Shading Languages for Graphics Hardware

Bill Mark and Kekoa Proudfoot Stanford University

Collaborators:
Pat Hanrahan, Svetoslav Tzvetkov,
Pradeep Sen, Ren Ng

Sponsors: ATI, NVIDIA, SGI, SONY, Sun, 3dfx, DARPA

Web page: http://graphics.stanford.edu/projects/shading/

Motivation

Current generation of hardware is very capable

- Vector-based vertex processing
- Multiple textures per pass
- Advanced texture combining operations
- Multiple passes for complex effects

Downside: Hardware is difficult to program

- Programming can be like writing microcode
- Splitting computations into multiple passes is time-consuming
- Functionality varies between chipsets

Real-time shading languages

Implement a shading language with two objectives:

- Higher-level programming interface
- Portability across platforms and chipsets

Borrow ideas from off-line rendering systems

e.g. PIXAR's PhotoRealistic RenderMan

Tailor language to programmable graphics HW

Language must obey limitations of hardware

Topics

Survey of real-time shading systems

Overview of Stanford system

Demo

Compiler technology in Stanford system

- Vertex programs
- Register combiners / Pixel shaders

Concluding comments

Questions

Related systems

Quake 3 Arena (id Software)

ftp://ftp.idsoftware.com/idstuff/quake3/tools/ Q3Ashader_manual.doc

Interactive Multi-Pass Programmable Shading

- Peercy, et al., SIGGRAPH 00
- http://reality.sgi.com/olano/papers/

McCool's SMASH API

http://www.cgl.uwaterloo.ca/Projects/ rendering/Papers/smash.pdf

Quake 3 Arena: shader scripts

Linear chain of image compositing stages

Stages are mapped to rendering passes

Vertex colors, positions, and texcoords can be generated/modified using builtin functions

Peercy et al.: overview

Two languages implemented:

- Simple Shading Language for standard OpenGL
- RenderMan for extended OpenGL

System based on a SIMD processor abstraction:

- Graphics hardware = SIMD processor
- One rendering pass = SIMD instruction

Computations are compiled to many simple passes

Peercy et al.: pass generation

A tool called *iburg* maps computations to passes

- Express computation as one or more trees
- Express possible passes as rules
- Dynamic programming optimally covers trees given rules

Some example OpenGL 1.1 rules:

Peercy et al.: iburg example

Project goals

- 1. Provide a shading language as an abstraction layer between programmer and graphics hardware
- 2. Explore how current hardware may be used to implement shading language abstractions
- 3. Investigate new hardware architectures optimized for programmable shading
- 4. Create new interactive applications based on shading languages

Design philosophy

Primary goals of current shading system

- Make hardware easy-to-use
- Make shaders portable across platforms

System only abstracts what hardware can do:

The system does not perform magic!!!

Multiple computation frequencies

Evaluated less often

More complex operations

Floating point

Evaluated more often
Simpler operations
Fixed point

System overview

Programmable pipeline abstraction

Intermediate abstraction between language and HW Virtualization of hardware:

- No operation count limits
- No temporary storage limits
- Note: DX8/OpenGL do not have these properties

Restrictions

Hardware limitations

- No data-dependent loops or conditionals
- No random read/write memory accesses
- No fully-general dependent texturing

Optional operators

Not all hardware supports every operation

No fully-orthogonal "float" type

- Fragment values are currently fixed point
- Fragment "float" is largest range possible on hardware
- Currently either [0,1] or [-1,1]

Anisotropic ball example

```
surface shader floaty
anisotropic ball (texref anisotex, texref star)
    // generate texture coordinates
    perlight floatv uv = { center(dot(B, E)),
                           center(dot(B, L)),
                           0, 1 };
    // compute reflection coefficient
    perlight floatv fd = max(dot(N, L), 0);
    perlight floatv fr = fd * texture(anisotex, uv);
    // compute amount of reflected light
    floatv lightcolor = 0.2 * Ca + integrate(Cl * fr);
    // modulate reflected light color
    floatv uv_base = { center(Pobj[2]), center(Pobj[0]),
                       0, 1 };
    return lightcolor * texture(star, uv base);
```

Shading language

Features

- Simple C-like language
- Scalar, vector, and matrix operations
- Separate surface and light shaders
- Easy specification of computation frequencies
- Designed to be easily analyzed and optimized
- Deformation shaders are coming soon

See also:

- Conference Proceedings
- Project Web Site (URL at end of talk)

API

Two APIs implemented

- Vertex array interface
- Immediate-mode interface

Both extend standard interfaces with:

- Shader specification routines
- Routines for specifying arbitrary params

APIs hide multiple rendering passes

Must buffer data if multiple passes required

Demo

Compilation

System generates many types of code

Host Processor

- C code or X86 code
- Use as fallback when there's no vertex HW

Vertex Programs

Multi-pass OpenGL 1.2

- Uses Multi-texture
- Very Portable
- Virtualizes HW

Register Combiners

Vertex-program architecture

- Access to just one vertex at a time
- Instructions operate on four 32-bit floats (like SSE2)
- Instruction set:
 - Mostly RISC-like
 - Some special instructions for graphics e.g. LIT
 - No branches
- Can negate and/or swizzle any instruction operand
- Two types of registers read/write, and read-only

Step 1: Instruction selection

Choose instructions from templates

Optimizations (pre- and post- template)

- MUL, ADD MAD
- Match patterns for LIT, DST
- Combine scalar ops into vector instructions
- etc.

Step 2: Allocate read/write registers

Adapt standard algorithms to this architecture

- Determine set of live values at each instruction
- Construct interference graph
 - Scalars treated same as vectors for interference
- Use greedy graph-coloring algorithm
 - Allocate "hardest" variables first
 - Put up to four unrelated scalars in a register
 - Careful about outputs from DST, LOG
- More details in our SIGGRAPH paper

Step 3: Allocate "constant" registers

- 1. Assign "primitive group" variables to constant registers
- 2. Assign true constants to constant registers
 - A. Rank constants by number of unique values e.g. {1,2,3,4} ranks higher than {1,1,1,2}
 - **B.** Assign highest-ranked constants first
 - c. Try to reuse components from previouslyallocated values

Generated code is efficient

Example: surface with local, specular light

- Compiler-generated code
 - 44 instructions
- Hand-written code (from NVIDIA template)
 - 38 instructions

Register combiner pipeline

Similar to a VLIW architecture

RGB register combiner

Note: DX8 pixel shader instructions are similar, but slightly less powerful

Rewrite DAG to use basic HW ops

Map ops to partial combiners using top-down algorithm

ALPHA COMBINER

ALPHA COMBINER

Allocate DAG inputs to registers

DAG inputs consist of:

- textures
- interpolants from vertex values
- constants and "primitive group" values

Use a greedy algorithm -- do "hardest" cases first Some capabilites:

- pack unrelated 3-vector and scalar into RGBA
- put scalar in RGB
- use PASSTHRU texture for vertex interpolants

Compiler generates efficient code

Example: Bowling pin shader

- Initially 8 combiners
- Can reduce to 7 by using compiled code to guide source-code changes
- Can't do any better by hand this is typical

What the compiler can't do:

- Reorder mathematical operations
- Reorganize textures (e.g. join RGB with A)
- Design algorithms that map well to combiners

RegComb backend limitations

- No texture address ops yet (that's coming).
- No automatic multi-pass
- Compiler doesn't hide varying numerical ranges

High-level comments

Two uses for this technology:

- Prototyping
- Final product

Design decision: Support multi-pass?

- Flexibility/portability vs. complexity/performance
- Problems with partially-transparent surfaces

More High Level Comments

Design decision: When to compile?

- Once
- Runtime: explicit or implicit

System is complex

Ours: 18 months, ~45,000 lines of source

Summary

Real-time shading languages are powerful & addictive

A step towards "Toy Story in real time"

Programmable shading can be efficient

- Compiler technology is the key
- Design entire system for real-time hardware

Hardware will continue to improve

- More functionality
- Cleaner architectures
- Higher performance

Thanks to people who helped

System design, coding, and demos

Svetoslav Tzvetkov, Pat Hanrahan, Pradeep Sen, Ren Ng

Sponsors

- ATI, NVIDIA, SGI, SONY, Sun, 3dfx
- DARPA

Special thanks to

- Matt Papakipos, Mark Kilgard
- David Ebert

More information on the web

http://graphics.stanford.edu/projects/shading

- Download system (binary only, but includes linkable library)
- Draft copy of SIGGRAPH 2001 paper

Questions?