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Abstract

We present a novel method for generating performance-driven,
“hand-drawn” animation in real-time. Given an annotated set of
hand-drawn faces for various expressions, our algorithm performs
multi-way morphs to generate real-time animation that mimics the
expressions of a user. Our system consists of a vision-based track-
ing component and a rendering component. Together, they form
an animation system that can be used in a variety of applications,
including teleconferencing, multi-user virtual worlds, compressed
instructional videos, and consumer-oriented animation kits.

This paper describes our algorithms in detail and illustrates the po-
tential for this work in a teleconferencing application. Experience
with our implementation suggests that there are several advantages
to our hand-drawn characters over other alternatives: (1) flexibility
of animation style; (2) increased compression of expression infor-
mation; and (3) masking of errors made by the face tracking system
that are distracting in photorealistic animations.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation—Display Al-
gorithms; I.6.3 [Computer Graphics]: Methodology and Techniques—Interaction Tech-
niques; I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Tracking
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1 Introduction

The proliferation of video cameras as standard PC peripherals ex-
pands the opportunities for synergy between computer vision and
computer graphics. Many of the potential applications involve users
driving graphical avatars using vision-based techniques that track fa-
cial movement. Standard video teleconferencing, for example, could
be modified to display graphically generated faces instead of dis-
playing the camera image as is. Anonymous chat rooms could be
enhanced by avatars whose expressions are controlled by the par-
ticipants in real time. Similarly, users could drive avatars in virtual
worlds or gaming environments.

In this paper, we present an example of such a vision-driven
application—a novel method for automatic animation of non-
photorealistic (NPR) faces from example images. We assume we
are given, as input, a set of drawings for a given character with vari-
ous facial expressions,e.g., 6 different mouths, 4 pairs of eyes, and 1
overall head (Figure 1). To perform one-time training of the system
for a specific user, we take sample footage of the subject and man-
ually establish correspondences between the hand-drawn elements
and similar expressions on the subject’s face, as shown in Figure 2.
During execution, vision algorithms track the sender’s expressions,
which are distilled to a few parameters (we use ten 8-bit integers, or
80 bits, per frame) and sent to the renderer. Then, using various data
interpolation and warping techniques, the renderer sythesizes the
animated character from the appropriate pieces of artwork. Careful
engineering of the components allows the system to run in real time
on off-the-shelf PCs.

NPR animation of faces offers several advantages over attempts to
work with photorealistic images.

First, because an illustrated character represents an abstraction of
the real person, we as viewers do not expect a faithful replica of
the speaker. Use of abstraction invites our imaginations to fill in the
details [35, 54], as confirmed by our ability to watch hand-drawn car-
toons without difficulty. Representational inaccuracies, lower frame
rates, and lower temporal coherence—all of which might be un-
acceptable in realistic video—are perfectly acceptable with NPR
animation.

Second, relaxing the constraints of realism allows us to significantly
compress the information contained in an image. Our implemen-
tation, for example, requires only 10 parameters per frame to be
transmitted from the face tracker to the renderer. These 10 parame-
ters are already enough to generate convincing animations, but even
increasing the number of parameters to 100 would not make sig-
nificant demands on bandwidth for any network application. (The
Facial Action Coding System, for example, includes only 68 param-
eters [1].) When combined with speech technology, such significant
compression holds great promise for UI agents, instructional videos,
and the like. For example, an immense amount of “talking head”
video can be stored in the form of facial animation parameters plus
plain ASCII text and synthesized into an NPR facial animation and
voice track on the fly.

Another benefit of animated characters is that they allow the user
to mask his or her true appearance, while permitting expressions
and other visual cues to be perceived. This can have different value
based on the application. In teleconferencing and MUD applications,
it offers privacy. In a game engine, a player’s facial expressions
could be mapped onto the video game characters, thus enhancing
the fantasy of playing the character.

Finally, an animated figure has an engaging quality that is often more
fun than a live video clip. With the flexibility to render in many
artistic styles and media, users can choose from a wider range of
emotional contexts and appearances than with photorealistic images.

1.1 Related work

Graphical avatars driven by vision have a rich, varied history. We
discuss some of this history by examining work with synthetic facial
models, both 2D and 3D, photorealistic and otherwise.

In photorealistic 2D models, image blending or morphing is used
to render face images [6, 18, 26, 32, 36, 55]. A typical example of
this approach is a teleconferencing system [55] that stores a set of
image samples of a person’s face on both the transmitting and receiv-
ing computers. A face matching algorithm determines which faces
among the stored samples look most like the input face, and a blend
of these faces is displayed on the receiving side. The GeniMator
system [52] also uses motion capture data to drive nonphotorealistic
renderings, although the system is targeted more toward full-body
rather than facial animation. Their system isn’t targeted toward facial
animation, however.



Figure 1 A full set of hand-drawn images used by our system.

To drive 3D models, geometric model parameters must be recovered.
In particular, facial features are tracked in the incoming images and
then used to drive the movements of the 3D models, which are ren-
dered with well-established graphics techniques [2, 12, 51].

Although facial features can be tracked by motion capture techniques
to produce performance-driven animation systems [59, 42], systems
requiring special markers or devices are unlikely to be adopted by
the casual user. Using vision-based techniques, facial features can be
tracked non-invasively.Trackers can be based on deformable patches
[8, 14], edge or feature detectors [9, 26, 24, 43, 34, 53], and/or 3D
models [3, 17, 23, 45]. Face tracking is currently an active area
of research: robust, full-featured, real-time face tracking remains
elusive. In this paper, we use a simple, color-based feature tracker
(Section 2) that runs in real time.

On the rendering side, 3D facial animation is one of the most actively
studied areas of computer graphics [5, 10, 11, 21, 27, 28, 30, 31, 41,
43, 44, 46, 48, 58, 61]. Generally, these techniques store a 3D mesh
model of the face on which texture is overlaid. Movement of the
mesh vertices, sometimes accompanied by texture changes, creates
variations in expression. Truly photorealistic animation of faces,
however, remains an unsolved challenge that we avoid altogether
using NPR animations.

Non-photorealistic techniques come in several flavors. Haeberli [22]
introduced the idea of using a reference image’s pixel values to create
interesting NPR effects. This idea has led to some beautiful imita-
tions of artistic styles, such as pen and ink [50] and watercolor [15].
However, such algorithms are computationally expensive, limited
to a particular artistic effect, and lack frame-to-frame coherence—a
quality that is essential for animation. A totally different style of
non-photorealistic rendering is to use cartoon characters, such as in
Comic Chat [25]. This is most similar in spirit to our work, in that
it uses combinations of hand-drawn artwork. However, we are ren-
dering sequences of moving images, whereas the Comic Chat work
concentrated on the layout of static scenes.

Inspired by work that shows how a wide range of faces (includ-
ing variations in gender and age) can be synthesized by morphing
among a small set of images [49], we rely on the Beier and Neely
morph [4], as extended by Leeet al. [29] to blend multiple input
images. Because we use morphing, we avoid several disadvantages
of other NPR techniques: rendering performance is dependent only
on the morphing process and independent of the artistic style of

Figure 2 Sample correspondences between hand-drawn eyes and mouths and
real-face equivalents. Two different users with two different corresponding sets
of artwork are shown.

the drawings. Morphing can also avoid some frame-to-frame jitter
caused by a stochastic rendering process. Lastly, morphing can be
applied to drawing styles of any visual complexity.

Ultimately, our technique is akin to image-based rendering (IBR) ap-
proaches for non-photorealistic rendering applications. Litwinowicz
and Williams [33] explored an image-based approach to NPR an-
imation using rotoscoped lines over an image to warp it into new
positions for each frame. Woodet al. [60] used hand-drawn art-
work combined with a mobile camera to design moving background
scenery for cel animation. Corrˆeaet al.[13] warped hand-drawn art-
work wrapped over 3D models to attach complex textures to hand-
drawn foreground characters in cel animation. Our work extends
these ideas to 2D hand-drawn character animation, where we morph
among many images to capture the full texture variation that can be
seen across different facial expressions.

1.2 Approach

To construct a face, our system requires an initial set of hand-drawn
images to blend together.An artist draws this set, divided into mouth,
eyes, and background head images, all of which can be warped and
blended independently. All drawings are annotated with morph con-
trol lines [4]. The control lines mark certain facial features, as illus-
trated in Figure 3, allowing the rendering process to morph artwork
together without ghosting.

The hand-drawn images should span the range of visually distin-
guishable expressions and lip poses. In previous research on real-
istic facial rendering, only nineteen mouth images were found to
be necessary for lip reading [39], and five eye images for a believ-
able eye blink [16]. Since our goal is not to produce animations of
the quality necessary for lip reading, we are able to use far fewer
than this ideal number of images. Additionally, the morphing pro-
cess generates many of the in-between images that would normally
have to be drawn by hand. We found that just six mouth and four
eye images are enough to get adequate results in a teleconferencing
environment.

A training step requires manually associating each eye and mouth ex-
pression from the set of artwork with an equivalent expression from
a video frame (Figure 2). This correspondence allows the system to



Figure 3 This image shows both eye and mouth regions with feathered masks.
The purple lines are the control lines used to guide the morphing of these
images.

discern which tracked measurements of the real person’s face (as
described in the next section) best match each hand-drawn image.

Training is required only once for a given user and set of artwork.
After this initialization, a person’s facial features are tracked in real
time. For a teleconferencing application, these features are transmit-
ted to a receiving computer. They are then used to compute a good
blend of artwork to reconstruct a synthetic face.

As an additional feature, both our tracker and renderer are con-
structed to work with MPEG-4 Face Animation Parameters (FAPs)
[1, 37, 38]. Therefore, our renderer could be used, with minimal
changes, as a non-photorealistic renderer for MPEG-4 streams.

Section 2 describes our tracker in more detail. Section 3 describes our
renderer. Section 4 describes some resulting animations. Section 5
concludes with some areas for future research.

2 Tracking

An ideal tracking system would accurately track all of the various
deformations of the face in real-time, and allow us to pick a fixed set
of parameters that would drive the renderer. Excellent face trackers
exist (see Toyama [57] for a brief survey), but none are yet perfect.
For the time being, we choose a passive, vision-based implementa-
tion that runs in real time and is non-intrusive (i.e., it does not require
the user to wear special devices, cosmetics, or markers).

Our particular implementation takes a frame of video and extracts
ten scalar quantities, each encoded as an 8-bit integer:

• Thexandyvalues of the midpoint of the line segment` connecting
the two pupils (2).

• The angle of̀ with respect to the horizontal axis (1).

• The distance between the upper and lower eyelids of each eye (2).

Figure 4 A frame of video tracked by our system. The ten scalar quantities
sent to the renderer are easily derived from the features detected by our tracker.

• The height of each eyebrow relative to the pupil (2).

• The distance between the left and right corners of the mouth (1).

• The height of the upper and lower lips, relative to the mouth center
(2).

The first 3 scalars represent the head pose, while the middle 4 are used
for eyes, and the final 3 for the mouth. A frame of video indicating
the features tracked by our system is shown in Figure 4.

The tracking algorithms for all features rely on color information,
which is relatively inexpensive to compute and somewhat resistant
to illumination variations.

First, the tracker tags all pixels within a region of interest according
to the output of a color-based pupil classifier. Then, for each tagged
pixel, a correlation-based template match [19] is performed against a
previously stored picture of the user’s eye (if no pixels are tagged by
the classifier, the immediate neighborhood of the previous frame’s
pupil location is used). If the highest score from the correlation
matcher falls below an empirically determined threshold, the eye
is assumed to be closed, in which case we use the previous pupil
location.

Once the pupils are found, we search for the eyebrows. For all points
above the pupil (within a certain range) we perform a 1D template
match [9] against a stored cross section of the eyebrow, and choose
the location with the highest correlation.

To find the mouth, the tracker first tags each pixel within a se-
lected region according to a lip color classifier. Next, simple image-
processing operations are applied to this set of tagged pixels to
remove noise and eliminate stray pixels, and then the largest 4-
connected blob is found. Finally, a many-sided polygon is fitted to



this blob, using a technique similar to Toyama’s radial-spanning blob
technique [56]. The mouth measurements are taken from this fitting
polygon.

Once the pupils, eyebrows, and mouth have been detected, most of
the 10 scalar values are easily determined. The distance between the
upper and lower eyelids is computed simply by searching for the
first pixel above and below the pupil that has a luminance below
some threshold.

The performance of the tracker is reasonable for driving the ren-
derer in real time. There are some remaining problems, however.
The system requires a manual, per-user initialization to determine
eye, eyebrow, and lip colors. The tracker is limited to a range be-
tween 0.5 and 1.5 meters from the camera, and to an approximately
30 degree rotation from an upright, frontally oriented face (about all
3 axes). The tracker assumes reasonable, fixed illumination. From
time to time, it mistracks, requiring a combination of user movement
and manual reinitialization to correct. And finally, some subjects do
not exhibit sufficient color contrast between skin and lip color for
the tracker to work. All of these problems need to be handled for a
more robust system, but many of these issues remain open problems
in the vision-based face tracking community. We anticipate that fu-
ture research will alleviate these difficulties. For the time being, our
tracker is sufficient to drive the renderer in a stably illuminated office
environment.

3 Rendering

The rendering stage runs after the tracking stage (possibly on a sep-
arate machine, depending on the application). It takes the 10 tracked
parameters as input and renders a synthetic animated character that
mimics the user’s expressions. The renderer can be divided into two
components:expression mapping, which determines which pieces of
artwork should be used in creating the final animated character for a
given frame, and in what proportions; andwarping, which combines
the various pieces of artwork together using feathered masks.

3.1 Expression mapping

The problem of determining the best blend of artwork needed to
mimic a given expression is really one of scattered data interpolation
[40]. For now, let us consider how expression mapping is done for
the mouth; the eyes are handled similarly.

Suppose we haven pieces of artwork for the mouth in different
expressionsM1, . . . , Mn. The training data provides an association
between each mouth expressionMi and a

k-dimensionaltraining point mi , whose components are the values
of thek tracked parameters associated with that mouth. (Recall that
for the sample art set shown in Figure 1,n = 6, and in our imple-
mentation,k = 3 for the mouths andk = 4 for the eyes.)

Our problem is: Given some new setm of tracked parameters for
the mouth, find a set of weightsα1, . . . ,αn such that

∑
i αi = 1 and∥

∥m − ∑
i αimi

∥
∥ is minimized (or at least small). We can then use

these weightsαi to create the new expression by morphing together
an appropriately weighted combination of the original artwork, as
described in Section 3.2.

Our solution to this scattered data interpolation problem must be fast,
yet accurate enough to faithfully reproduce the speaker’s expression.
Furthermore, for our animation to be smooth, two pointsm and
m′ that lie close to each other should produce expressions that are
similar. On the other hand, there is a tradeoff between accuracy and
visual clarity: the more pieces of artwork we blend together, the
blurrier the imagery in the resulting animation.

Figure 5 This image shows a sample Delaunay triangulation for mouth inter-
polations. Note the interpolated mouth inside one of the triangles.

A straightforward approach to this problem is to compute ak-
dimensional Delaunay triangulation [20] among the training points
mi . Then, for a given new pointm, locate that point in the triangu-
lation and use the barycentric coordinates of the simplex it lies in
as the morphing weights. These weights could then be applied to
the drawings corresponding to the vertices of that simplex, as in the
polymorph method described by Leeet al. [29]. This approach has
the advantage that it provides smooth transitions between nearby ex-
pressions. However, if the number of tracked parametersk is large,
the resulting morph may be blurry.

Our solution is to use the same Delaunay triangulation approach,
but in a lower-dimensional space. We use a principal component
analysis (PCA) [7] to choose thej largest eigenvectors that span
thek-dimensional space created by the training points. We project
the training set into thisj-dimensional space, as well as the query
pointm. In practice, we usej = 2, which appears to provide a good
tradeoff between expression accuracy and image clarity. Thus, we
merely locate the projection ofm in its 2-D triangulation (Figure 5)
and use the barycentric coordinates of the triangle vertices as morph
weights for the three corresponding drawings (Figure 6). Projected
pointsm falling outside of any Delaunay triangle are mapped to a
point on the convex hull of the training points and associated with
the Delaunay triangle that abuts that region of the convex hull. In
our experience, if the initial correspondences are properly set up,
most points projecting outside of the convex hull lie close enough
to the hull that this method works well.

In our implementation, we find the PCA of the training set by doing
a singular value decomposition of the matrix of training points [47].
The two dominant eigenvectors, as well as the resulting Delaunay
triangulation, are saved to map feature points at runtime.

3.2 Morphing

To draw the face, we first render the warped versions of the eye and
mouth regions of the face. Next, the head image, which contains
“soft” alpha values in the eye and mouth areas to provide feathered
masking, is placed on top of the rendered eyes and mouth. More
than one such head image can be loaded, and the program will cycle
through them at each frame. For the animations in the style of Bill
Plympton, we use two different overall heads to achieve a shimmer-
ing quality. Finally, we apply a translation and rotation to the image
in order to get the head tilt.

We describe here the process of creating a single, new mouth based
on an expression mapping. (To create the eyes, we use an identical
procedure.) Recall that the morphing module receives weights cor-
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Figure 6 The three mouths on the left are warped and then blended to make the mouth on the right.

responding to the barycentric coordinates of the projected tracked
parameters in a triangle whose corners correspond to three orig-
inal mouth drawings in the training set. To create a new mouth,
we use three-way Beier-Neely morphing [4], as generalized by
Lee et al. [29] for polymorphs—morphs between more than two
source images.

Consider the triangle formed by the three mouths. To create a new
intermediate mouth, we first warp the mouths at the corners, yielding
three mouths whose features align. Next we composite the three
warped mouths using alpha blending to render the new mouth image.
The blending weights are given by the aforementioned barycentric
coordinates.

We employ two strategies for accelerating the morph.

First, we sample the warps over the vertices of a 30×30 quadmesh,
represented as triangle strips, and use texture mapping hardware
to render triangles rather than computing the warp at every pixel.
Since many common PC graphics boards now come with texture
mapping and alpha blending acceleration, we use this hardware to
our advantage.

Second, the actual 3-way warp function is not evaluated at each
mesh vertex. Instead, we approximate the correct warp function by
summing together two 2-way warps. Consider the 3-way warp func-
tion WABC(x, y,αB,αC), which returns a vector indicating how pixel
(x, y) in imageA moves when warping it toward imageB by a frac-
tion αB and toward imageC by a fractionαC. Now, consider the
2-way warpWAB(x, y,α), returning a vector indicating where the
pixel at location (x, y) in imageA moves when warping itα of
the way toward imageB. Our approximation of the 3-way warp
is WABC(x, y,αB,αC) ≈ WAB(x, y,αB) + WAC(x, y,αC). The warp
weightsαB andαC used are simply the barycentric coordinates cor-
responding to the pointsAandB as given above. To make evaluation
of the approximate warps fast, we precompute the 2-way warps at a
number of discrete values ofα and interpolate between these stored
functions.

A more accurate method would be to sample the actual warp function
at various points inside the triangle and interpolate these precom-
puted functions, but this would require sampling a 2-D function
rather than a 1D function. In our work, we did not notice much dif-
ference between our approximation and the real warp, so we did not
explore this method.

4 Implementation and observations

We implemented our algorithms on a 450MHz Pentium III processor,
equipped with a high-end PC graphics card. Table 1 shows average
running times rounded to the nearest millisecond for the various
stages in our process. The slowest component is the facial feature
tracking. Nonetheless, we can track and render simultaneously on
the same computer at 25 fps. Since our video capture board can only
grab frames at 15 fps, this leaves CPU cycles to spare.

Because the tracker produces 10 8-bit integers per frame, our current

Stage Time (ms)
Copy video frame from camera 3
Track facial features 29
Project into feature space < 0.1
Render mouths, eyes, and head 8
Total 40

Table 1 Running times (450MHz Pentium III) for various stages of the pipeline.

bandwidth requirements are 2400 baud for 30 frames per second. At
10 fps, the bandwidth requirement drops to a miserly 800 baud.
Taking advantage of temporal coherence in the tracked features is
likely to yield even greater compression.

Five different styles of imagery were used to demonstrate the flexi-
bility of the rendering scheme. Of these, four were generated from
hand-drawn artwork in the manner described in Section 3 (Monster,
Blue, Wavy, andStraight). These are illustrated in Figure 7. The last
style (Photoreal), which appears on the video only, was created from
actual video of one of the subjects herself based on images acquired
prior to run time.

We tried rendering at 10, 15, and 30 frames per second. The an-
imation at 30 fps was done off-line, using a previously digitized
video stream, and rendered according to the methods described in
Section 3. The animations at lower speeds take averages of tracked
parameters collected at 30Hz over 3 (or 2) frames and render new
images at 10 (or 15) fps.

Sample frames from the conversations can be seen in Figure 7. The
characters shown exhibit a variety of expressions and a variety of
mouth, eye, and head poses.

After using the system, we have made the following observations:

• While the output is engaging, the rendering does not achieve the
quality of hand-drawn animation. This is not surprising, since our
frames are generated automatically, without run-time input from a
professional animator. It suggests that our technique in its current
form is best suited for applications in which professional quality
animation is not the goal.

• The animations rendered at 30 fps appeared jittery and anxious,
whereas animations rendered at 10 and 15 fps reduced the vis-
ible jitter considerably. While this is partly due to noise in the
tracking process, it may also be that the quality of animations are
sometimes improved at a lower frame rate [54].

• In spite of the jitter, the 30 fps animation reproduces visual speech
articulations more clearly, undoubtedly because of the high speed
of mouth movement during speech.

• Apparent eye-contact is made with all of the characters. This is
an advantage over standard video teleconferencing in which lack
of eye contact is often cited as a major drawback.

• The four hand-drawn animations appear more compelling than
thePhotorealstyle.



Figure 7 Snapshots of our system, shown as pairs of matching video and animated frames. Shown are a variety of artistic styles – from top to bottom,Straight,
Blue, Wavy, andMonster. The system conveys the mouths and eyes in many configurations, as well as a variety of expressions such as happy, neutral, surprised, and
aggressive.



This last point is interesting.Although thePhotorealanimation more
faithfully mimics a real human face, the hand-drawn animations are
nevertheless perceived as more compelling. In particular, the mouth
movements in thePhotorealstyle appear erratic and affected. Fre-
quently, artifacts in the morphing process become apparent as one
mouth appears to dissolve, rather than morph, into another. In con-
trast, although the hand-drawn animation exhibits the same technical
problems, it appears more natural. We hypothesize that as observers,
we are more forgiving of cartoon characters, whose abstraction and
imperfection we readily accept; on the other hand, we expect abso-
lute fidelity of photorealistic video and notice even minor departures
from reality.

Finally, we discovered that different observers liked different an-
imation styles. This highlights the flexibility of our algorithm for
animation—a library of various hand-drawn faces (requiring only
a few drawings per face) would allow users to pick and choose the
style according to their preferences.

5 Discussion and future work

We have demonstrated how a small set of hand-drawn artwork, in
conjunction with a small amount of facial tracking data, can be used
to create a real-time performance-driven animation system in which
animations effectively mimic the expressions and facial actions of a
human speaker. Our system works in real time using a combination
of a fast feature tracker and a fast novel morphing technique that
paints the appropriate eyes and mouth onto a head. One component
of this work is a novel face expression interpolation algorithm that
projects tracking data onto a two-dimensional subspace, and then
uses a Delaunay triangulation to find the three nearest expressions
and to compute their blending weights.

Our system is one of the first to apply image-based rendering tech-
niques to a collection of hand-drawn artwork to produce facial an-
imations. Our framework has several advantages. It can accommo-
date a variety of artistic styles and media, limited only by the possible
styles of the input artwork. It accommodates a variety of animation
styles,e.g., different frame rates and different amounts of flicker or
blending. It is able to compress facial expression information to a
handful of integers per frame. Finally, by relying on hand-drawn an-
imations, it avoids the primary difficulty with photorealistic avatars,
namely, that the rendered animations appear unnatural in some way.

There are several ways in which we plan to improve and extend
our existing system. First, we plan to add the capability to both
track and render additional parameters. Changes in head pose are
essential for transmitting gestures such as nodding and shaking of
the head. Facial creases and wrinkles will add to the expressivity of
the renderings. It would also be interesting to explore using different
animation styles at run-time based on the expressive content of the
frame being rendered. For example, when the speaker has highly
raised eyebrows indicating an extreme emotional state, random jitter
and reddish shifts in color might be introduced to the rendering
process to convey an additional intensity.

By shifting the focus of image-based rendering away from photo-
realistic reproduction towards the goal of expressive animation, we
have opened up a wide range of new expressive possibilities. For ex-
ample, we could use avatars without any facesper se, e.g., a scene in
which weather reflects the speaker’s expression. A cloudless sunny
sky could correspond to a smile, while a dark overcast or stormy sky
could reflect a frown.

We believe that the combination of real-time feature tracking,
performance-driven animation, and non-photorealistic rendering
can form the basis for a range of exciting applications. We imagine
teleconferencing applications and multi-user virtual worlds in which
users can put on graphical masks that transmit their expressions

without revealing identity. Another possibility is for video games, in
which players could puppeteer the expressions that appear on their
characters. A final application might be home animation kits, where
children could shoot, edit, and replay animations of their favorite
cartoon characters, driven by their own faces in real time.
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