Graphics Hardware (2002), pp. 1-11
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

Efficient Partitioning of Fragment Shaders for Multipass

Rendering on Programmable Graphics Hardware

Eric Chan Ren Ng Pradeep Sen Kekoa Proudfoot ~ Pat Hanrahan

Stanford University '

Abstract

Real-time programmable graphics hardware has resource constraints that prevent complex shaders from rendering
in a single pass. One way to virtualize these resources is to partition shading computations into multiple passes,
each of which satisfies the given constraints. Many such partitions exist for a shader, but it is important to find
one that renders efficiently. We present Recursive Dominator Split (RDS), a polynomial-time algorithm that uses
a cost model to find near-optimal partitions of arbitrarily complex shaders. Using a simulator, we analyze parti-
tions for architectures with different resource constraints and show that RDS performs well on different graphics
architectures. We also demonstrate that shader partitions computed by RDS can run efficiently on programmable
graphics hardware available today.

Categories and Subject Descriptors: 1.3.1 [Computer Graphics]: Graphics processors; G.2.2 [Mathematics of Com-
puting]: Graph Algorithms, Trees

Keywords: programmable graphics hardware, multipass rendering, graph partitioning algorithms, shading lan-

guages

1. Introduction

Real-time programmable shading using mainstream graph-
ics hardware has been an active area of research in recent
years. Earlier generations of graphics hardware provided
fixed-function pipelines designed for rendering texture-
mapped triangles. In contrast, commodity graphics chips
today support complex, user-programmable shading while
maintaining high performance. This flexibility has encour-
aged the development of real-time shading languages that
target these chips.

Shading languages evolved from the early work of Cook>
and Perlin’4, The RenderMan Shading Language is com-
monly used today for movie production-quality shading in
software rendering systems8. Olano and Lastra described
pfman, the first shading language that targets graphics hard-
ware for real-time rendering!2. Peercy et al. proposed a
method for mapping shading languages to multiple ren-
dering passes on non-programmable commaodity graphics
hardwarel3. Proudfoot et al. described a system that maps a
shading language to programmable graphics hardware using

1 {ericchan, renng, psen, kekoa, hanrahan} @graphics.stanford.edu

(© The Eurographics Association 2002.

a retargetable compiler back end?®. These last three systems
are able to render high-quality shaders in real-time.
Graphics chips today provide user-programmable
pipelinest®. 2, These longer pipelines accomodate larger
shaders with more sophisticated operations. However, this
hardware still has a limited set of resources. Examples of
such limits are:
o A fixed memory size for instruction storage, i.e. a maxi-
mum number of instructions.
e A fixed number of active textures, texture accesses, and
texture dependencies.
e A fixed number of registers for storing temporary values.
e A fixed number of interpolants for storing vertex-to-
fragment values.
With shading languages, it is easy to write large shaders that
exhaust available resources and cannot be mapped to a sin-
gle rendering pass. The hardware can be virtualized by par-
titioning the shader into multiple passes, where each pass is
a subset of the entire computation that satisfies all resource
constraints. Many such partitions exist, and it is desirable to
find the one that renders most efficiently. We call this the
Multipass Partitioning Problem (MPP).
Peercy et al. solved this problem for non-programmable
graphics hardware by using dynamic programming. Their

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

system interally represents shading computations as directed
acyclic graphs (DAGSs). They first decompose a DAG into
trees, then perform tree-matching to find a minimum-cost set
of passes. This approach works well for non-programmable
hardware, which supports only a small set of operations
per pass. Proudfoot et al. observed, however, that tree-
matching techniques are inadequate for mapping DAGs to
programmable hardware. To address this issue, they devel-
oped a back end for their shading system specifically to
target this hardware. However, they did not solve MPP for
programmable hardware, so their back end can only handle
shaders that map to a single rendering pass.

In this paper, we present Recursive Dominator Split
(RDS), an algorithm that solves MPP for programmable
graphics hardware. RDS uses dominator trees, a heuris-
tic search, and a greedy merging strategy to approximate
minimum-cost partitions. Using a simulator, we show that
RDS finds partitions within 5% of optimal for different
shaders on architectures with different resource constraints.
We also demonstrate how RDS can be used with an existing
shading system to partition and render a multipass shader on
a programmable graphics card.

2. Overview

We designed RDS in the context of the Stanford Real-Time
Programmable Shading System?>. This system is illustrated
in Figure 1. A shader enters the system as source code writ-
ten in a high-level language. The compiler front end parses
this code and generates an intermediate pipeline program
split by computation frequency. A compiler back end maps
the pipeline program to hardware rendering passes. In this
paper we discuss back end modules that map fragment com-
putations to multiple passes. Each back end performs in-
struction selection on the fragment portion of the pipeline
program and builds a DAG of hardware-specific fragment
operations. If the back end cannot map the DAG to a sin-
gle rendering pass, it calls RDS to partition the DAG into
multiple passes.

There are many possible partitions, so RDS uses a cost
model to evaluate them. The model reflects performance
characteristics of the target architecture, such as the cost of
operations and per-pass overhead. The goal is to find the op-
timal solution to MPP, i.e. a partition with the minimum cost.

MPP is related to some well-studied graph partition-
ing and NP-optimization problems. However, MPP is suf-
ficiently different that, as far as we have been able to deter-
mine, existing techniques cannot be easily adapted to solve
it. For example, the problem of load balancing parallel ap-
plications can be formulated in terms of finding a balanced
subdivision of a graph4, but algorithms to solve this problem
are not immediately applicable to MPP. This is because in
the load balancing case, setting the number of desired graph
cuts is fixed, whereas in MPP it is part of the solution. More
fundamentally, graph partitioning algorithms tend to assume
that partitions are disjoint, whereas MPP allows partitions
with overlapping subregions. In fact, MPP solutions almost

shading language —
shader —
compiler front end
—Y

intermediate -
representation —

DAG of hardware-
specific operations

multiple passes:
each pass satisfies
hardware constraints

multiple passes: oto01] [1100 1
h 1
final hardware 01911 (09005 wee |01101

01010 10110 10010
assembly code 11101

10101 01100

hardware
GPU + CPU

Figure 1: System block diagram. The compiler front end converts a
shader from shading language source code to an intermediate rep-
resentation. The compiler back end performs instruction selection to
build a DAG of hardware-specific operations. If the DAG is too large
to be mapped to a single pass, RDS partitions the DAG into multiple
passes. The compiler then generates assembly code for each of these
passes and sends them to the hardware for rendering.

always contain overlapping regions, which correspond to re-

computed operations.

Our solution to MPP is based on a number of architectural
assumptions. We assume that architectures support only one
4-component output per pass. There may be many outstand-
ing values at a time, but the framebuffer can only store one
of them. Hence, intermediate results are usually preserved
by copying the framebuffer contents to texture memory. Al-
ternatively, render-to-texture can be used to avoid this expen-
sive framebuffer copy. In either case, we say that intermedi-
ate results are saved. These values are restored in subsequent
rendering passes via texture fetches. This save-and-restore
technique relies on the following two assumptions:

e Architectures preserve intermediate values properly. For
example, if the architecture uses floating point data types,
then it must also support floating point buffers and tex-
tures to preserve high-precision intermediate results.

e Given b, the branching factor of the DAG, architectures
support at least b + 1 operations, b + 1 texture units, b
registers, 1 vertex interpolant, and 1 level of texture de-
pendency per pass. This is the minimum set of resources
required to support an arbitrary DAG via multipass ren-
dering. For example, b = 3 if hardware instructions can
have at most 3 operands.

Note that even with these assumptions, multipass render-
ing is an imperfect virtualization technique. It does not pro-

(© The Eurographics Association 2002.

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

®

duce correct results for overlapping transparent geometry.
This is a fundamental limitation of multipass rendering that
could be overcome with changes to hardware°,

Multipass rendering creates a per-pass overhead cost. This
overhead arises from re-execution of the graphics pipeline
(including transformation and rasterization of geometry),
saving the results of a pass to texture memory, and restoring
these results in later passes. Furthermore, extra passes may
require more bounding box-sized or viewport-sized textures
for saving intermediate results; these large textures consume
GPU texture memory.

For these reasons, RDS attempts primarily to minimize
the number of passes. Given a DAG of fragment operations,
RDS first identifies nodes that are multiply-referenced. RDS
then searches over these nodes and uses a heuristic to decide
if the subgraphs rooted at these nodes should be saved in a
separate pass or recomputed. It packs the remaining nodes
into as few passes as possible using a greedy bottom-up
merging algorithm. RDS optimizes both of these steps by
using a dominator tree to group sufficiently small regions of
the DAG together into a single pass. Minimizing the number
of passes in this manner helps to minimize the overall cost.

3. Algorithms

We begin this section by formulating our problem and de-
scribing a simple and optimal solution to MPP. However,
in practice this algorithm is intractable because it exhaus-
tively searches a large space of possible partitions. We then
identify the key issues of MPP by studying the structure of
the problem. Understanding these issues helps us closely
approximate the minimum cost without having to search
over the whole space of partitions. Finally, we propose an
O(n - g(n)) algorithm called RDS;, and an O(n? - g(n))
algorithm called RDS, where g(n) is the cost of checking if
a set of n nodes can be mapped to one pass.

3.1. Preliminaries

We can represent the space of possible partitions by marking
nodes to indicate pass boundaries. More precisely, we mark a
node if and only if the node is the root of a pass. The number
of marked nodes equals the number of passes in the partition.
An example is shown in Figure 2.

The subregion of a node N is the set of nodes including
N and recursively all unmarked children of N. For example,
the subregion of node Fin Figure 2bis {F,G,I, K, L}. A
subregion is valid if it can be mapped to one pass; otherwise
it is invalid.

We now describe a simple and optimal solution to MPP:
examine the entire space of partitions, evaluate the cost of
each partition, and keep the one with the lowest cost. Sup-
pose there are n nodes in the DAG. Since each node may
be marked or unmarked, there are 2™ unique ways to mark
the nodes; each of these yields a possible partition. This ex-
haustive algorithm is clearly intractable because the partition
space grows exponentially with the size of the DAG.

(© The Eurographics Association 2002.

d) (b) (c)

Figure 2: A DAG with root A is shown in (a). We mark nodes to in-
dicate the tops of passes. For example, by marking nodes A, B, and
H, we split the DAG into three passes as shown in (b). On the other
hand, by marking nodes A and E, we split the DAG into two passes
as shown in (c), which causes nodes H and J to be recomputed.
Marked nodes are shaded, and recomputed nodes are squares.

3.2. Greedy Bottom-Up Merging

Since searching exhaustively is intractable, we propose a
greedy bottom-up algorithm that merges nodes into as few
passes as possible. We make a postorder traversal of the
DAG that applies the following steps at each node N:

Merge(node N)

1 k < the number of kids of N

2 for d < kdowntoO

3 dofor each subset S of N’s kids with d kids

4 do try to merge IV with all subregions of the kids of .S
5 if exactly one subset can be merged with V

6 then pick that subset and stop

7 else if two or more subsets can be merged with NV
8 then use MERGE heuristic to pick one

The algorithm is greedy in the sense that it starts from
the largest possible merge and only considers progressively
smaller subsets when necessary. Sometimes, there is more
than one subset of a given size that can be merged. For
example, suppose a node has two children and that it can
be merged with either the left child or the right child, but
not both. We then use a hardware-specific heuristic called
MERGE to choose one of two possible merges. In princi-
ple, MERGE should pick the subset of children that uses the
fewest resources, since this leaves the most room for addi-
tional nodes to be merged with this pass. Sometimes it is
unclear which pass consumes the fewest resources. This can
occur, for example, if one pass uses 5 interpolants and 3 tex-
tures, but another pass uses 3 interpolants and 5 textures. Our
implementation of MERGE breaks these ties arbitrarily.

3.3. Save vs. Recompute

Some nodes in the DAG are referenced more than once; we
call these multiply-referenced (MR) nodes. Subregions of
these nodes may be saved or recomputed. For example, the
subregion of MR node H is saved in Figure 2b but recom-
puted in Figure 2c. Always saving is undesirable because
each save creates an additional pass. However, always re-

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

computing is also undesirable, since it could lead to an ex-
plosion in the number of recomputed operations. It is unclear
which choice will lead eventually to the best partition. Intu-
itively, we should save if the subregion is “full” and recom-
pute if the subregion is “empty” relative to the architecture’s
available resources.

Both saving and recomputing involve a cost, but if we can
map all of the references to a MR node to a single pass, then
we can avoid these costs. We can detect these cases by iden-
tifying the immediate dominators of MR nodes. Intuitively,
the immediate dominator B of MR node A is the node “clos-
est” to A such that all the references of A go through B1. If
subregion(B) and subregion(A) can be mapped together to
a single pass, then we can avoid the save vs. recompute de-
cision for node A.

Since we are interested in MR nodes and their immedi-
ate dominators, we would like to store them in a convenient
data structure. We use a data structure that we call a par-
tial dominator tree (PDT), which in turn is constructed from
the dominator tree of a DAG. In a dominator tree, the parent
of each node is its immediate dominator. This structure is a
tree as opposed to a DAG because each node except the root
has a unique immediate dominator. A PDT is obtained from
a dominator tree by discarding all nodes except MR nodes,
their immediate dominators, and the root. This construction
is illustrated in Figure 3.

® ®
(B) ®
©® € ® ©
OJOOAGRG © ®
O ©
(b) (c)

Figure 3: A DAG is shown in (a) with multiply-referenced nodes
drawn shaded. The dominator tree for this DAG is shown in (b).
Node B is the parent and therefore the immediate dominator of H.
Similarly, E is the immediate dominator of both G and K. The par-
tial dominator tree in (c) is obtained from the tree in (b) by keep-
ing only the multiply-referenced nodes, their immediate dominators,
and the root.

3.4. RDS;,

In this section, we describe an algorithm called RDS;,. We
apply the ideas of the previous section by mapping multiply-
referenced subregions and the subregions of their immediate
dominators to the same pass. Since this isn’t always possible,
we break the problem down by recursively subdividing the
DAG into smaller regions using the PDT. When necessary,
we perform greedy bottom-up merging within these regions
and evaluate save vs. recompute decisions using a heuristic.

Pseudocode for the algorithm is shown below.

RDS), (DAG D)
P’ « the root node of the PDT of D
Subdivide (P’)

Subdivide(PDT node T")
1 if subregion(T) is invalid
2 then L « the list of children of T ordered to maintain

DAG dependencies
for each element K’ of L
do Subdivide(K”)

if K isa MR node
then use RECOMPUTE heuristic to decide
if K should be saved or recomputed

apply greeding merging to subregion(7")

©O© oo ~NO O W

In this pseudocode, we use the following convention to
describe the relationship between nodes in the DAG D and
itsPDT P.If N € Dand N € P, we refer to the node in D
as N and refer to the node in P as N”. In other words, NV and
N’ represent the same node, but in different structures. This
distinction is subtle but important. For example, the children
of NV are nodes in D, whereas the children of N’ are nodes
in P.

The RDS;, algorithm takes an unmarked DAG and calls
Subdivide to partition it. The Subdivide procedure marks
nodes to indicate pass boundaries as described in Section
3.1. The algorithm first checks at each node if its subregion
is small enough to map to one pass (line 1). If this check
fails, the problem is broken down into recursive subdivisions
of each child (line 5). We subdivide children in an order that
maintains DAG dependencies, which is the same as the order
given by a postorder traversal of the DAG. For example, in
the PDT shown in Figure 3c, nodes H and E are both chil-
dren of B. Since H always appears before E in a postorder
traversal of the DAG shown in Figure 3a, we subdivide H
first, then E.

After subdividing each child that is multiply-referenced,
we use a heuristic called RECOMPUTE to decide if that
child’s subregion should be saved or recomputed (lines 6-
8); saved children are marked. In principle, subregions that
use few resources should be recomputed, whereas those that
consume most of the available resources should be saved.
We implement RECOMPUTE by choosing to recompute a
set of nodes if and only if the consumption of each resource
is less than one-half the maximum allowed. However, this
heuristic can be replaced with one that is more specific to a
given architecture.

Finally, after all children have been subdivided, we apply
the greedy merging algorithm described in Section 3.2 to the
current subregion (line 9). During this step, nodes that can-
not be merged with their parents are marked.

The Subdivide procedure makes only one traversal
through the PDT, but at each node it checks the validity of its
subregion. If g(n) is the cost of this check, then the overall
running time of RDS, is O(n - g(n)), where n is the size

(© The Eurographics Association 2002.

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

of the DAG. In our implementation, the target architecture’s
compiler makes each validity check by generating code and
allocating resources for the subregion. This can be done in
linear time, so our implementation of RDS;, runs in O(n?)
time.

3.5. RDS

RDS;, uses a simple heuristic to make save vs. recompute
decisions. However, correct decisions are difficult to make
because they are interdependent. For example, suppose we
have two MR nodes A and B such that A depends on B. If
we save B to a separate pass, then the subregion of A be-
comes smaller and may be worth recomputing. On the other
hand, if we recompute B, then the subregion of A becomes
larger and may be worth saving. It is difficult for a simple
heuristic to predict which of these two choices will eventu-
ally lead to the minimum-cost partition.

One way to address this problem is to search over the MR
nodes exhaustively and try all possible save/recompute con-
figurations. However, this increases the overall running time
by a factor of 2*, where k& is the number of MR nodes in
the DAG. Instead, we propose a less expensive alternative
called RDS that combines a limited search with the existing
RECOMPUTE heuristic.

The pseudocode for RDS is shown below.

RDS (DAG D)
P’ « the root node of the PDT of D
Search(D, P’)

Search(DAG D, PDT node P’)
1 L < list of the MR nodes of D ordered to maintain
2 DAG dependencies
3 for each node M in L
4 dounmark all nodes of D
5 fix M as marked # save subregion(M)
6 ps < the partition computed by Subdivide(P’)
7 ¢s < COST(ps)
8
9

unmark all nodes of D
10 fix M asunmarked # recompute subregion(M)
11 pr < the partition computed by Subdivide(P’)
12 ¢ < COST(pr)
13 if cs < ¢, then fix M as marked

We also replace lines 6-8 of the Subdivide procedure with:

14 if K isa MR node
15 thenif K is fixed as marked, then mark K

16 dseif K is fixed as unmarked, then unmark K;
17 else use RECOMPUTE heuristic to decide if
18 K should be saved or recomputed;

In the Search procedure, all MR nodes are initially un-
fixed. Each iteration of the loop makes a save vs. recom-
pute decision at just one MR node. At each node M, we
use the Subdivide algorithm to produce two partitions: one

(© The Eurographics Association 2002.

that results when subregion(2) is saved (line 6), and an-
other that results when it is recomputed (line 11). In other
words, in each case we have already determined whether
subregion(M) will be saved or recomputed before subdivi-
sion begins. The code represents this by fixing M as marked
or unmarked (lines 5 and 9). In both cases, we use the RE-
COMPUTE heuristic described above to make save vs. re-
compute decisions at the remaining unfixed MR nodes (lines
17-18). We then evaluate both partitions using a given cost
model (lines 7 and 12) and decide to save or recompute M
based on which partition has the lower cost (line 13).

The RDS algorithm wraps a search around the Subdivide
procedure. The search calls Subdivide 2k times, where k&
is the number of MR nodes. By the analysis in the previous
section, subdivision has complexity O(n - g(n)). Since k is
typically proportional to n, the overall running time of RDS

is O(n? - g(n)).
3.6. Analysis

We have described two versions of an algorithm. The first
one, RDSy, uses only heuristics to make merging and re-
compute decisions and has complexity O(n - g(n)), where
g(n) is the cost of the validity check on a subregion of size
n. In our experiments, we found that a simple heuristic is in-
adequate for making save vs. recompute decisions. Thus we
described a second version, RDS, that uses a limited search
to make these decisions but has complexity O(n? - g(n)).

In our implementation, a validity check involves gener-
ating code and allocating resources for the subregion. The
check has complexity g(n) = O(n), so RDS;, and RDS
have complexity O(n?) and O (n?), respectively. The actual
running time depends on the resource consumption of the
given shader and the resource constraints of the target archi-
tecture. When resources are extremely limited, the validity
check in line 1 of the Subdivide procedure fails most of
the time, which leads to further traversal of the PDT. On the
other hand, when resources are less constrained, the validity
check usually succeeds and terminates the recursion.

4. Implementation

In the rest of this paper, we focus on RDS. We imple-
mented RDS and integrated it with the Stanford Real-Time
Programmable Shading System15. The integrated system is
shown in Figure 1.

We evaluated this system by developing two fragment
compiler back ends. The first one targets the ATl Radeon
8500 architecture2. This architecture exposes a custom set
of OpenGL extensions. We queried the software driver us-
ing these extensions to determine the hardware’s resource
constraints. The hardware is limited to 16 operations, 6 reg-
isters, 6 texture units, 6 interpolants, and 1 level of texture
dependency. Since the hardware provides one output value
per pass, we use render-to-texture to spill intermediate val-
ues to texture memory. However, floating point buffers and
textures are unsupported, so these values are not preserved at
full precision. To circumvent this issue, we limited our tests

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

on this architecture to shaders whose intermediate values are

already clamped to the range [0, 1].

The Radeon 8500 is one example of a programmable frag-
ment architecture. To evaluate RDS on architectures with
different resource constraints, we wrote a second back end
that compiles shaders to a generic programmable fragment
pipeline. The maximum number of per-pass operations, reg-
isters, active texture units, and interpolants can be config-
ured; we call each setup a pipeline configuration (PC). Our
simulated architecture supports 4-component floating-point
vectors and one output value. It uses the NVIDIA vertex pro-
gram instruction set®, with the addition of texture operations.
The architecture places no limits on the number of texture
dependencies within a fragment program. In short, each PC
provides the basic data types and instruction set necessary
to support fragment shaders, but imposes four per-pass re-
source constraints.

Both compiler back ends incorporate the following three
elements to support RDS:

1. Before partitioning, the compilers perform instruction se-
lection to build a DAG of fragment operations.

2. To support partitioning, the compilers provide a common
interface to RDS that exposes a cost model and hardware-
specific resource constraints.

3. After partitioning, the compilers order the passes and as-
sign them to textures.

To perform instruction selection, both of our back ends
use a modified version of lburg®. We extended Iburg to sup-
port operators with arbitrary arity and wrote covering rules
to map the shading system’s intermediate representation di-
rectly to hardware operations. Note that unlike Peercy and
Proudfoot, we only used Iburg’s tree-matching capabilities
for selecting operations, not for mapping operations to ren-
dering passes.

The interface between RDS and the back ends consists of
four callback functions:

1. VALID, a function that determines if a given set of nodes
can be mapped to a single pass. This is needed to en-
sure that each pass satisfies the hardware’s resource con-
straints. Our back ends implement this check by generat-
ing code and allocating resources as needed. The check
fails if any part of the resource allocation fails.

2. cosT, a function that computes the cost of a given par-
tition using a cost model. It is called during the search
algorithm described in Section 3.5. The cost of a parti-
tion depends on several factors, including the number of
passes p, the number of texture accesses ¢, and the num-
ber of non-texture fragment instructions i. \We use a sim-
ple linear cost model:

cost = cpp + cit + ¢t

Note that the costs ¢; and c; are charged on a per-
fragment basis, so the total cost of texture accesses and
non-texture instructions is proportional to the number of
rendered fragments. On the other hand, ¢, is the overhead
of an entire pass, so we can think of ¢, as the per-pass

cost amortized over all the fragments. For our ATI back

end, the multipass renderer preserves intermediate results

by saving the entire framebuffer with render-to-texture.

Saves can also be implemented using copy-to-texture, in

which case ¢, depends on the size of the viewport.

3. RECOMPUTE, a heuristic function that decides whether
or not to recompute a set of nodes. This is called during
the search algorithm described in Section 3.5. In our back
ends, we choose to recompute a set of nodes if and only
if the consumption of each resource is less than one-half
the maximum allowed.

4. MERGE, a heuristic function that, given a set of passes,
picks the one that consumes the fewest resources. This
is called during the merging algorithm described in Sec-
tion 3.2. Sometimes it is unclear which pass consumes
the fewest resources; our back ends break these ties arbi-
trarily.

RDS uses these callback functions to query a compiler back

end for hardware-specific information. This design allows

RDS to target any architecture whose compiler back end im-

plements these callbacks. Furthermore, it requires minimal

changes to our existing compiler infrastructure.

After partitioning is complete, compiler back ends must
order the passes and assign textures to store intermediate re-
sults. Ideally, these textures should be assigned in a way that
minimizes the number of textures needed. Assigning tex-
tures is similar to register allocation, so we applied graph
coloring techniques as described by Chaitin3.

5. Results
5.1. Example and System Demonstration

We now demonstrate how our ATl Radeon 8500 compiler
uses RDS to partition a shader into multiple passes so that it
can be rendered in real-time. Our shader is a version of the
RenderMan bowling pin surface shader combined with five
light shaders: one point light source and four animated tex-
tured lights. Figure 4 shows the source code for this shader
written in the Stanford Real-Time Shading Language. The
compiler front end maps this source code to a hardware-
independent intermediate representation. Next, our Radeon
8500 back end performs instruction selection and builds the
DAG in Figure 5a. Since this DAG is too large to map to
a single pass, the compiler calls RDS to partition the DAG
into multiple passes. Figure 5b shows the resulting partition,
which contains 7 passes, 12 texture fetches, and 30 non-
texture operations. We ran the partitioned shader at a res-
olution of 512 x 512 on a 1.4 GHz Pentium 4 system with
an ATI Radeon 8500. The system renders the shader at 30
frames/sec and produces the image shown in Figure 7 (see
color plates).

5.2. Testing Methodology

In this section, we discuss the techniques that we used to
evaluate the efficiency of RDS. We chose three shaders,
seven pipeline configurations of our simulated architecture,
and five cost models.

(© The Eurographics Association 2002.

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

surface shader float4

bowling_pin (texref pinbase, texref bruns, texref circle,
texref coated, texref marks, float4 uv)

{

float4 uv_wrap = { uv[0], 10 * Pobj[1], 0, 1 };

float4 uv_label = { 10 * Pobj[0], 10 * Pobj[1], 0, 1 };

matrix4 t_base = invert(translate(0, -7.5, 0) * scale(0.667, 15, 1));
matrix4 t_bruns = invert(translate(-2.6, -2.8, 0) * scale(5.2, 5.2, 1));
matrix4 t_circle = invert(translate(-0.8, -1.15, 0) * scale(1.4, 1.4, 1));
matrix4 t_coated = invert(translate(2.6, -2.8, 0) * scale(-5.2, 5.2, 1));
matrix4 t_marks = invert(translate(2.0, 7.5, 0) * scale (4, -15, 1));
float front = select(Pobj[2] >= 0, 1, 0);

float back = select(Pobj[2] <= 0, 1, 0);

float4 Base = texture(pinbase, t_base * uv_wrap);

float4 Bruns = front * texture(bruns, t_bruns * uv_label);

float4 Circle = front * texture(circle, t_circle * uv_label);

float4 Coated = back * texture(coated, t_coated * uv_label);

float4 Marks = texture(marks, t_marks * uv_wrap);

float4 Cd = lightmodel_diffuse({ 0.4, 0.4, 0.4, 1},{ 0.5, 0.5, 0.5, 1});
float4 Cs = lightmodel_specular({ 0.35, 0.35, 0.35, 1 }, Zero, 20);
return (Circle over (Bruns over (Coated over Base))) * (Marks*Cd) + Cs;

}

Figure 4: RTSL source code for the bowling pin surface shader.

Data for the shaders are listed in Table 1. The first shader
(RBP) is the version of the RenderMan bowling pin de-
scribed above. RBP has modest computation but requires
several vertex interpolants and texture units. The second
shader (BMBP) applies a bump map to the bowling pin sur-
face and uses only one point light source. BMBP uses a more
balanced set of resources than RBP. The third shader (Wood)
procedurally generates a wood texture?. It is computationally
intensive and requires many dependent texture lookups, but
uses other resources modestly. We chose these three shaders
for testing because they stress different resources.

Eight pipeline configurations are listed in Table 2. PCs 1-
4 are limited in only one resource; these allow us to show
that RDS finds good partitions on architectures constrained
in different ways. PCs 5-7 have more balanced constraints;
they represent evolving architectures that provide more and
more resources to fragment pipelines. We use PCs 5-7 to
show that RDS performs well when multiple resources are
constrained. PC 8 has unlimited resources and is useful for
comparing the cost of a single-pass partition to the cost of
multiple passes.

For convenience, we will use the notation O, /R, /T;/ Vs
to refer to architectures’ resource constraints, where O is the
number of operations, R is the number of registers, 7' is the
number of texture units, and V' is the number of interpolants.
For instance, PC 5 has constraints 6, /4, /4:/4..

We chose a simple, linear cost function c,p + cit + ¢4,
as discussed in Section 4. For the ATl Radeon 8500, we es-
timated the coefficients for each term by profiling the hard-
ware as follows. We performed all our measurements by ren-
dering a screen-aligned square into a 512 x 512 window.
First, we compared the rendering times of shaders that dif-
fered only in the number of non-texture fragment instruc-
tions. We then computed ¢; = At;/fAi, where f is the
number of fragments, As is the controlled change in the
number of non-texture instructions, and A¢; is the measured
change in rendering time. Our measurements of ¢; remained
constant when we varied f by resizing the square, as ex-

(© The Eurographics Association 2002.

Figure 5: (a) DAG of the RBP shader, after instruction selection.
(b) A partition of the shader with 7 passes, computed by RDS for
the ATl Radeon 8500 architecture. Texture fetches (T), vertex inter-
polants (V), and constants (C) are shown as diamonds, triangles and
squares, respectively. Circles represent other fragment operations,
and multiply-referenced nodes are shaded. Dotted edges indicate
dependencies between passes.

pected. We computed c¢; similarly. To estimate c¢,, we re-
duced the square to one pixel in size to make the cost of
fragment operations negligible. After measuring the three
coefficients, we normalized them by ¢; to obtain:

cost = 15.7p + 1.36t + ¢

While the result is a rough estimate, it is clear that per-pass
overhead is high relative to individual fragment operations.
This supports our assumption that per-pass overhead domi-
nates the overall cost.

For our simulated architecture, we also tested RDS with
the following cost models:

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

Shader RBP | BMBP | Wood
total nodes (n) 68 72 475
MR nodes (k) 11 14 72
Non-texture operations 27 33 175
Texture operations 9 3 33
Total operations 36 36 208
Registers 7 5 16
Texture units 9 3 6
Interpolants 24 6 5

Table 1: Shaders. Resource consumption on our simulated archi-
tecture is listed for each shader. The shader with the largest con-
sumption in each category is shown in boldface. The last four rows
contain the primary resource constraints. For example, in order for
RBP to compile to a single pass, our pipeline configuration must
support at least 36 operations, 7 registers, 9 texture units, and 24
interpolants.

Architecture 0 r t v
PC 1 (operation-limited) 6 oo | oo | o0
PC 2 (register-limited) 0 4 | oo | o©
PC 3 (texture-limited) oo | oo | 4 | o0
PC 4 (interpolant-limited) | co | oo | oo | 4
PC5 6 4 4 4
PC6 24 8 8 8
PC7 128 | 12 | 16 | 12
PC 8 (unlimited) o | co | oo | o

Table 2: Architectures. Four resource constraints are given for each
architecture: operations (o), registers (r), texture units (¢), and ver-
tex interpolants (v).

15p + 5t +1¢
5p+ 3t + 1
3p+2t+1
p+t+1
t+1

We picked different coefficients to show that RDS performs
well for architectures with different performance character-
istics. Note that the last cost model ¢ + ¢ completely ignores
per-pass overhead.

5.3. Efficiency

For comparison, we implemented the algorithm in Section
3.1 that uses exhaustive search to find the optimal partition.
It is interesting to note that in all of our tests, RDS always
found a partition with the same number of passes as the opti-
mal partition. However, there is a difference in cost because
RDS picked different pass boundaries, which can affect the
total number of restore operations needed.

Table 3 compares the partitions computed by RDS using
the cost model 15p+ 5t +1 to the optimal partitions. In some
cases, the search space was too large for the exhaustive algo-
rithm to finish. We measure the efficiency of RDS by com-
puting the percentage increase in cost of the RDS-generated
partition over the optimal partition. There are 17 complete

test cases not including PC 8. RDS found a minimum-cost
partition in 14 of these cases, and was within 5% of optimal
cost in each of the remaining cases.

Results for the other cost models are similar. RDS found
an optimal partition in two-thirds of all the test cases. For the
remaining cases, RDS was within 5% of optimal on average
and within 15% in the worst case. The worst cases occurred
when using the cost models p+t+¢ and ¢+<. This is not sur-
prising, since RDS was designed under the assumption that
per-pass overhead dominates the overall cost. Nonetheless,
these results indicate that RDS performs consistently well
across different cost models.

5.4. Speed vs. Quality Tradeoff

In practice, one can imagine a knob that allows users to
trade off speed for partition quality. As an example, we com-
pare RDS to RDSy, in Table 4. We measure the efficiency
of RDS}, as a percentage increase in cost over RDS. Over
the 21 cases, the average cost of RDS;, is 10.5% higher.
Since RDSy, uses only heuristics and RDS performs a lim-
ited search, it is not surprising that RDS;, runs faster than
RDS at the expense of quality.

Both versions of the algorithm may be useful in practice.
For example, a fast partitioning scheme such as RDS}, can be
used during iterative development of new shaders. Once the
shader is complete, a slower but more thorough algorithm
such as RDS is used to produce efficient partitions, which in
turn will improve rendering performance.

5.5. Cost Analysis

In this section, we study the cost of saves and restores rel-
ative to the total cost of a partition. Table 5 compares two
partitions of the RBP shader. The 11-pass partition contains
53 operations, of which 11 are restores. In contrast, the 3-
pass partition contains 44 operations, of which only 2 are
restores. Thus all 9 of the extra operations in the former par-
tition are due to restores. This overhead occurs because the
partition simply requires more intermediate values.

As the number of passes increases, the additional costs
come primarily from save and restore overhead. Figure 6
shows the cost breakdown for seven partitions of the RBP
shader, each generated by RDS. These partitions are the
same as the ones listed in Table 3, but they are now ar-
ranged in order of increasing number of passes. The cost
of non-texture operations and non-restore texture fetches re-
main nearly constant across the graph; the slight variations
arise from recomputation. In contrast, the cost of saves and
restores rises steadily. This suggests that rendering perfor-
mance could be improved by changes to hardware that use
more efficient methods for saving and restoring intermediate
results.

6. Discussion

In this section we discuss limitations of RDS and future
work.

(© The Eurographics Association 2002.

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

RBP BMBP Wood

Architecture Optimal RDS Eff. Optimal RDS Eff. | Optimal RDS Eff.

c p c p +% c p c p +% c p c p +%
PC 1: 6, /00y /00t /00y 309 11 | 309 11| 00 | 310 12 | 310 12 | 0.0 - -] 268 91 -
PC 2: 000 /4r /00t /00w 125 2| 131 2| 48 | 109 3 | 109 3] 00 - - | 1462 32 -
PC 3: 000 /00y /4t /00w 171 4 1171 4 | 00 63 1 63 100|378 2 378 2| 00
PC 4: 00, /00y /00t /40 269 9 | 269 91 00 84 2 84 2100 3714 2 374 2| 00
PC5: 60/4r/4¢/4y 310 11 | 310 11| 0.0 | 310 12 | 310 12 | 0.0 - -] 2681 92 -
PC6: 24,/8,/8:/8+ 179 5| 184 5128 | 111 3 | 116 3| 45 - - 937 17 -
PC7: 128,/12,/16./12, | 145 3| 145 3| 00 63 1 63 1] 00 |3% 3 396 3|00
PC 8: 004 /00r /00t /00y 87 1 87 1| 00 63 1 63 1] 00|35 1 355 1] 00

Table 3: Efficiency comparison. For each case, results for both the optimal partition and the RDS-computed partition are given. All partitions
were generated using the cost model 15p + 5t + <. Column ¢ shows the cost of the partition, and column p shows the number of passes in
that partition. The efficiency of RDS is measured as the percentage increase in cost over the optimal cost. — indicates the search space for that

configuration was too large to find an optimal partition.

RBP BMBP Wood
Architecture RDS RDS;, RDS RDS; RDS RDS;,
Time Time Eff. (+%) | Time | Time Eff.(+%) | Time | Time Eff. (+%)

PC 1: 6, /00y /00¢/00y 0.32 0.03 7.1 0.32 | 0.06 1.9 55.58 | 0.69 5.7
PC 2: 006 /4r/00¢/ 000 0.15 0.02 0.0 0.07 | 0.04 0.0 53.27 | 0.78 16.1
PC 3: 006 /00y /4 /00y 0.12 0.02 0.0 0.01 | 0.01 0.0 061 | 0.13 0.0
PC 4: 00, /00 /00t /40 0.21 0.02 8.2 0.05 | 0.02 52.4 088 | 031 0.0
PC5: 60/4r /4t /4 0.18 0.03 6.8 0.21 | 0.04 1.9 31.20 | 0.37 6.8
PC6: 24,/8,/8¢/8v 0.09 0.02 38 0.17 | 0.03 10.3 39.32 | 0.58 0.7
PC7: 128,/12,/164/12, 0.12 0.02 0.0 0.01 | 0.01 0.0 6.32 | 1.30 99.0
PC 8: 006 /00 /00t /00w <0.01 | <0.01 0.0 0.01 | 0.01 0.0 0.07 | 0.07 0.0

Table 4: RDS vs. RDSy,. Running times for both versions of the algorithm were measured on a 1.4 GHz Pentium 4 system running Windows
2000 SP2. All times are reported in seconds. The efficiency of RDSy, is computed as a percentage increase in cost over RDS.

Pass PC5: 60/4r /4t /40 PC7: 128,/12,/164/12,
t|lv]| R o ro|t v R
10| 2| 3] 10 0
102|310 0
24 | 4 | 8| 10 2

not applicable

©O© oo ~NO O wN B
oM~ N®MOIOTJNO

=
o

WNEFP WNNREPE P WWWS
WWEF WNWEFERFPNDNDDN
WA PP WEANMNBENDNNDW
NNONRFEFNOORPREFLO

11

(o]

Table 5: Per-pass resource consumption for two partitions of the
RBP shader. Column R gives the number of restores. The 11-pass
and 3-pass partitions target PCs 5 and 7, respectively. Both parti-
tions were computed by RDS.

In designing RDS, we have assumed that a shader can
be represented as a single DAG, which is equivalent to
one basic block of hardware assembly code. However, pro-
grammable graphics hardware will likely support loops and
conditionals in the future. Since this requires flowgraphs
with multiple basic blocks, we need additional techniques
to handle branching correctly and efficiently.

We have assumed that programmable graphics hardware
allows only one output value per pass. However, future hard-
ware may support multiple outputs, so a single pass can com-

(© The Eurographics Association 2002.

300 - —= Passoverhead
— Restore texture fetches
=== Non-restore texture fetches

mmm Non-texture operations

200

cost

100

1 2 3 4 5 9
Number of passes

Figure 6: Cost of partitions, broken down by type. These partitions
were computed by RDS for the RBP shader with the cost model
15p + 5t + 4.

pute several results. These computations may be unrelated
and correspond to disjoint regions of the DAG. Efficient par-
titioning becomes more difficult because it requires exam-
ining many disjoint regions simultaneously. Our current al-
gorithm cannot handle multiple outputs because it considers
only one connected region at a time.

Accurate cost models are needed to enable RDS to find
partitions that render efficiently. For that reason, RDS al-
lows any cost model to be plugged in. However, we make
some simplifying assumptions in our cost model. Some of

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

these assumptions are necessary because we don’t have all
the relevant cost information at compile time. For example,
the per-pass cost may depend on the viewport size, and the
total cost of instructions depends on the number of rendered
fragments. In our shading system, however, neither the view-
port size nor the number of fragments are known at compile
time, so we simply treat the coefficients ¢y, c¢, and ¢; as con-
stants. On the other hand, some limitations can be addressed
with more sophisticated cost models. For example, our cur-
rent model ignores the cost of vertex shaders. If rendering
performance is limited by vertex computations, then it is de-
sirable to find a partition that minimizes recomputation of
regions containing vertex inputs. This could be done by us-
ing a cost model in which the per-pass cost is proportional
to the number of vertex operations needed by that pass.

We showed that RDS and RDS;, are O(n? - g(n)) and
O(n - g(n)) algorithms, but it may be possible to eliminate
the g(n) term. For simplicity and ease of implementation,
we check validity by calling existing compiler subroutines.
However, this requires that subregions be compiled from
scratch every time, so g(n) = O(n). The check could be
made less expensive by using incremental techniques, since
a subregion depends only on previously checked subregions.
One approach would be to use vectors to keep track of a sub-
region’s resource consumption. Resource vectors from dif-
ferent subregions could be added to determine quickly if the
subregions can be merged. However, overlapping subregions
and peephole optimizations are tricky and must be treated
carefully. Using incremental approaches, it may be possible
to reduce the cost of the validity check to constant time when
amortized over the traversal of the entire DAG. This would
reduce the complexity of RDS and RDS;, by a factor of n.

7. Conclusion

We have described RDS, an algorithm for partitioning frag-
ment shaders into multiple passes. Our algorithm finds near-
optimal partitions for a number of shaders on architectures
with different limitations. Furthermore, RDS performs con-
sistently well across a range of different cost models. We
have integrated RDS with an existing programmable shad-
ing system and demonstrated how this system can be used to
partition and render a large shader in real-time. Since RDS
depends only on a flexible cost model and a set of resource
constraints, it can be readily applied to future programmable
graphics architectures.

8. Acknowledgments

We would like to thank everyone in the Stanford graphics
architecture group for contributing ideas to this work. We
had helpful discussions with Bill Mark and Monica Lam
during our early brainstorming sessions. Evan Hart and Jeff
Royle from ATI provided hardware and driver assistance.
This work was done as part of the Stanford real-time pro-
grammable shading project, which is sponsored by DARPA
(contracts DABT63-95-C-0085 and MDA904-98-C-A933),
ATI, NVIDIA, Sony, and Sun.

References

1. AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers:
Principles, Techniques and Tools. Addison-Wesley, 1986,
p. 602.

2. ATIl. RADEON 8500 product web site, 2001.
http://www.ati.com/products/pc/radeon8500128/index.html.

3. CHAITIN, G. J., AUSLANDER, M. A., CHANDRA, A. K.,
COCKE, J., HOPKINS, M. E., AND MARKSTEIN, P. W.
Register allocation via coloring. In Computer Languages
(1981), vol. 6, pp. 47-57.

4. CHAMBERLAIN, B. L. Graph partitioning algorithms for
distributing workloads of parallel computations. Tech. Rep.
TR-98-10-03, 1998. http://www.cs.washington.edu/homes/
brad/cv/pubs/degree/generals.pdf.

5. CoOK, R. L. Shade trees. In Proceedings of ACM
SIGGRAPH (1984), pp. 223-231.

6. FRASER, C., AND HANSON, D. R. A Retargetable C
Compiler: Design and Implementation. Addison-Wesley,
1995, pp. 373-406.

7. GRITZ, L. Renderman repository web site, 1998.
http://www.renderman.org/RMR/Shaders/BMRTShaders/
wood2.sl.

8. HANRAHAN, P, AND LAWSON, J. A language for shading
and lighting calculations. In Proceedings of ACM
SIGGRAPH (1990), pp. 289-298.

9. LINDHOLM, E., KLIGARD, M. J., AND MORETON, H. A
user-programmable vertex engine. In Proceedings of ACM
SIGGRAPH (2001), pp. 149-158.

10. MARK, W. R., AND PROUDFOOT, K. The F-buffer: a
rasterization-order FIFO buffer for multi-pass rendering. In
Proceedings of the ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware (2001), pp. 57-64.

11. NVIDIA. GeForce3 Ti family product overview, 2001.
http://www.nvidia.com/docs/lo/1050/SUPP/gf3ti_overview.pdf.

12. OLANO, M., AND LASTRA, A. A shading language on
graphics hardware: the pixelflow shading system. In
Proceedings of ACM SIGGRAPH (1998), pp. 159-168.

13. PEERCY, M. S., OLANO, M., AIREY, J., AND UNGAR, P. J.
Interactive multi-pass programmable shading. In Proceedings
of ACM SIGGRAPH (2000), pp. 425-432.

14. PERLIN, K. An image synthesizer. In Proceedings of ACM
SIGGRAPH (1985), pp. 287-296.

15. PROUDFOOT, K., MARK, W. R., TZVETKOV, S., AND
HANRAHAN, P. A real-time procedural shading system for
programmable graphics hardware. In Proceedings of ACM
SIGGRAPH (2001), pp. 159-170.

(© The Eurographics Association 2002.

Chanetal / Efficient Partitioning of Fragment Shaders for Multipass Rendering on Programmable Graphics Hardware

A=

©

? Brunswick

S

Figure 7: RenderMan bowling pin with 1 point light source and 4 animated textured lights. Since the shader is too large to map to a single
pass, our RDS algorithm splits it into multiple passes. The pin renders at 30 frames/sec on a 1.4 GHz Pentium 4 system with an ATl Radeon
8500 graphics card.

(© The Eurographics Association 2002.

