vertex Programs
Multi-pass OpenGL 1.2

Uses Multi-texture

Very Portable

Virtualizes HW

Register Combiners

Vertex-program architecture

Access to just one vertex at a time
Instructions operate on four 32-bit floats (like SSE2)
Instruction set:
Mostly RISC-like
Some special instructions for graphics —e.g. LIT
No branches
Can negate and/or swizzle any instruction operand

Two types of registers — read/write, and read-only

Step 1: Instruction selection

Choose instructions from templates
C =cross(A, B) l

MUL C, A.zxyw, B.yzxw
MAD C, A.yzxw, B.zxyw, -C

Optimizations (pre- and post- template)
MUL, ADD — MAD
Match patterns for LIT, DST
Combine scalar ops into vector instructions

etc.

Step 2: Allocate read/write registers

Adapt standard algorithms to this architecture
Determine set of live values at each instruction

Construct interference graph

Scalars treated same as vectors for interference

Use greedy graph-coloring algorithm
Allocate “hardest” variables first
Put up to four unrelated scalars in a register
Careful about outputs from DST, LOG

More detalls in our SIGGRAPH paper

Step 3: Allocate “constant” registers

Assign “primitive group” variables to constant
registers

Assign true constants to constant registers

Rank constants by number of unique values
e.g.{1,2,3,4} ranks higher than {1,1,1,2}

Assign highest-ranked constants first

Try to reuse components from previously-
allocated values

Generated code is efficient

Example: surface with local, specular light

Compiler-generated code

44 instructions

Hand-written code (from NVIDIA template)

38 instructions

Register combiner pipeline

Similar to a VLIW architecture

textures, colors, etc.

RGB Portion A 4 Alpha Portion

! I

AB+CD, AB, CD AB+CD, AB, CD

> up to 8 stages

\ 4 \ 4
AB+CD, AB, CD AB+CD, AB, CD

\ 4
AB+(1-A)C+D, EF, G |—» RGBA fragment

[slide modified from NVIDIA]

RGB register combiner

[-1,1] range

[-1,1] range

Note: DX8 pixel shader instructions are similar,
but slightly less powerful

Rewrite DAG to use basic HW ops

From... To...

float3 + float3
floatl + floatl

float4 % float4 === {

o BLUE (X DOT3 Y)

2 * (X -0.5) = INMAP(X, expand_normal)

Map ops to partial combiners
using top-down algorithm

FINAL !
ALPHA| ALPHA

ALPHA I

L - < -

vertex
floatl

Mapping ops to a partial combiner

FULL

texture —
scale

v . v

ALPHA COMBINER

-Mar-
© 2001, WRM & KP

float3

Mapping ops to a partial combiner

*

BLUE * + INMAP

INMAP texture bias &
scale

vertex v . I

float3

ALPHA COMBINER

-Mar-
© 2001, WRM & KP

Mapping ops to a partial combiner

*

BLUE * + INMAP

INMAP texture

vertex
float3

Mapping ops to a partial combiner

*

BLUE * + INMAP

INMAP texture

vertex
float3

Mapping ops to a partial combiner

LBLUE l

input

INMAP

*

+ INMAP

texture

Mapping ops to a partial combiner

LBLUE

INMAP

*

+ INMAP

texture

Mapping ops to a partial combiner

LBLUE

INMAP

\4

LNy

+ INMAP

texture

Mapping ops to a partial combiner

LBLUE

INMAP

\4

LNy

INMAP

texture

Mapping ops to a partial combiner

LBLUE

INMAP

\4

R

INMAP

texture

Mapping ops to a partial combiner

LBLUE

INMAP

Mapping ops to a partial combiner

FULL LBLUE

INMAP

Allocate DAG inputs to registers

DAG inputs consist of:
textures
Interpolants from vertex values
constants and “primitive group” values
Use a greedy algorithm -- do “hardest” cases first
Some capabilites:
pack unrelated 3-vector and scalar into RGBA
put scalar in RGB

use PASSTHRU texture for vertex interpolants

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
RGB ALPHA

vertex
floatl

v

texture

/!

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline

= RGB ALPHA

vertex
floatl

l v
texture

HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
RGB JAY I 2 o VAN

vertex
floatl

HALF l texture

ALPHA HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline

vertex
floatl

HALF
{€]=]

HALF l texture
ALPHA HALF

RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
RGB JAY I 2 o VAN

vertex
floatl

HALF HALF
{€]=] €]=]

HALF l texture
ALPHA HALF

RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

Combiner Pipeline
ALPHA

vertex
floatl

HALF HALF HALF
ALPHA {€]=] €]=]

v l v
HALE texture

ALPHA HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
RGB JAY I 2 o VAN

Y

FULL

L
. -

vertex
floatl

HALF HALF HALF
ALPHA {€]=] €]=] -

v l v

HALE texture V4

ALPHA HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline

‘ i RGB ALPHA

d

FULL

[
d

vertex
floatl

HALF HALF HALF
ALPHA {€]=] €]=] -

v l v

HALE texture V4

ALPHA HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
\4 RGB JAY I 2 o VAN

FINAL
RGB

!

FULL
RGB

vertex
floatl

HALF HALF HALF
ALPHA {€]=] €]=]

v l v

HALF texture

ALPHA HALF
RGB

Y

texture texture

Map partial combiners to pipeline
using bottom-up algorithm

output Combiner Pipeline
RGB ALPHA

FINAL
RGB

!

FULL
RGB

vertex
floatl

HALF HALF HALF
ALPHA {€]=] €]=]

v l v

HALF texture

ALPHA HALF
RGB

Y

texture texture

Compiler generates efficient code

Example: Bowling pin shader
Initially 8 combiners

Can reduce to 7 by using compiled code to
guide source-code changes

Can’t do any better by hand —this is typical
What the compiler can’t do:

Reorder mathematical operations

Reorganize textures (e.g. join RGB with A)

Design algorithms that map well to combiners

RegComb backend limitations

No texture address ops yet (that’s coming).
No automatic multi-pass

Compiler doesn’t hide varying numerical ranges

High-level comments

Two uses for this technology:
Prototyping
Final product

Design decision: Support multi-pass?
Flexibility/portability vs. complexity/performance

Problems with partially-transparent surfaces

More High Level Comments

Design decision: When to compile?
Once
Runtime: explicit or implicit
System is complex

Ours: 18 months, ~45,000 lines of source

Summary

Real-time shading languages are powerful & addictive

A step towards “Toy Story in real time”
Programmable shading can be efficient

Compiler technology is the key

Design entire system for real-time hardware
Hardware will continue to improve

More functionality

Cleaner architectures

Higher performance

Thanks to people who helped

System design, coding, and demos

Svetoslav Tzvetkov, Pat Hanrahan,
Pradeep Sen, Ren Ng

Sponsors
ATI, NVIDIA, SGI, SONY, Sun, 3dfx
DARPA

Special thanks to
Matt Papakipos, Mark Kilgard
David Ebert

More information on the web

http://graphics.stanford.edu/projects/shading

Download system
(binary only, but includes linkable library)

Draft copy of SIGGRAPH 2001 paper

Questions?

