The Digital Michelangelo Project

Marc Levoy

Computer Science Department Stanford University

Executive summary

Executive summary

Motivations

- push 3D scanning technology
- tool for art historians
- lasting archive

Technical goals

- scan a big statue \longrightarrow 5 meters
- capture chisel marks —> 1/4 mm
- capture reflectance \longrightarrow 1/4 mm

Why capture chisel marks?

Outline of talk

- scanner design
- processing pipeline
- scanning the David
- problems faced and lessons learned
- some side projects
- uses for our models
- an archeological jigsaw puzzle

Scanner design

4 motorized axes

truss extensions for tall statues

laser, range camera, white light, and color camera

Scanning St. Matthew

working in the museum

scanning geometry

scanning color

How optically cooperative is marble?

- systematic bias of 40 microns
- noise of 150 250 microns
 - worse at oblique angles of incidence
 - worse for polished statues

Scanning a large object

- calibrated motions
 - pitch (yellow)
 - pan (blue)
 - horizontal translation (orange)

- uncalibrated motions
 - vertical translation
 - remounting the scan head
 - moving the entire gantry

Our scan of St. Matthew

- 104 scans
- 800 million polygons
- 4,000 color images
- 15 gigabytes
- 1 week of scanning

Range processing pipeline

• steps

- 1. manual initial alignment
- 2. ICP to one existing scan
- 3. automatic ICP of all overlapping pairs
- 4. global relaxation to spread out error
- 5. merging using volumetric method

lessons learned

- should have tracked the gantry location
- ICP is unstable on smooth surfaces

Color processing pipeline

- 1. compensate for ambient illumination
- 2. discard shadowed or specular pixels
- 3. map onto vertices one color per vertex
- 4. correct for irradiance \rightarrow diffuse reflectance

limitations

- ignored interreflections
- ignored subsurface scattering
- treated diffuse as Lambertian
- used aggregate surface normals

artificial surface reflectance

estimated diffuse reflectance

accessibility shading

Scanning the David

height of gantry:

weight of gantry:

7.5 meters

800 kilograms

Statistics about the scan

- 480 individually aimed scans
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

Hard problem #1: view planning

procedure

- manually set scanning limits
- run scanning script

```
for horizontal = min to max by 12 cm

for pan = min to max by 4.3 °

for tilt = min to max continuously

perform fast pre-scan (5 °/sec)

search pre-scan for range data

for tilt = all occupied intervals

perform slow scan (0.5 °/sec)

on every other horizontal position,

for pan = min to max by 7 °

for tilt = min to max by 7 °

take photographs without spotlight

warm up spotlight

for pan = min to max by 7 °

for tilt = min to max by 7 °

take photographs with spotlight
```

lessons learned

- need automatic view planning especially in the endgame
- 50% of time on first 90%, 50% on next 9%, ignore last 1%

Hard problem #2: accurate scanning in the field

- error budget
 - 0.25mm of position, 0.013° of orientation
- design challenges
 - minimize deflection and vibration during motions
 - maximize repeatability when remounting
- lessons learned
 - motions were sufficiently accurate and repeatable
 - remounting was not sufficiently repeatable
 - used ICP to circumvent poor repeatability

Head of Michelangelo's David

photograph

1.0 mm computer model

The importance of viewpoint

classic 3/4 view

left profile

face-on view

The importance of lighting

lit from above

lit from below

David's left eye

0.25 mm model

holes from Michelangelo's drill

artifacts from space carving

noise from laser scatter

Single scan of David's cornea

Mesh constructed from several scans

Hard problem #3: insuring safety for the statues

- energy deposition
 - not a problem in our case
- avoiding collisions
 - manual motion controls
 - automatic cutoff switches
 - one person serves as spotter
 - avoid time pressure
 - get enough sleep
- surviving collisions
 - pad the scan head

Hard problem #4: handling large datasets

- range images instead of polygon meshes
 - -z(u,v)
 - yields 18:1 lossless compression
 - multiresolution using (range) image pyramid
- multiresolution viewer for polygon meshes
 - 2 billion polygons
 - immediate launching
 - real-time frame rate when moving
 - progressive refinement when idle
 - compact representation
 - fast pre-processing

The **Qsplat** viewer

• hierarchy of bounding spheres with position, radius, normal vector, normal cone, color

- traversed recursively subject to time limit
- spheres displayed as splats

Side project #1: ultraviolet imaging

under white light

under ultraviolet light

Side project #2: architectural scanning

- Galleria dell'Accademia
- Cyra time-of-flight scanner
- 4mm model

Side project #3: light field acquisition

- a form of image-based rendering (IBR)
 - create new views by rebinning old views

advantages

- doesn't need a 3D model
- less computation than rendering a model
- rendering cost independent of scene complexity

disadvantages

- fixed lighting
- static scene geometry
- must stay outside convex hull of object

A light field is an array of images

An optically complex statue

Night (Medici Chapel)

Acquiring the light field

- natural eye level
- artificial illumination

7 light slabs, each 70cm x 70cm

each slab contained 56 x 56 images spaced 12.5mm apart

the camera was always aimed at the center of the statue

Statistics about the light field

- 392 x 56 images
- 1300 x 1000 pixels each
- 96 gigabytes (uncompressed)
- 35 hours of shooting (over 4 nights)
- also acquired a 0.29 mm 3D model of statue

Some obvious uses for these models

- unique views of the statues
- permanent archive
- virtual museums
- physical replicas
- 3D stock photography

Michelangelo's Pieta

handmade replica

Some not-so-obvious uses

- restoration record
- geometric calculations
- projection of images onto statues

Side project #4: an archeological jigsaw puzzle

- Il Plastico a model of ancient Rome
- made in the 1930's
- measures 60 feet on a side

the Roman census bureau

The Forma Urbis Romae: a map of ancient Rome

- carved circa 200 A.D.
- 60 wide x 45 feet high
- marble, 4 inches thick
- showed the entire city at 1:240
- single most important document about ancient Roman topography

its back wall still exists, and on it was hung...

Fragment #10g

Fragment #10g

Solving the jigsaw puzzle

• 1,163 fragments

- 200 identified
- 500 unidentified
- 400 unincised
- 15% of map remains
 - but strongly clustered
- available clues
 - fragment shape (2D or 3D)
 - incised patterns
 - marble veining
 - matches to ruins

uncrating...

positioning...

scanning...

aligning...

Fragment #642

3D model

color photograph

forma urbis romae

Future work

1. hardware

- scanner design
- scanning in tight spots
- tracking scanner position
- better calibration methodologies
- scanning uncooperative materials
- insuring safety for the statues

2. software

- automated view planning
- accurate, robust global alignment
- more sophisticated color processing
- handling large datasets
- filling holes

3. uses for these models

- permanent archive
- virtual museums
- physical replicas
- restoration record
- geometric calculations
- projection of images onto statues

4. digital archiving

- central versus distributed archiving
- insuring longevity for the archive
- authenticity, versioning, variants
- intellectual property rights
- permissions, distribution, payments
- robust 3D digital watermarking
- detecting violations, enforcement
- real-time viewing on low-cost PCs
- indexing, cataloguing, searching
- viewing, measuring, extracting data

Acknowledgements

Faculty and staff

Prof. Brian Curless John Gerth

Jelena Jovanovic Prof. Marc Levoy

Lisa Pacelle Domi Pitturo

Dr. Kari Pulli

Graduate students

Sean Anderson Barbara Caputo
James Davis Dave Koller

Lucas Pereira Szymon Rusinkiewicz

Jonathan Shade Marco Tarini

Daniel Wood

Undergraduates

Alana Chan Kathryn Chinn
Jeremy Ginsberg Matt Ginzton
Unnur Gretarsdottir Rahul Gupta
Wallace Huang Dana Katter
Ephraim Luft Dan Perkel
Semira Rahemtulla Alex Roetter
Joshua David Schroeder Maisie Tsui

David Weekly

In Florence

Dott.ssa Cristina Acidini Dott.ssa Franca Falletti Dott.ssa Licia Bertani Alessandra Marino

Matti Auvinen

In Rome

Prof. Eugenio La Rocca Dott.ssa Susanna Le Pera Dott.ssa Anna Somella Dott.ssa Laura Ferrea

In Pisa

Roberto Scopigno

Sponsors

Interval Research Paul G. Allen Foundation for the Arts

Stanford University

Equipment donors

Cyberware Cyra Technologies

Faro Technologies Intel Silicon Graphics Sony

3D Scanners

Project: http://graphics.stanford.edu/projects/mich/

Software: /software/qsplat/

3D models: /data/mich/